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RADIAL GROWTH AND EXCEPTIONAL SETS FOR
CAUCHY-STIELTJES INTEGRALS

by D. J. HALLENBECK and T. H. MACGREGOR

(Received 2nd July 1992)

This paper considers the radial and nontangential growth of a function / given by

W for I2I< 1'
where <x>0 and \i is a complex-valued Borel measure on the unit circle. The main theorem shows how certain
local conditions on n near e" affect the growth of /(z) as z-*e" in Stolz angles. This result leads to estimates
on the nontangential growth of / where exceptional sets occur having zero ^-capacity.

1991 Mathematics subject classification: 30D99, 30E20.

1. Introduction

Let A = {z:|z|<l} and r = {z:|z| = l}. Let J( denote the set of complex-valued Borel
measures on T. For each a>0 the family #"„ of analytic functions is defined as follows:

provided that there exists fieJt such that

for |z| < 1. (Here and throughout this paper every logarithm means the principal branch.)
Equation (1) is equivalent to

where g is a complex-valued function of bounded variation on [—n,ii\. Throughout this
paper we assume that every such g is extended to ( — 00,00) by
g(t + n)—g(t — n)=g(n)—g( — n). Then (2) can be rewritten
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for each real number 6 and g is of bounded variation on [6—n,
We consider the effect of the differentiability of g, or of other local smoothness

conditions at 6, on the radial growth of f in the direction 6. In particular, this yields a
new proof of the result in [2, Theorem 7] that if fe&a and a > l then
lim_1_(l-r)a~1/(' '£>"')=0 for almost all 6 in \_-n,n~\. UfePa then (1) implies

and this maximal growth is achieved, for example, by

It was shown in [2. Theorem 11] that if f e^a then

as r-*\— except possibly for a set in 6 which is countable. Also, when <x> 1 any growth
smaller than

is achievable for some fe^a and for all 9 [2, Theorem 8]. Thus the growths

provide extreme cases for questions concerning exceptional sets.
Theorem 2 in this paper shows that certain growths between these two extremes are

associated with exceptional sets whose ^-capacity is zero. For example, it is proved that
i f / e ^ a , O < 0 < : a a n d 0<1 then

f(re">) = ,

for all 6 in [—n,n\ except possibly for a set whose ^-capacity is zero.
The results obtained about radial growths are proved in more generality and are
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expressed in terms of suitable nontangential limits. Suppose that —nf^O^n and
O^yf^n. Let S(9,y) denote the closed Stolz angle having vertex e'B and opening y. There
are positive constants A and B depending only on y such that if z=rei<t>eS(0,y) (and <f>
is chosen suitably) then

\z-eie\^A(l-\z\) (4)

and

\<t>-d\^B(l-\z\). (5)

A function / defined in A is said to have a nontangential limit at eie provided that

lim f(z) exists for every y(0^y<n).

zeS(fl.y)

The results in this paper complement facts about nontangential limits proved in [3].
In particular, it was shown in [3, Theorem 5] that if / e # " a for some a where 0 < a < l
then / has a nontangential limit at e'e except possibly for a set of 6 in [ — n, 7t] whose
a-capacity is zero. The focus of this paper is primarily on the growth of / where / e &a

and a ^ l .

2. Radial growth and exceptional sets of zero /{-capacity

Theorem 1. Let a > 0 and for

\z\<l let

where g is a complex-valued function of bounded variation on [ — n, rc].

(a) Suppose that \g{t)—g(0)\=o{\t — 0\fi) as t->6, for some 8 in [ — n,n~\ and for some
P>0. If ff«x then (l-e~iez)a~ef(z) has the nontangential limit zero at eie. If /? = <x then

f(z)

has the nontangential limit zero at e'8.

(b) Suppose that
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1
\g(t)-g{d)\ = as t->0,

for some 6 in[ — n, n\. Then

has the nontangential limit zero at eie.

Proof. Equation (3) implies

and an integration by parts gives

where

Let 0^y<n . If zeS(O,y) then

where

-« (0 - i r ) | sup < +00.

This can be written

(6)
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Assume that /?>0 and \g(t)-g(6) =o(\t-6\p) as t->0. Let e>0. There exists 5 such
that 0<8<l and \g(0+t)-g(d)\^e\tp for \t\<8. Let A and B be the constants described
by (4) and (5) and let r=\z\. There exists i\ such that 0 < ^ g l / 2 and if zeS{0,y) and
| ' 8 | then 2B(\—r)<5. For |(|g7t and |z|<l let

For l g n ^ 5 let Jn = J/n G(t,z)dt where

= [2B( 1 - r), 81 and /5 = 15, * ] .

Clearly G(t,z) is bounded for t e / ! and zeS(6,y) and hence there is a constant C2

such that J 1 ^ C 2 for zeS(0,y). Likewise J 5 ^ C 3 for zeS(O,y) where C3 is some
constant. For zeS(6,y) and \z—eie\<r\ we have

w -J*
-2B(l-r)

• I |

Suppose that /?<<x. Then

because of (5). Hence

The same inequality holds for J4. Also,

_ 2B(l
f"

r) \g(0+t)-g{6)\ 2B<i-') £|t|g

- 2 B ( l - r ) | ! — « Z| -2B(l -r) ( I " r ) P + l ( 1 — T)
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Since (6) implies 1/(2)1^0! + a £* = 1 Jn the estimates above yield

for zeS(0,y) and \z—eie\<r\, where C4 and C5 are constants. This inequality and (4)
imply that

lim (l-e~'flz)"~'/(z) = 0.

zeS(9,y)

This proves (a) in the case /? < a.
Next suppose that /? = a. Then the estimate for J2 given above becomes

By considering the cases (j><6,<i> = 6 and (j>>6 we find that, in general,

i
Hence

The same inequality holds for J4. Also,

o + l

This yields

for Z6S(0,>>) and |z—c*B| < »|, where C6 and C7 are constants. Therefore
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lim /{Z) =0.

We are required to prove that

lim f{2) =0.

Hence if suffices to show that

M= sup ^ L— <+oo. (7)
zeS(6, y)

Inequality (7) follows if it is shown that

log

log

is bounded for zeS(8,y), \z\ = r and r sufficiently near 1. If z = re'*eS(6,y) then (5) gives
\<f> — 6\^B(l — r) and hence there exists r, such that 0 < r ! < l and 1— cos(«j!> — 0)g(# — 8)2

for r t ^ r < l . Thus

Hence

n rTa-i^^Tj r for ri^r<\, where C= V /H-2S 2

There exists r2 such that
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1
rl ^ r2 < 1 and

C(l - r ) '
for r 2^

Then

log
(l-e~uz) •°gr

1
C(l - r )

for r 2 ^

Therefore, if z e S(0, y) and r2 ̂  r < 1 then

log
1-r

log;

log
1-r

Since limr^ j _ a{r) = 1 this proves (7). Hence the proof of (a) is complete.
The proof of (b) follows in a similar way. We have 0<<5< 1 and

l o gR
for \t\<d.

The estimate on J2 becomes

+l -2B(l-r)

dt

-r) 1

K>
2a+1£L(r),

where
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L(r)= J l—rdt.
g

Let

M{r)= for 0<r< l .

Then lim,.,! _ Hf) = + oo and Urn,..!_ M(r) = + oo and l'Hospital's rule yields

,. L(r) 1
lun —Vr =

for rt^

Hence then exists rx such that 0<r t < 1 and

L{r) 2
M(r) = a{2B)"

Therefore there is tj' such that 0<f/'^f/ and

J2 g ££ for 2 6 S(6, y)

and \z — e'e\ <r\', where C8 is a constant. The same inequality holds for J4.
Also

r ^ £ f ' 1 i 2e /• 1 .

- 2 - C l - r ) , o g l U-H 0 l Q g i

These estimates imply
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for zeS(6,y)

and \z—e'fl|<>/', where C9 and C10 are constants. This proves that

lim {[(1 - rf log —L-l/(z)j=0.

We have

(8)
zeS(fl.y)

log; 1 log; J ^ 2 log
'( l -e-»z)

for a suitable r0 (0<ro< 1). Thus (4) and (8) imply

-e~wz)a log

for |z| = r^rn

This completes the proof of (b). •
The notion of zero ^-capacity for Borel subsets of [ — n, n~\ provides a useful measure

of the fineness of exceptional sets for the radial growth of functions in !F'„. The
definition and properties of /J-capacity are given in [1]. We note that O-capacity
corresponds to logarithmic capacity and that if the ^-capacity of a set is zero for some
P(O^P< 1) then its Lebesgue measure is zero.

The next theorem uses the following lemma. It is proved in [4, Lemma 1] in the case
0</?< 1 and a similar argument proves the second assertion.

Lemma 1. Suppose that g is a nondecreasing function on [—n,n\. If 0</?<l then
\si1)—g(0)| = °(|t-0|'') <" t-*0 for all 0 in [—n,ii] except possibly for a set whose
^-capacity is zero. Also,

\g(t)-g(0)\ = 1

log
t-e\J

as t—>0 for all 6 in [—n,ri]

except possibly for a set whose logarithmic capacity is zero.

Theorem 2. Suppose that a>0 and . // 0</?<l and /?<a then
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(1— e~iez)"~fif(z) has the nontangential limit zero at e>9 for all 6 in [—n,7t] except
possibly for a set whose ^-capacity is zero. Also,

has the notangential limit zero at eie for all 6 in [—7t,7i] except possibly for a set whose
logarithmic capacity is zero.

Proof. This is a direct consequence of Lemma 1 and Theorem 1.

3. Radial growth and differentiability

Theorem 3 below gives estimates on the radial growth of a function fe^t in the
direction 6 when the function g representing / is differentiable at 0. The result is
expressed in terms of suitable nontangential limits. This yields a new proof of a result in
[2] about the radial growth of / off exceptional sets of measure zero. Also it is shown
that Theorem 3 is sharp when l ^ a ^ l

Theorem 3. Suppose that a^ 1, g is a complex-valued function of bounded variation on
[ — 7t, TI] and let

for |z|<l. Assume that g is differentiable at some 6 in [—n,n~\. If a > l then
(1 — e~uz)'~1 f{z) has the nontangential limit zero at eie. If a= 1 then

has the nontangential limit zero at e'e.

Proof. Suppose that (9) defines / where g is of bounded variation on [—n,7i] and
assume that g is differentiable at 6. Define the function g by g(t)=g(t) — tg'(0) for
-n^t<Ln. Since gl(6) exists, we have \g\t)-g(O)\ = o(\t-0\) as t->0. Also, because

it follows that f(z) = ]'(z) + 2ng'(d) where
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ni for |z|<L

Hence / satisfies the assumptions of Theorem 1 and part (a) of that theorem where
/J= 1 yields the conclusions. •

The following theorem was proved in fJ2, Theorem 7] using a different argument.

Theorem 4. / / a > l and fe&a then (l—e~wz)a~1f(z) has the nontangential limit
zero at eie for almost all 9 in [ — re, re].

Proof. Suppose that a > l and fe^a. There is a complex-valued function g of
bounded variation on [—re, re] such that (9) holds for |z|<l. Since a function of
bounded variation is differentiable almost everywhere, there is a set £c=[—re, re] having
Lebesgue measure 2re such that g'(9) exists for OeE. If 0eE then Theorem 3 implies
(l—e~i0z)"~1f(z) has the nontangential limit zero at ew. •

We add some remarks related to Theorem 3. Suppose that / is defined by (9) where g
is of bounded variation and g'(9) exists at some 9 in [ — re, re]. Now assume that
0 < a < 1. The differentiability of g at 9 implies that there are numbers S and C such that
0<<5<re, C>0and

<C for 0<\t\<3.-g(d)
t

Since a < 1 this implies that

*<+*•

Therefore / has a nontangential limit at eie (see [3, Theorems 2 and 4]).
When a = 1 the assumption that g is differentiable at 9 does not imply that / has a

radial limit in the direction 9. This fact is implied by (10) in Theorem 5 below. We see
this implication, for example, by letting

e(r)= 1

KS)
More generally, Theorem 5 asserts that Theorem 3 is sharp when 1 ^ a ̂  2. When a = 1
this shows that the argument given for Theorem 4 cannot be used to deduce the result:

then / has a nontangential limit in ahnost all directions. This result, of course,
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is derivable from known facts about functions in Hp spaces. We note that ^i<=H" for
0 < p < l .

The proof of Theorem 5 uses the following lemma.

Lemma 2. Let 0</?^ 1 and let

vv = r where z = re'e.
(1-z)'

7/0<r<l and |0|gl-r then

1
Rew^-

Proof.

We may assume that 0>O. Then O < 0 < 1 and this implies

1 — a

Hence

rsinfl (l-fl)sinfl

and

^cos[)?tan '(lXJ^cosj - j = ^ - .

Therefore
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=r< i a 0 0 8 PaTB
\l-z\" |_ * -r)» 2

2(1 -rf

Theorem 5. Let 1 ^ a :g 2 and suppose that e is a positive nonincreasing function on
(0,1) such that limr^!_ e(r)=O. Then there is a function f given by

where g is of bounded variation on [—n, 7t] and g is differentiate at 0. Moreover, when

lim l/Wl = + 0 0 (10)

and when 1 ^ a ̂  2

=+oo . (11)

Proof. The hypotheses on e also hold for ^/e. Hence it suffices to show such an /
exists where (10) and (11) are respectively replaced by

^ 1 ( 1 2 )

e(r) log

and

Let {xB}(n = l,2,...) be a strictly decreasing sequence of real numbers such that
0 < x B < l and lim,,..,,,, xa = 0 and let rn=\-xn. There is a strictly decreasing sequence
{an} of a positive real numbers such that limn_ooa1,=0,

rn) (14)
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in the case a = l and

a,^(«-l)6(r.) (15)

when o> l . A real-valued function h is defined on [ —7t,7t] as follows. Let /i(0)=0 and
require that h is odd and on (0,7t] let h be defined as described next. Let x'n =
$(xn + xn+l). For xl<x^n let h[x) = al and for xn+i<x<x'n let h(x) = aa+1. On each
interval [*„,*„] let h be linear and let h{x'n)=an+1 and h(xn) = an. Then h is continuous
on (0, n\ and on [—7t,0) and since lim))_0OaB=0, h is continuous at 0.

For — 7i^t^7t let k(t) = J'_,/i(s)ds. Then k is of bounded variation on [ — n,n~] and
ld(t) = h(t) for -7t<t<7r. Let / be defined by

/(z)= f K(e-"z)dk(t) (16)
— n

for |z|<l, where

It is not difficult to show that (16) can be expressed

for |z| < 1, where g is a complex-valued function which is of bounded variation on
[—7i, rr] and is difierentiable at 0.

Equation (16) is the same as f(z) = \1LxK(e~itz)h{t)dt. Since h is odd and K(e~"r) =
K(e"r) for 0 < r < l it follows that

f{r)=-2i } lm[K(eur)-]h(t)dt. (18)
o

If O^tgrt and 0 < r < l then ImK(e"r)^0 and /t(t)^O. Thus, (18) implies

} t^2 ) Im\_K(e"r)Mt)dt
* n

^ 2 a n J

This inequality is the same as
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\f{r)\2:2anlm$] K(e»r)dt\.

Suppose that «= 1. Then

Im J J ijt\og(l-ei'rn)dt\

\l-eix"rtt\

(l-rB)2+4rnsi

Therefore, (19) and (14) imply

This proves (12).
Suppose that 1 < a ̂  2. Then Lemma 2 implies

- a - 1

Therefore, (19) and (15) imply

(19)
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This proves (13).
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