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Abstract. We study the following nonlinear Dirichlet boundary value problem:

−�u = g(x, u), u ∈ H1
0 (�),

where � is a bounded domain in �N(N ≥ 2) with a smooth boundary ∂� and g ∈
C(� × �) is a function satisfying lim

|t|→0

g(x, t)
t

= ∞ for all x ∈ �. Under appropriate

assumptions, we prove the existence of infinitely many solutions when g(x, t) is not
odd in t.

2000 Mathematics Subject Classification. 35J20, 35J25, 35J60.

1. Introduction. We study the following nonlinear Dirichlet boundary value
problem:

−�u = g(x, u), u ∈ H1
0 (�), (1.1)

where � is a bounded domain in �N(N ≥ 2) with a smooth boundary ∂� and

g ∈ C(� × �) is a function satisfying lim
|t|→0

g(x, t)
t

→ ∞ for all x ∈ �. This kind of

problem arises in many physical and mechanical problems, and was investigated by
several authors (see [1, 4, 7, 8, 9, 11, 12]). In [1], Brezis and Ambrosetti considered the
problem

−�u = µ|u|q−1u + ν|u|p−1u, u ∈ H1
0 (�), (1.2)

where 0 < q < 1 < p < 2∗ − 1 but 0 < µ � ν = 1. In [4], Bartsh and Willem
established the existence of infinitely many solutions of Problem (1.2) for every µ > 0
and ν ∈ �. In [7], the conditions of ν = 1, 0 < q < 1, p = 2∗ − 1 have been considered
by Garcia and Peral. In these papers, oddness of g(x, t) in t plays a crucial role to
ensure the existence of infinitely many solutions and the global property of g(x, t) was
used in an essential way to derive multiplicity results of solutions with negative energy.
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In 2001, Wang [11] considered the problem

−�u = λ|u|q−1u + f (x, u), u ∈ H1
0 (�), (1.3)

where λ > 0, 0 < q < 1, f (x, t) ∈ C(� × �, �) is odd in t for |t| small and

f (x, t) = o(|t|q), as |t| → 0, uniformly in x ∈ �.

The oddness of f (x, t) in t is still indispensable despite there is no condition imposed
on f (x, t) for t large. In [8], Hirano made a breakthrough. He considered the nonlinear
function g(x, t) which is not necessarily odd in t. His conclusions based on the following
condition:
(A) there exist positive numbers p, q and a such that 0 < q < 1 < p < 2∗ − 1, N(1 −

q)/(1 + q) < p − 1 and that

lim sup
|t|→0

∣∣∣∣∣g(x, t) − a|t|q−1t
|t|p

∣∣∣∣∣ < ∞ uniformly in x ∈ �.

Under this condition, he got infinitely many solutions. In his arguments, the strict
inequality N(1 − q)/(1 + q) < p − 1 is essential. At the end of [8], the author proposed
an open problem: whether the condition N(1 − q)/(1 + q) < p − 1 can be removed or
not? In the present paper, we are going to give a partial answer to this question under
suitable conditions. Precisely, we consider the case: N(1 − q)/(1 + q) = p − 1.

To introduce our assumptions, we put, for simplicity, H = H1
0 (�), and denote by

λ1 < λ2 ≤ λ3 ≤ · · · the sequence of eigenvalues of the problem: −�v = λv, v ∈ H;
| · |q stands for the norm of Lq(�) for q > 1; || · || stands for the norm of H defined
by ||z||2 = |∇z|22 for z ∈ H. It is known (cf. [6]) that there exists T > 0 such that
limk→∞ λk/k2/N = T . We now impose the following conditions on g ∈ C(� × �):
(B) there exist positive numbers p, q, a and δ such that 0 < q < 1 < p < 2∗ − 1,

N(1 − q)/(1 + q) = p − 1, and

lim sup
|t|→0

∣∣∣∣∣g(x, t) − a|t|q−1t
|t|p

∣∣∣∣∣ < δ < a
2−p
2−q min{b0, b1}

uniformly in x ∈ �, where

b0 := (1 + p)(1 + q)
4N(2p + 3q + 7)

T
N
2 M−(1+p)|�|− p−1

2 ,

b1 := M− 2(p−q)
1−q |�|− (p−1)(p−q)

(p+1)(1−q)

((
1 − q
p − 1

) p−1
p−q

+
(

1 − q
p − 1

) q−1
p−q

)− p−q
1−q

,

and M > 0 is the best constant satisfying |z|p+1 ≤ M||z|| for all z ∈ H, and |�|
denotes the Lebesgue measure of �.

The main result is the following:

THEOREM 1.1. Suppose that (B) holds. Then, problem (1.1) possesses a sequence of
weak solutions (un) ∈ H such that ||un||L∞(�) → 0 as n → ∞. Moreover, J(un) < 0 and
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J(un) → 0 as n → ∞, where,

J(v) =
∫

�

1
2
|∇v|2dx −

∫
�

G(x, v)dx, v ∈ H,

with G(x, t) = ∫ t
0 g(x, s)ds.

REMARK 1.1. If (A) holds, we put p1 = N(1 − q)/(1 + q) + 1, then p1 < p. Hence,

lim sup|t|→0

∣∣∣ g(x,t)−a|t|q−1t
|t|p1

∣∣∣ = 0, which implies (B). Then, the results of [8] are contained
in our conclusions.

2. Proof of Theorem 1.1. Let g(x, t) = a|t|q−1t + f (x, t), λ = a
1

2−q , u = λv, then
the problem (1.1) is equivalent to −�v = |v|q−1v + a− 2

2−q f (x, a
1

2−q v), v ∈ H. Hence,
for simplicity we assume that a = 1, and (B) accordingly becomes (C):
(C) there exist positive numbers p, q and b such that 0 < q < 1 < p < 2∗ − 1, N(1 −

q)/(1 + q) = p − 1, and

lim sup
|t|→0

∣∣∣∣∣g(x, t) − |t|q−1t
|t|p

∣∣∣∣∣ < b < min{b0, b1}

uniformly in x ∈ �.
Take a cut off function ϕ(t):⎧⎪⎨⎪⎩

ϕ(t) = 1, for all |t| ≤ t0,

0 < ϕ(t) < 1, t0 < |t| < 2t0,

ϕ(t) = 0, otherwise.

Let g̃(x, t) = ϕ(t)g(x, t) + (1 − ϕ(t))|t|q−1t for (x, t) ∈ � × �. Then, g̃(x, t) ∈ C(� ×
�) and satisfying the following condition (D):
(D) there exist t0 > 0 small and b > 0 such that b < min{b0, b1},

|t|q−1t − b|t|p ≤ g̃(x, t) ≤ |t|q−1t + b|t|p for all (x, t) ∈ � × �,

and that g̃(x, t) = |t|q−1t for all x ∈ � with t ≥ 2t0.

Throughout the rest paper, we consider the problem: −�u = g̃(x, u), u ∈ H under (D).
Equivalently, we first consider the problem (1.1) under the condition (E) :
(E) there exist t0 > 0 small and b > 0 such that b < min{b0, b1},

|t|q−1t − b|t|p ≤ g(x, t) ≤ |t|q−1t + b|t|p for all (x, t) ∈ � × �,

and that g(x, t) = |t|q−1t for all x ∈ � with t ≥ 2t0.

Here, we use many marks as the paper [8]. For each k ≥ 1, we denote by Dk and Sk−1

the unit disk and the unit sphere of k dimensional Euclidian space, respectively. And
we denote by 〈·, ·〉 the inner product in H. For subsets A, B of H with B ⊂ A, we
denote by πk(A, B) the k-relative homotopy group (cf. [10]). We denote by B(r) the
open ball of H centred at 0 with radius r. For each functional F : H → R and a ∈ R,
Fa stands for the level set defined by Fa = {v ∈ H : F(v) ≤ a}. We defined a functional
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I : H → R by

I(u) = 1
2

∫
�

|∇u|2dx − 1
q + 1

∫
�

|u|q+1dx, for all u ∈ H.

By [8], we know there exists some N0(v) > 0 satisfies

I
(
N0(v)v

) = min
{
I(tv) : t ≥ 0

}
< 0,

and one can see that for each v ∈ H\{0},
∣∣∣∣N0(v)v

∣∣∣∣2 =
∫

�

∣∣N0(v)v
∣∣q+1dx and I

(
N0(v)v

) = q − 1
2(q + 1)

∣∣∣∣N0(v)v
∣∣∣∣2

.

We define functionals J : H → R and Ĵ : H → R by

J(u) = 1
2

∫
�

|∇u|2dx −
∫

�

G
(
x, u(x)

)
dx for u ∈ H

and

Ĵ(u) = 1
2

∫
�

|∇u|2dx −
∫

�

1
q + 1

|u|q+1 + b
p + 1

|u|p+1dx for u ∈ H.

LEMMA 2.1. Under condition (E), the functional J(u) is coercive and the (PS)
condition holds.

Proof. It is easy to show that there exists C > 0 such that G(x, v) ≤ C + 1
q+1 |v|q+1,

then +∞ > J(un) ≥ 1
2 ||un||2 − C|�| − 1

q+1 |un|q+1
q+1. Therefore, {un} is bounded in H.

Next, we may assume un ⇀ u in H, un → u in Lp+1(�). By (E), we have g(x, un) →
g(x, u) in L

p+1
p (see theorem A.2 of [12]).

Since
〈
J

′
(un) − J

′
(u), un − u

〉 → 0 and by Hölder inequality, we have∣∣∣∫
�

(
g(x, un) − g(x, u)

)
(un − u)dx

∣∣∣ ≤ ∣∣g(x, un) − g(x, u)
∣∣

p+1
p

∣∣un − u
∣∣
p+1

→ 0.

Therefore,

||un − u||2 = 〈
J

′
(un) − J

′
(u), un − u

〉 + ∫
�

(
g(x, un) − g(x, u)

)
(un − u)dx = o(1).

The proof is completed. �
LEMMA 2.2. For each v ∈ H\{0}, there exists a unique positive number N(v) < +∞

such that Ĵ
(
N(v)v

)
is a local minimum value of {̂J(tv) : t ≥ 0} with related to t and Ĵ(tv)

decreases on
(
0, N(v)

]
.

REMARK 2.1. Since here Ĵ has different form from [8], b < b1 is needed to make
sure that N(v) < +∞, otherwise, N(v) may not be well defined. Moreover, here we will
indicate that the similar Lemma still holds.
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Proof. Let v ∈ H\{0} such that ||v|| = 1. We put c = ∫
�
|v|q+1dx. Then,

f (t) := d
dt

Ĵ(tv)

= t||v||2 − tq
∫

�

|v|q+1dx − btp
∫

�

|v|p+1dx

= t||v||2 − ctq − btp|v|p+1
p+1

= t
[(||v||2 − btp−1|v|p+1

p+1

) − c
t1−q

]
.

For any c1, c2 > 0, let h(t) := c1tp−1 + c2tq−1, then h
′
(t) = (p − 1)c1tp−2 − (1 − q)c2tq−2,

so there exists unique tv =
(

c2(1−q)
c1(p−1)

) 1
p−q

> 0 such that h
′
(tv) = 0, and one can see that

h
′′
(tv) > 0. This implies that

min{h(t) : t > 0} = h(tv) =
((

1 − q
p − 1

) p−1
p−q

+
(

1 − q
p − 1

) q−1
p−q

)
c

1−q
p−q

1 c
p−1
p−q

2 .

Since � is bounded in �N and q + 1, p + 1 < 2∗, ||v|| = 1, then |v|p+1
p+1 < Mp+1 and

|v|q+1
q+1 < Mq+1|�| p−q

p+1 . We let c1 = b|v|p+1
p+1 and c2 = |v|q+1

q+1. Recalling that b < b1, we
have ((

1 − q
p − 1

) p−1
p−q

+
(

1 − q
p − 1

) q−1
p−q

)
c

1−q
p−q

1 c
p−1
p−q

2 < 1.

On the other hand, h(t) → +∞ as t → 0 or t → +∞, so, there exist two numbers 0 <

t0 < tv < t1 such that h(t0) = h(t1) = 1 and h
′
(t0) < 0, h

′
(t1) > 0. Therefore, f

′
(t0) =

d2

dt2 Ĵ(tv)
∣∣
t=t0

> 0 and f
′
(t1) = d2

dt2 Ĵ(tv)
∣∣
t=t1

< 0. This implies the uniqueness of N(v) = t0

and the proof is completed. �
REMARK 2.2. (improvement of Remark 1 in [8]) One can see that N0 and N are

continuous. Since functions I and Ĵ are even, we have that N0 and N are even functions.
Moreover, by the definition of N0(v) and N(v), N(tv) = 1

t N(v) and N0(tv) = 1
t N0(v)

for all t > 0.

Next, as in [8], we put βk = min
h∈�k

max
x∈Sk−1

I(h(x)), where �k = {h ∈ C(Sk−1, H) : h(x) =
−h(−x) for x ∈ Sk−1}. Then, we have the improvement of Lemma 2.2 in [8] as the
following:

LEMMA 2.3. (cf. [8])Each βk is negative and there exist k0 ≥ 1 such that

βk ≥ −
( 1 − q

2(1 + q)
T− 1+q

1−q |�|
)

k
2(q+1)
N(q−1) for k ≥ k0.

Especially, for any k ≥ 1 we have βk+1 ≥ βk.

Proof. The conclusion that each βk is negative and there exist some C0 > 0, k0 ≥ 1

such that βk ≥ −C0k
2(q+1)
N(q−1) for k ≥ k0 has been proved by Lemma 2.2 of [8]. Calculate

carefully step by step, we can find an appropriate value that C0 = 1−q
2(1+q) T

− 1+q
1−q |�|. It is

trivial that βk ≤ βk+1. �
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We put α = p−1
2 and γ = 2(q+1)

N(1−q) , then γα = 1. By Lemma 2.3 we can write

βk = −mkk−γ . For k large enough, 0 < mk ≤ C0, mk+1 ≤ mk( k+1
k )γ . We also put

c := ∣∣∣∣N0(v)v
∣∣∣∣2 = ∣∣N0(v)v

∣∣q+1
q+1 = 2(q+1)

q−1 I
(
N0(v)v

)
.

LEMMA 2.4. (cf. [8]) For each v ∈ H\{0} with
∣∣I(N0(v)v)

∣∣ sufficiently small,

J
(
N0(v)v

) ≤
(

1 −
( (

2(q + 1)
1 − q

) p+1
2 1

p + 1
bMp+1

)∣∣I(N0(v)v
)∣∣ p−1

2

)
I
(
N0(v)v

)
. (2.1)

Proof. Lemma 2.3 of [8] has showed that

J
(
N0(v)v

) ≤
(

1 − C1
∣∣I(N0(v)v

)∣∣ p−1
2

)
I
(
N0(v)v

)
.

Calculate carefully, we can find an appropriate value

C1 =
(

2(q + 1)
1 − q

) p+1
2 1

p + 1
bMp+1.

�

REMARK 2.3. Lemma 2.4 is the inequality of (2.8) in [8], here we find a suitable
value of C1. Since there exist some mistakes in the proof of (2.9) in [8], next, we will
give another way to prove more than (2.9) of [8] by the lemma 2.5.

LEMMA 2.5. For each v ∈ H\{0} with
∣∣I(N0(v)v)

∣∣ sufficiently small,

(
1 + C2

∣∣I(N0(v)v
)∣∣ p−1

2

)
I
(
N0(v)v

) ≤ Ĵ
(
N(v)v

) ≤ I
(
N0(v)v

)
≤

(
1 − C2

∣∣̂J(
N(v)v

)∣∣ p−1
2

)̂
J
(
N(v)v

)
. (2.2)

where

C2 :=
(2(q + 1)

1 − q

) p−1
2 4b(p + q + 3)

(1 − q)(1 + p)
Mp+1

REMARK 2.4. (2.8),(2.9) of [8] is the source of our inspiration. However, essentially,
(2.2) is different from (2.8), (2.9) of [8]. We obtain that the control of I(N0(v)v) and
Ĵ(N(v)v) is mutual. Note (2.11) of [8], we could delete (2.11) and take λ2

( q−1
2(q+1) ||v||2 −

2b
p+1 Mp+1||v||p+1

)
in place of (2.12) in [8]. Furthermore, our goal is to point out that

C2 in (2.2) can be taken some sensible values under (E).

Proof. Let v ∈ H\{0} such that N(v) = 1 and suppose that |I(N0(v)v)| is sufficiently
small, since I(N0(v)v) = q−1

2(q+1) ||N0(v)v||2, then, c is sufficiently small.
Let

f (t) := d
dt

Ĵ(tv) = t||v||2 − tq
∫

�

|v|q+1 dx − btp
∫

�

|v|p+1dx.
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Since N(v) = 1, we have f (1) = 0, that is, ||v||2 − |v|q+1
q+1 − b|v|p+1

p+1 = 0. Then,

N0(v)2||v||2 = N0(v)q+1|v|q+1
q+1

= N0(v)q+1(||v||2 − b|v|p+1
p+1

)
< N0(v)q+1||v||2,

which implies

N0(v) < 1. (2.3)

On the other hand, since ||N0(v)v||2 = |N0(v)v|q+1
q+1, we have

||v||2 − N0(v)1−q||v||2 = ||v||2 − |v|q+1
q+1

= b|v|p+1
p+1

≤ bMp+1||v||p+1,

which implies

N0(v)p−1 − N0(v)p−q ≤ bMp+1c
p−1

2 . (2.4)

Then, we have one of the following holds :
(1) 0 < N0(v) is sufficiently small;
(2) 0 < 1 − N0(v) is sufficiently small.

But by Lemma 2.2 we have N(v) = t0 < tv, that is,

1 = N(v) <

(
(1 − q)|v|q+1

q+1

(p − 1)b|v|p+1
p+1

) 1
p−q

.

Then,

(1 − q)|v|q+1
q+1 > (p − 1)b|v|p+1

p+1

= (p − 1)(||v||2 − |v|q+1
q+1),

which implies N0(v) >
(

p−1
p−q

) 1
1−q

. Therefore, case (1) is impossible, then 1 − N0(v) is

sufficiently small, and we have

1
2

(1 − N0(v)1−q) < (1 − N0(v)1−q)N0(v)p−1

= N0(v)p−1 − N0(v)p−q

≤ bMp+1c
p−1

2 .

Thus, we get (
1 − 2bMp+1c

p−1
2

) 1
1−q < N0(v) < 1. (2.5)
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Note that Ĵ(tv) ≤ I(tv) always holds. Then, by (2.5) and lemma 2.2,

Ĵ(v) ≤ Ĵ(N0(v)v) ≤ I(N0(v)v) < 0.

That is,

Ĵ(N(v)v) ≤ Ĵ(N0(v)v) ≤ I(N0(v)v) < 0.

Next, we take v ∈ H\{0} such that N0(v) = 1, and put λ = N(v). By Remark 2.2, we
have that N0(v)v = N0(λv)λv and N(λv) = 1. Thus c = ||N0(v)v||2 = ||N0(λv)λv||2,
then by (2.5),

(
1 − 2bMp+1c

p−1
2

) 1
1−q < N0(λv) = N0(v)

λ
= 1

λ
< 1.

When c is sufficiently small, we have that

1 < λ <
(
1 + b

′
Mp+1c

p−1
2

) 1
1−q , (2.6)

where b
′

:= 3
2 b > b. Then, we have 1 < λp−1 < 2 and by the Taylor formula that

λ2 ≤ 1 + 4b
1 − q

Mp+1c
p−1

2 . (2.7)

Hence,

Ĵ(λv) = 1
2
||λv||2 − λq+1

q + 1

∫
�

|v|q+1 − λp+1b
p + 1

∫
�

|v|p+1

= λ2
(

1
2

c − λq−1

q + 1
c − λp−1b

p + 1

∫
�

|v|p+1
)

≥ λ2
(

1
2

c − 1
q + 1

c − 2b
p + 1

∫
�

|v|p+1
)

= λ2
(

q − 1
2(q + 1)

||v||2 − 2b
p + 1

Mp+1||v||p+1
)

.

Then,

Ĵ(λv) ≥ λ2(1 + c1||v||p−1)I(v), (2.8)

where c1 = 4b(q+1)
(1−q)(1+p) M

p+1. By (2.7), (2.8) and Taylor formula, we have (1 +
c2|I(v)| p−1

2 )I(v) ≤ Ĵ(λv) < 0, here we let

c2 :=
(2(q + 1)

1 − q

) p−1
2 4b(p + q + 3)

(1 − q)(1 + p)
Mp+1.

We put C2 = c2, then,

(1 + C2|I(N0(v)v)| p−1
2 )I(N0(v)v) ≤ Ĵ(N(v)v) ≤ I(N0(v)v).
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Let x = |I(N0(v)v)|, y = |̂J(N(v)v)|, we have 0 < x ≤ y ≤ (1 + C2xα)x. Then,
∣∣ y−x

yα+1

∣∣ ≤
C2. Hence, Ĵ(N(v)v) ≤ I(N0(v)v) ≤ (1 − C2 |̂J(N(v)v)| p−1

2 )̂J(N(v)v). �
REMARK 2.5. By (2.3), we know that if N(v) = 1, then N0(v) < 1. By (2.6), if

N0(v) = 1, then N(v) > 1.

Let

C3 := 2(C1 + C2) =
(2(q + 1)

1 − q

) p−1
2 8p + 12q + 28

(1 − q)(1 + p)
bMp+1 > 0,

then similarly to [8], we can choose m > 0, such that for each t ∈ (−m, 0),(
1 − C2

[(
1 − C1|t|α

)|t|]α
)(

1 − C1|t|α
)
t <

(
1 − C3|t|α

)
t.

Indeed, if we let

h(t) :=
1 −

(
1 − C2

[(
1 − C1|t|α

)|t|]α
)(

1 − C1|t|α
)

|t|α ,

then we have limt→0 h(t) = C1 + C2 > 0. Hence, we can find m > 0 such that for each
t ∈ (−m, 0), 0 < h(t) < C3, then we have(

1 − C2
[(

1 − C1|t|α
)|t|]α)(

1 − C1|t|α
)
t <

(
1 − C3|t|α

)
t. (2.9)

REMARK 2.6. Assume that (E) holds, we have that C3Cα
0 <

γ

2 and C3Cα
0 α < 1

2 .

LEMMA 2.6. ∀ 0 < θ there exists a sequence {ki} ⊂ N such that ki → ∞ as i → ∞,
and mki+1 < mki

( ki+1
ki

)θ

Proof. Suppose that, if there exists some k0 ≥ 1 such that, mk+1 ≥ mk
( k+1

k

)θ
for all

k ≥ k0. Then,
mnk0
mk0

≥ nθ , which implies when n is large enough mnk0 > mk0 nθ → +∞.

This is a contradiction to mk ≤ C0. �
LEMMA 2.7. There exists a sequence {ki} ⊂ N such that ki → ∞ as i → ∞, and

βki+1 >
(
1 − C3|βki |α

)
βki f or all i ≥ 1

REMARK 2.7. When 1
α

< γ , the same conclusion has been showed in [8] by an
useful inequality of [3] which depends on the strict inequality 1

α
< γ holds. In [8], the

author used the truncation approach. Thanks to the strict inequality 1
α

< γ , it play an
crucial role in the process of dealing with inequalities that the exponent can be share a
very little with the cut off level t0 small. At the present paper, we still use the truncation
approach, and consider that g(x, t) = |t|q−1t for all x ∈ � with t ≥ 2t0. But the real
essential condition for problem (1.1) is that b is small enough since we cannot share
any part from the exponent. Hence there are many inequalities seem like those in [8],
but there are a lot of differences in the process of dealing with these inequalities.
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Proof. Let θ = γ

2 > 0, by lemma 2.6,

−mki+1 + mki

( ki+1
ki

)γ

mα+1
ki

k−γα
i

kγ
i

(ki + 1)γ
=

−mki+1

mki
+ ( ki+1

ki

)γ

mα
ki

k−γα
i

kγ
i

(ki + 1)γ

>

( ki+1
ki

)γ − ( ki+1
ki

) γ

2

k−γα
i

1
mα

ki

( ki

ki + 1

)γ

>
γ

2Cα
0

when ki is large enough.

By Remark 2.6, γ

2Cα
0

> C3, which implies that when ki is large enough,

βki+1 > (1 − C3|βki |α)βki .

�
LEMMA 2.8. (cf. [8])For each i ≥ 1, there exist εi > 0 and c < 0 such that βki + εi <

c and πki (Jc, Jβki +ε) �= {0} for 0 < ε < εi.

Proof. The details are similar to that of Lemma 2.6 in [8]. �
REMARK 2.8. Since N(v)v is a local minimizer of Ĵ(tv) in this paper but it is a

global minimizer in [8], Ĵ(tv) decreases on (0, N(v)] and Remark 2.5 are necessary. If
not, the similar inequality of (2.15) in [8] may not hold. In fact replaces Ĵ(N(v)v) by
J(N(v)v), one can show that (2.2) still holds, but we can not ensure that J(tv) decreases
on (0, N(v)]. In another word , we can not ensure J(N

(
f (z)

)
f (z)) ≤ dk. Therefore, we

have to introduce the functional Ĵ.

PROOF OF THEOREM 1.1. Next, we can get sequences {ki}, {ci}, {ei} and {εi} such
that βki + εi < ei < 0 are regular values of J, where ci = min

h∈[σ ]
sup
x∈Ski+

J
(
h(x)

)
with [σ ] ∈

πki (Jei , Jβki +εi ) nontrivial, ci > βki + εi and J satisfies the (PS)ci condition. Therefore,
we by Theorem 1.4 of [5] , there exists a sequence of critical points {ui} ⊂ H of J with
critical value {ci} and ci ∈ (βki + εi, 0). Then, we have ci → 0. Hence, under condition
(E), the conclusions of theorem 1.1 hold. Equivalently, we have discussed the problem:
−�u = g̃(x, u) under (D). The remaining work we need to do is the bootstrap argument.
At last, we can find that lim

i→∞|ui|∞ = 0. Recalling that g̃(x, t) = g(x, t) for all x ∈ � with

|t| ≤ t0, we obtain that ui is a solution of Problem (1.1) for i is large enough (the details
see [8]). Hence, theorem 1.1 holds. �
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