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Abstract
The ratemaking process is a key issue in insurance pricing. It consists in pooling together policyholders with similar
risk profiles into rating classes and assigning the same premium for policyholders in the same class. In actuarial
practice, rating systems are typically not based on all risk factors but rather only some of factors are selected
to construct the rating classes. The objective of this study is to investigate the selection of risk factors in order to
construct rating classes that exhibit maximum internal homogeneity. For this selection, we adopt the Shapley effects
from global sensitivity analysis. While these sensitivity indices are used for model interpretability, we apply them
to construct rating classes. We provide a new strategy to estimate them, and we connect them to the intra-class
variability and heterogeneity of the rating classes. To verify the appropriateness of our procedure, we introduce a
measure of heterogeneity specifically designed to compare rating systems with a different number of classes. Using
a well-known car insurance dataset, we show that the rating system constructed with the Shapley effects is the one
minimizing this heterogeneity measure.

1. Introduction
The process of determining premiums for policyholders based on their risk characteristics is known
as ratemaking. Ratemaking involves the utilization of rating factors, which divide the insured popula-
tion into distinct risk classes. While all available risk factors could theoretically be employed, practical
considerations may lead to the exclusion of certain factors due to excessively high premiums or to the
complexity of the tariff. More precisely, by aggregating risk classes, new classes emerge where some
policyholders pay more than their individual premium, while others pay less. This construction ensures
that policyholders with excessively high individual premiums pay a reduced tariff premium, thanks to the
solidarity of policyholders who would have lower individual premiums in the original granular classes
(see Olivieri and Pitacco, 2015 for a comprehensive discussion). Concerning the choice of the rating
factors, Kudryavtsev (2009) writes that insurer portfolios are not homogeneous [. . .] Actuaries try to
identify risk factors (covariates) that help explaining differences between objects insured. Then, the net
premium rates are estimated on the basis of conditional loss distributions [. . .] This approach actually
breaks the portfolio up into sub-portfolios [. . .] Each sub-portfolio is usually more homogeneous than
the total insurance portfolio (p. 297). Then, the challenge lies in determining the “appropriate” risk fac-
tors and establishing their connection to the “homogeneity of sub-portfolios” (rating classes). This is the
primary focus of the current study. Specifically, we aim to identify the key risk factors that significantly
influence insurance premiums, as this insight is valuable for enhancing the interpretability of the pricing
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model. Subsequently, we construct the rating system based on these identified risk factors and examine
whether this selection mitigates heterogeneity within the rating classes.

The starting point of our analysis is the estimation of the individual premiums for all the policyholders
in the portfolio by using a regression model with all available risk factors (the complete regression model
henceforth). Providing a new methodology to construct individual premiums is not the focus of our work.
For this reason, we adopt two recent approaches proposed by Baione and Biancalana (2019) and (2021).
These authors consider the so-called Two-Part models that are based on a logistic regression to estimate
the claim probability and a subsequent quantile regression (QR) for the claim size. After estimating the
individual premiums using both approaches, the next step is to develop a rating system. As mentioned by
Kudryavtsev (2009) and Olivieri and Pitacco (2015), it is necessary to select specific risk factors in order
to construct the rating system. The main question is then how to find the risk factors that cause the highest
variations of the individual premiums. A traditional approach to choose such risk factors is based on the
p-values relative to the logistic regression coefficients (Heras et al., 2018). Nevertheless, the significance
of regression coefficients alone does not provide a comprehensive understanding of the ranking of risk
factors in terms of importance, which is a critical aspect to explore. Moreover, p-values are not reliable
in presence of correlations among the risk factors, as typically happens in insurance dataset. Another
complication arises when using p-values in Two-Part models. As Baione and Biancalana (2021) point
out, a non-statistically significant p-value of the same regression parameter in the GLM Logit does not
imply a non-statistical significance in the QRs. Thus, we need to adopt a method to find the importance
of risk factors in individual pricing with the Two-Part models, which is not based on p-values.

The Shapley value, originating from the economic literature (Shapley, 1953), is an attribution method
that has found various applications in the actuarial field. It is a versatile tool for allocating the quantity
produced by a team among individual players. In the actuarial literature, Lemaire (1984) applies the
Shapley value to provide a solution for the problem of operating cost allocation among insurance com-
panies or among different classes of a company. Lemaire (1991) considers other insurance applications
of cooperative game theory. Kaye (2005) provides an overview of risk measurement and capital alloca-
tion techniques, including the Shapley value. Recently, Godin et al. (2023)quantify the contributions of
various risk sources to variable annuities contracts using the Shapley value. Mayer et al. (2023) provide
an overview on approaches based on the Shapley value for explaining machine learning models.

In parallel, the Shapley value has gained increasing attention in the sensitivity analysis literature as
a global variable importance index for complex models. Researchers have proposed using the Shapley
value to allocate the variance of a model’s output among its input variables (Owen, 2014). The under-
lying idea is that variables explaining the highest fraction of the variance are considered the most
important, as their variations have a significant impact on the model’s output. Allocating the variance
to individual risk factors provides a natural approach to defining global variable importance. Owen sug-
gests using the Sobol’ indices as the value function for computing Shapley values (Sobol’, 1993). When
the Sobol’ indices are used as the value function, the resulting Shapley values are referred to as Shapley
effects (Song et al., 2016). Shapley effects offer an appealing method for attributing the model’s vari-
ance to individual risk factors, thereby providing insights into their relative importance. Shapley effects
remain defined and interpretable even in the case of dependent risk factors and/or domain irregularities
(Owen and Prieur, 2017). To the best of our knowledge, Rabitti and Borgonovo (2020) are the only work
in the actuarial literature in which Shapley effects are adopted to find the most important risk between
mortality and interest rate in annuity models.

In this paper, we consider the Shapley effects to construct the rating system. Our rationale is that
constructing the rating system based on the most important variables serves to minimize the variability
within the rating classes, as it reduces the residual source of variance as much as possible. We provide
an analytical example confirming the appropriateness of our approach. However, in general Shapley
effects cannot be expressed in closed form, even for very simple bivariate models (see Owen and Prieur,
2017). Hence, numerical estimation becomes the only possible approach. For this reason, in this work
we combine the algorithm of Plischke et al. (2021) (which reduces the computational cost of Song et al.,
2016) with the cohort method of Mase et al. (2019). To check the validity of our approach in reducing the
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intra-class variability, we consider the homogeneity indices of Henckaerts et al. (2018). Additionally, we
introduce an actuarial indicator that specifically focuses on comparing rating systems. In our case study,
all the indicators confirm that the rating system constructed with variables with the highest Shapley
effects shows the highest homogeneity within the rating classes. In general, our approach provides also
a novel application of the Shapley effects which, beyond traditional model interpretability, might support
the rating classes construction.

The rest of the paper is organized as follows: Section 2 provides an overview of the two methods for
the individual insurance premium estimation. Section 3 presents a brief description of Shapley effects in
the context of variance-based sensitivity measures. In Section 4, we discuss how to construct the rating
systems based on Shapley effects, and we introduce the homogeneity measures. Section 5 contains the
numerical application on an Australian car insurance dataset.

2. Individual premium estimation
A commonly used approach for individual ratemaking is based on the QR, which was introduced by
Koenker and Bassett (1978). The QR allows for the estimation of the relationship between a specific
quantile of the random loss of the i-th policyholder and a set of covariates xi = (xi1, . . . , xik).

The application of the QR in insurance ratemaking was first proposed by Kudryavtsev (2009). In
this approach, the estimation of the aggregate claims amount is divided into two parts: estimating the
conditional aggregate claims amount given that the policyholder has made a claim and assessing the
probability of having no claims. However, a limitation of this approach is that it assumes a single proba-
bility of having no claims for all risk classes, disregarding the varying levels of riskiness among different
classes. Each risk class may have its own distinct probability of having no claims based on the specific
characteristics of the policyholders within that class. Ignoring this heterogeneity may result in inadequate
pricing decisions and inaccurate estimations of the aggregate claims amount.

To overcome this limitation, Heras et al. (2018) extend Kudryavtsev’s model through the estimation
of a different probability of having no claims for each risk class. Firstly, they adopt a logistic regression
to estimate the class-specific probabilities of having no claims. In the second stage, the QR is applied
to model the conditional loss distribution given that a claim occurs. Despite that the Two-Part model of
Heras et al. (2018) offers a more accurate approach, it is computationally inefficient for portfolios with
a medium or large number of policyholders, since it requires to run a QR for each risk class. To solve
this issue, Baione and Biancalana (2019) consider the specification of a unique probability level for the
conditional aggregate claims amount. This approach allows for the calibration of a single QR model. In
a subsequent work, Baione and Biancalana (2021) modify the construction of Heras et al. (2018) and
introduce the parametric quantile regression (PQR) model of Frumento and Bottai (2016) for estimating
the conditional aggregate claims amount. In the PQR, regression coefficients are modeled as parametric
functions of the order of the quantile, allowing for the estimation of individual insurance premiums with
the computation of a single regression model.

From now on, we adopt the following notation. Moreover, let:

• Ni be a binary variable that indicates whether the i-th policyholder has at least one claim, where
i = 1, . . . , n indexes the policies;

• Yi be the variable describing the total amount of claims for the i-th policyholder (which can be
null for those with no claims);

In the first stage of the model, the estimation of the probability of having no claims p∗
i : = P(Ni = 0|xi)

is performed via logistic regression. In their works, Heras et al. (2018), Baione and Biancalana (2019),
and (2021) observe that some policies do not cover the entire year, but only a fraction of it. For this
reason, they consider the adjusted probability of having no claims pi = p∗

i /exposurei, where exposurei

is the fraction of the year during which the i-th policyholder has been observed. Adjusting for exposure
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allows for a fair comparison of claim frequencies across different policyholders or groups with varying
levels of exposure. We firstly find the probability p∗

i using the logistic regression model

ln

(
1 − p∗

i

p∗
i

)
= xT

i β, (2.1)

then we compute the adjusted pi (see de Jong and Heller, 2008). For the second stage, we aim to compute
Qθi [Yi|xi], that is, the θi-quantile of Yi as in Baione and Biancalana (2019), for simplicity denoted in the
following Qθi [Yi]. To begin with, the cumulative distribution function of Yi is

FYi (Qθi [Yi]) = pi + (1 − pi)FYi|Yi>0(Qθi [Yi]). (2.2)

In Equation (2.2), the cumulative probability of the i-th policy not exceeding the total claim amount Yi is
obtained by adding the two terms. The first term represents the probability that the policy has no claims
(pi), while the second term represents the probability that the policy does not exceed Yi given that it has
at least one claim, multiplied by the complementary probability of having no claims (1 − pi).

It is typical to set a unique probability level θ for all policyholders (Heras et al., 2018; Baione and
Biancalana, 2021). This practice ensures fairness and avoids any potential discrimination among poli-
cyholders when assessing individual losses. Hence, Equation (2.2) becomes θ = pi + (1 − pi)θ ∗

i and the
probability level of the conditional distribution of Yi given that Yi > 0 is

θ ∗
i = θ − pi

1 − pi

. (2.3)

Then,

Qθ [Yi] = F−1
Yi|Yi>0

(
θ − pi

1 − pi

)
= Qθ∗

i
[Yi | Yi > 0] = xT

i βθ∗
i
. (2.4)

The θ -quantile of the total claims amount Yi equates the θ ∗
i -quantile of the conditional total claims

amount Yi given that Yi > 0. Differently to θ , the probability level θ ∗
i depends on i since it is relative to an

individual quantile compensation with respect to the level θ . Thus, it is possible to estimate the θ -quantile
of Yi by simply modeling the conditional distribution of the losses given that they are positive. As done
in Heras et al. (2018) and Baione and Biancalana (2021), we select θ = 95% as the probability level
of interest (further details are provided in Baione and Biancalana, 2021). We remark that the notation
βθ∗

i
pertains to the coefficients of the QR, whereas the notation β is associated with those of the logistic

regression in Equation (2.1).
At this point, it is necessary to estimate a QR for each θ ∗

i , i = 1, 2, . . . , n. Clearly, to estimate indi-
vidual insurance premiums becomes rapidly unfeasible as the dimension of the portfolio increases. Next
Sections 2.1 and 2.2 present two procedures solving this issue.

2.1. Parametric quantile regression ratemaking (PQRR)
Baione and Biancalana (2021) apply in the second stage the PQR to obtain a parsimonious model for
the individual premium calculation. With PQR, the regression coefficients are modeled as parametric
functions of the order of the quantile, depending on a set of parameters γ

βl(θ , γl) = γl0 + γl1b1(θ ) + · · · + γldbd(θ ). (2.5)

By convention, b0(θ ) = 1 and l = 0, . . . , s. The quantity s represents the total count of numerical vari-
ables and all possible levels of the categorical risk factors, excluding the corresponding baseline level
for each factor. On the other hand, d denotes the number of functions utilized for performing the PQR
analysis. To choose the functions b1(θ ), . . . , bd(θ ), the only assumption to take into account is that
their computation must lead to a θ -monotonically increasing quantile function. Baione and Biancalana
(2021) suggest to use the shifted Legendre polynomials (SLPs). A polynomial of degree d is defined as
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P̃d(x) = Pd(2x − 1) with P̃d orthogonal on [0,1]. The R package iqr, used to estimate the PQR, is opti-
mized for this kind of orthogonal polynomials. The choice of the polynomial degree d shall be made in
accordance with the dataset. In fact, QR can be affected by quantile crossing problems. This problem
appears when quantile curves cross each other and this leads to a nonmonotonic behavior. In the context
of individual premium estimation, this issue can be overcome by lowering the degree of the SLP. In fact,
even if using higher degrees could appear better since leads to a more flexible model, a quantile crossing
issue can arise due to the oscillations of polynomials. For a complete description of this method, we refer
to Frumento and Bottai (2016) and Baione and Biancalana (2021). The advantage of this approach is
that by calibrating only one regression we are able to model the conditional claims amount at the proper
probability level in Equation (2.3) for each policyholder in the portfolio. To compute the insurance pre-
mium, Heras et al. (2018) and Baione and Biancalana (2021) use a quantile premium principle that is a
linear convex combination of the expected value of Yi and its θ -quantile

PPQRR
i = (1 − α)E[Yi] + αQθ [Yi], (2.6)

for α ∈ [0, 1], where we recall that Yi is a function of the risk factors xi. The rationale of this premium
principle is to charge the fair value of a contract (the expected loss) with a safety loading component,
which makes the premium more expensive than the mean. The unconditional expectation E[Yi] can be
computed using the law of total expectation:

E[Yi] =E [E[Yi|Ni]]

= P(Ni = 0)E[Yi|Ni = 0] + P(Ni > 0)E[Yi|Ni > 0]

= (1 − pi)E[Yi | Yi > 0], (2.7)

and the individual premium PPQRR
i is then found with the PQR and the premium principle in Equation

(2.6). The corresponding individual premium is denoted with PQRR. For its computation, it is necessary
to calibrate the proper level for the loading factor α. The idea is that the sum of all premiums has to equate
to the aggregate premium π (Y), where Y denotes the random aggregate loss. Therefore, we need to find
the value of α that satisfies the following balance equation:

π (Y) =
n∑

i=1

[αQθ [Yi] + (1 − α)E[Yi]], (2.8)

which yields

α = π (Y) −E[Y]

Qθ [Y] −E[Y]
. (2.9)

Following Baione and Biancalana (2019, 2021), the aggregate premium π (Y) has to be computed as the
sum of the expected aggregate loss plus a risk margin. The risk margin is selected using the solvency
conditions:

π (Y) = (1 + 3σ )E[Y]. (2.10)

The volatility factor σ is set at the level of the 10% from Solvency II Standard Formula for Premium
Risk in the Motor Third Party Liability insurance (EIOPA, 2009). In this way, we have indirectly found
the coefficient α in a way that is compatible with the Solvency II regulation. We remark that α can be
specified directly by the analyst in Equation (2.6). However, Baione and Biancalana (2021) consider this
choice too important to be left at a discretionary judgment.

2.2. Quantile regression premium calculation (QRPC)
In the actuarial literature, Baione and Biancalana (2019) propose another method to estimate individual
premiums using the QR.

In the second stage of the Two-Part model, a unique probability level is fixed for the conditional total
claim amount Yi given that Yi > 0, in order to have θ ∗

i ≡ θ ∗. As a consequence, the probability level for

https://doi.org/10.1017/asb.2023.34 Published online by Cambridge University Press

https://doi.org/10.1017/asb.2023.34


30 Arianna Vallarino et al.

the total claim amount is no longer unique, but it is different for each policyholder, depending on pi and
θ ∗. So, it is possible to run a unique QR using the probability level θ ∗ for Yi whenever it is positive. With
this intuition, they propose the following premium principle:

PQRPC
i = (1 − pi)Qθ∗ [Yi | Yi > 0]. (2.11)

To calibrate the unique probability level θ ∗ for all policyholders, Baione and Biancalana (2019) suggest
finding the value of θ such that all individual premiums sum up to the aggregate premium π (Y)

π (Y) =
n∑

i=1

PQRPC
i =

n∑
i=1

(1 − pi)Qθ [Yi | Yi > 0], (2.12)

where π (Y) is the aggregate premium calculated via Equation (2.10). In particular, θ ∗ can be found by
optimizing the value of θ in Equation (2.12).

Using the QRPC and PQRR models, we find two distinct sets of individual insurance premiums since
we use different premium principles and different methods to assess the probability level of interest. In
our application in Section 5 we show that, despite differences in premiums at the individual level, at the
global level the importance risk factors that influence premiums are the same.

3. From Sobol’ indices to Shapley effects
Sensitivity analysis denotes the set of techniques and methods aimed at finding the most influential risk
factors driving the output of a scientific model (Saltelli et al., 2008; Borgonovo and Plischke, 2016; Da
Veiga et al., 2021). Since this information enables the interpretability of the model (Saltelli et al., 2008),
sensitivity analysis of a decision-support model clearly provides essential insights to analysts and sup-
ports model-based policy decisions (Borgonovo et al., 2022). In the sensitivity analysis literature, the
importance of risk factors is typically quantified partitioning the model output variance into individual
risk factor contributions and their interactions. The resulting variance-based sensitivity measures are
known as Sobol’ indices (Sobol’, 1993). The Sobol’ indices quantify the variance explained by indi-
vidual risk factors as well as their interaction effects. The risk factors explaining a higher fraction of
the variance are the most important. The Sobol’ indices are constructed from the functional ANOVA
decomposition of the model output. Let W = h(X) be the input–output model, with the assumptions that
h(X) ∈ L2 and that the risk factors X = (X1, X2, . . . , Xk) are independent. The ANOVA decomposition
consists in writing h(X) as sum of functions of increasing dimensions:

h(X) =
∑
u⊆K

hu(Xu), (3.1)

where Xu contains the coordinates of X indexed by u ⊆ K = {1, . . . , k}. The functions hu(Xu) are
recursively defined as:

hu(Xu) =
∫ (

h(X) −
∑
v⊂u

hv(Xv)

)
dB(X−u) (3.2)

where B(X−u) denotes the distribution of the complementary risk factors −u = {1, 2, . . . , k} \ u not
indexed by u. These functions hu are orthogonal since

∫
hu(Xu)hv(Xv)dB(X) = 0 for u �= v.

The intuition for quantifying the importance of the group Xu is evaluating how much variance of W
it explains. Denoting with σ 2

u the variance σ 2
u = Var(hu(Xu)), by orthogonality it holds

Var(W) ≡ σ 2 =
∑
u⊆K

σ 2
u . (3.3)

In the framework of global sensitivity analysis, Sobol’ (1993) introduces the importance index

τ 2
u =

∑
v⊆u

σ 2
v . (3.4)
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Since τ 2
u = Var(E[W|Xu]) = Var(W) −E[Var(W|Xu)], this index can be interpreted as the expected

reduction of the variance of the output W that is achieved when the set of u risk factors is fixed. In the
computer experiment literature, the Sobol’ indices are computed using the pick-and-freeze sampling
strategy (see Saltelli et al., 2008). Sobol’ indices are interpretable in case of independent risk factors,
but it is no longer true when the independence assumption is violated. To overcome the problems with
dependent variables and domain irregularities, a promising solution is the adoption of Shapley value for
the variance allocation instead of Sobol’ indices (Owen and Prieur, 2017).

3.1. Shapley value
The Shapley value (Shapley, 1953) is an attribution method originated from game theory. It is used to
allocate the total value generated by a coalition of players into the contribution of each individual player
in a coalition.

Denote with φj the Shapley value of the j-th player. Consider a set of players K = {1, 2, . . . , k} that
participate in a game. We denote with u ⊆ K any possible subcoalition of players and with val : 2K →R

the value function of the game, with val(∅) = 0. The value generated by the players in the subset u is
val(u) and the total value of the game to be allocated is val(K).

Consider the following desirable properties for an attribution method (Winter, 2002):

• Efficiency: The sum of Shapley values of all players equates to the total value of the game∑k
j=1 φj = val(K). This means that the total payoff of the game is allocated among all players.

• Symmetry: If players j1 and j2 make the same marginal contribution to any coalition, val(u ∪
{j1}) = val(u ∪ {j2}) for all u ⊆ K with j1, j2 /∈ K, then φj1 = φj2 . Thanks to this axiom, the order
in which players are considered does not influence the value of the coalition; players with the
same marginal contribution receive the same payoff.

• Dummy: If j is a dummy player, val(u ∪ {j}) = val(u) for all u ⊆ K, then φj = 0. In other words,
if the player’s contribution to the coalition is zero, the payoff of the player is zero (axiom of the
null-player).

• Additivity: If val and val′ have Shapley values φ and φ ′, respectively, then the game with value
val(u) + val′(u) has Shapley value φj + φ ′

j for all j ∈ K. This means that if two games are com-
bined, the payoff assigned to the j-th player is equal to the sum of the two payoffs he would get
playing the two games separately.

For the generic player j, Shapley (1953) proves that the unique value satisfying these four properties
can be expressed as:

φj =
∑

u⊆K\{j}

(k − |u| − 1)!|u|!
k! (val(u ∪ {j}) − val(u)) (3.5)

This index is based on the marginal increase val(u ∪ {j}) − val(u) generated when the j-th player joins
the coalition u. The marginal contribution is then averaged over all possible coalitions.

The Shapley value is attracting increasing attention in the sensitivity analysis literature as a measure
of variable importance (Owen, 2014; Song et al., 2016). Owen (2014) suggests to use as value function
the Sobol’ index

val(u) = τ 2
u. (3.6)

The Shapley values obtained with this value function are called the Shapley effects (Song et al., 2016).
Shapley effects enjoy appealing properties:

1. φj ≥ 0 for all j = 1, 2, . . . , k. This holds by Equation (3.5) and because τ 2
u∪{j} − τ 2

u is positive as
the variance explained increases when a new risk factor is considered for all u ⊆ K.

2.
∑k

j=1 φj = Var(W). This follows from the efficiency property, meaning that we allocate the
variance of the model output.
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Remarkably, Properties 1 and 2 hold regardless the dependence structure and marginal distributions
of the risk factors. This feature contributes significantly to the widespread adoption of Shapley effects
as sensitivity measures in the interpretation of complex models.1

The computation of the Shapley effects is not a trivial issue. Song et al. (2016) propose a double
loop Monte Carlo for the estimation of the value function to be inserted in the Shapley representation
in Equation (3.5). Plischke et al. (2021) propose an algorithm based on the concept of Möbius inverses,
which reduce the number of value functions to be evaluated with respect to the approach of Song et al.
(2016). With this algorithm, the number of value functions to be evaluated is remarkably reduced from
k! · k to 2k − 1. Furthermore, it should be noted that the Plischke algorithm offers a way to estimate
Shapley values for interactions. However, since it goes beyond the scope of this work, a thorough explo-
ration of this topic is not included here. For more detailed insights, interested readers can refer to the
works of Plischke et al. (2021) and Lundberg et al. (2020).

Denote with mob(u) the Möbius inverses of the value function val(u) with:

val(u) =
∑
v⊆u

mob(v) and mob(u) =
∑
v⊆u

(−1)|u|+|v|val(v). (3.7)

Note that, in the case of independent risk factors, we find mob(u) = σ 2
u . Equivalently to the representation

in Equation (3.5), Shapley values can be written as

φj =
∑
u:j∈u

mob(u)

|u| . (3.8)

Following Plischke et al. (2021), let all 2k − 1 non-vanishing subsets be indexed by um with m =
1, . . . , 2k − 1. The value functions are included in a vector H with coordinates Hm = val(um). To obtain
subset inclusion, a matrix Z is proposed:

Zmf =
⎧⎨⎩1 if um ⊆ uf

0 otherwise.
(3.9)

Then, Möbius inverses are obtained with M = HZ−1 and Shapley effects are given by

φj =
∑

m:j∈um

Mm

|um| . (3.10)

Now, the Shapley effects computation requires an estimate of the value function in Equation (3.6) to
compute the Möbius inverses. Differently from the computer experiment literature, we need a method
to estimate the Sobol’ indices from given data. A solution to this issue comes from the recent work of
Mase et al. (2019), who propose the estimation of Var(E[W|Xu]) using a cohort approach, as presented
in the next section.

3.2. The cohort approach
Assume we have available at hand a dataset of observations {(wi, xi)}n

i=1, where wi denotes the quantity of
interest. The cohorts are subsets of observations sharing the values of risk factors similar to the ones of
a target observation denoted by t. Let xij be the value of the j-th risk factor for the i-th observation (with
j = 1, . . . , k and i = 1, . . . , n) and let xtj be the target value for the selected risk factor j. It is necessary
to construct a similarity function ztj for each risk factor j. In particular, ztj:Xj → {0, 1}. The similarity
function is equal to 1 when the subject i is considered similar to the target subject t for the risk factor j.

1The quantile pricing models presented in Section 2 can be considered complex models since they are based on the product of
two GLMs (one for the claim sized and one for the claim frequency). Multiplying together two linear models generates non-linear
effects among the risk factors.
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In the case of real-valued covariates, it can be appropriate to define similarity using a measure of relative
distance. A possible similarity function is

ztj(xij) =
⎧⎨⎩1 |xij − xtj| ≤ δj,

0 otherwise,
(3.11)

where δj is the specified distance. If the variables are continuous, Mase et al. (2019) consider δj =
0.1 · range(x), while δj = 0 if they are discrete. Now it is possible to define the cohort of t with respect
to risk factors in u as

Ct,u = {i ∈ 1 : n | ztj(xij) = 1, ∀j ∈ u}. (3.12)

By definition, Ct,u is the set of subjects that are similar to the target subject t for all risk factors j ∈ u. By
construction, Ct,u is never empty since it contains at least the target observation xt. Using the cohorts,
Mase et al. (2019) found estimates of the Sobol’ indices as follows. Consider the cohort means

1

|Ct,u|
∑
i∈Ct,u

wi = w̄t,u, (3.13)

where |Ct,u| is the cardinality. It holds that the cohort average w̄t,u is an estimate of the conditional mean
for the target E[W|Xt,u]. Since each observation has probability n−1, we obtain an estimate of the value
function:

val(u) = 1

n

n∑
t=1

(
w̄t,u − w̄

)2
, (3.14)

where w̄ is an estimate of the model output mean E[W]. Hence, to compute the Shapley effects, we
use the value function in Equation (3.14), estimated via cohort approach, to calculate the Möbius
inverses in Equation (3.7). Finally, Shapley effects are obtained via Equation (3.8), adopting the algo-
rithm proposed by Plischke et al. (2021). A MATLAB implementation can be found at https://github.
com/giovanni-rabitti/ratingsystemshapley.

4. Constructing and comparing rating systems
After the implementation of the methods presented in Sections 2 and 3, we have at hand the individual
quantile premiums (found with QRPC and PQRR) for the i = 1, 2, . . . , n policyholders in the portfolio.
Additionally, we estimate the most important risk factors determining these premiums. This information
is crucial for the construction of a rating system in which the policyholders are divided into risk classes
as homogeneous as possible.

Suppose that an actuarial analyst has evaluated the Shapley effects for the k risk factors and that this
analyst wants to construct a system based on two of them. The two risk factors with highest Shapley
effects explain together the highest fraction of the variance of the individual premiums among all pos-
sible combinations of two risk factors out of k. Denote them with φk1 and φk2 . Then,

(
φk1 + φk2

)
/σ 2 is

the maximum possible. By the efficiency property, we have that
(∑k

j=1 φj

)
/σ 2 = 1, implying that∑

k1 �=j �=k2
φj

σ 2
= 1 − φk1 + φk2

σ 2
(4.1)

is the minimum possible. In other words, the fraction of variance explained by the remaining k − 2
factors is the smallest possible. As a consequence, the variability of the individual premiums within the
risk classes based on the risk factors k1 and k2 is driven only by the other k − 2 factors, and it is the
minimum. This implies that in the selected rating system the insurance premium for each policyholder
is closer to the average risk class premium than in any other systems.
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4.1. Analytical example
We illustrate our procedure with an analytical example. Assume that the generic premium P∗ can be
written as

P∗ =
k∑

j=1

λjXj (4.2)

where each variable Xj is considered to be discrete (continuous variables are typically discretized for
rating systems construction – see Henckaerts et al., for j = 1, . . . , k. Every realization of X is x, which
is the vector of the characteristics of a policyholder (for the sake of simplicity, we drop the index i in
this analytical example).

Assume that the rating system is constructed using the selected variables u ⊆ K. In this system, a
generic class is indexed by r with r = 1, . . . , R and is uniquely identified by fixing the levels of the
vector Xu = xu. In this class, a generic premium is given by

Pr =
∑
j∈u

λjxj +
∑
j/∈u

λjXj. (4.3)

In other words, since the other variables X−u can vary, Pr is a random variable representing the indi-
vidual policyholders’ premiums in the class r. In particular, when u = {1, . . . , k}, then r is the cohort
of policyholders sharing the same levels for all variables and Pr becomes deterministic. In the present
framework, the following result holds.

Proposition 4.1. Assume that the class r is identified by xu. For the any policyholder in r, consider
the difference between their individual premium and the mean class premium, Pr −E[Pr]. Then, for
any fixed threshold ξ > 0, the probability P(|Pr −E[Pr]| ≥ ξ) is minimized when the rating system is
constructed by using the rating factors with the highest Shapley effects.

Proof. First of all, by the additivity and efficiency axioms of the Shapley values and the independence
of the Xis, the variance of P∗ is

Var(P∗) =
k∑

j=1

φj, (4.4)

where φj = λ2
j Var(Xj) for all j = 1, . . . , k. Analogously, the variance of the individual premiums of

policyholders in the class r is

Var (Pr) =
∑
j �∈u

φj (4.5)

because of Equation (4.3). Moreover, the average class premium in r is

E [Pr] =
∑
j∈u

λjxj +
∑
j/∈u

λjE
[
Xj

]
. (4.6)

This mean value represents the premium that all policyholders in class r are required to pay. Then, it
holds

P(|Pr −E [Pr]| ≥ ξ) = P

(∣∣∣∣∣∑
j/∈u

λjXj −
∑
j/∈u

λjE
[
Xj

]∣∣∣∣∣≥ ξ

)

≤ 1

ξ 2
Var

(∑
j/∈u

λjXj

)
= 1

ξ 2

∑
j/∈u

φj (4.7)

by Chebyshev’s inequality applied to the random variable
∑

j/∈u λjXj, which represents the residual vari-
ability within the system constructed by fixing Xu. If Xu are the rating factors with the highest Shapley
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effects, then the upper bound of P(|Pr −E [Pr]| ≥ ξ) is the lowest possible, because for any fixed ξ the
value

∑
j/∈u φj is minimized. Hence, for any class in this rating system, the probability that individual

premiums deviate from the class mean is minimized. �
It is worth commenting Proposition 4.1. First of all, Equation (4.5) is a within sum of squares index for

the individual premiums in the class r (since we are summing up the residual variances of the individual
premiums in the class r). However, differently from clustering methods, our aim is to minimize this index
by changing the selected rating factors and not by aggregating factor levels. Secondly, we assumed a
linear pricing model with independent and discrete inputs. This choice was necessary to obtain a closed
form expression of the Shapley effects (as a matter of fact, Owen and Prieur, 2017 managed to provide
analytical expressions of Shapley effects only for some specific bivariate cases).

4.2. Homogeneity indices for system comparison
In general, numerical methods represent the only possible approach to estimate these sensitivity indices.
Consequently, it becomes necessary to include statistical indicators to assess the reliability of the our
procedure. Consider the premium P∗

i , which is the loading premium computed at the individual level
for each policyholder with QRPC or PQRR presented in Equations (2.6) and (2.11). To measure the
difference of the individual premiums when computed with all risk factors and with the selected risk
factors with the Shapley effects, we propose the mean-squared difference (MSD) defined as

MSD = 1

n

n∑
i=1

(
P∗

i − Pred
i

)2
, (4.8)

where Pred
i represents the class premium of the i-th policyholder computed with the reduced model. The

lower the MSD, the closer the individual premium is to the class premium in the rating system. We
observe that Pred

i coincides with the class premium to which the i-th policyholder belongs to (in every
risk class all policyholders pay the same average price), so it is the empirical counterpart of Equation
(4.6). To emphasize the dependency on the class r rather than on the policyholder i, we can denote the
same average premium as Pred

r . Hence, we can equivalently rewrite the MSD as

MSD = 1

n

R∑
r=1

nr∑
ir=1

(
P∗

ir
− Pred

r

)2
, (4.9)

where nr is the number of insured in the risk class r, with
∑R

r=1 nr = n. Equation (4.9) tells us that the
MSD is the sum of the deviations of the individual premiums with respect to their class means, averaged
for all policyholders in all classes. Hence, the numerator of the MSD is a sum of squared distances, which
can be interpreted as a sum of within-classes variations.

We can also finally consider two measures of deviation used in the actuarial literature (Henckaerts
et al., 2018), namely the goodness of variance fit (GVF)

GVF = 1 −
∑R

r=1

∑nr

ir=1

(
P∗

ir
− Pred

r

)2∑n
i=1

(
P∗

i − P
)2 , (4.10)

where P = 1/n
∑n

i=1 P∗
i and the tabular accuracy index (TAI)

TAI = 1 −
∑R

r=1

∑nr

ir=1 |P∗
ir

− Pred
r |∑n

i=1 |P∗
i − P| . (4.11)

The denominator in the previous formulas measures the deviation of each individual premium from the
global mean. The numerator measures the deviation of each individual premium from its class mean.
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The closer the GVF and TAI values are to 1, the more uniform the classes become in terms of their
homogeneity. Lastly, note it holds

GVF = 1 − n

n − 1

MSD∑k
j=1 φj

, (4.12)

formally connecting the GVF with the MSD and the Shapley effects. We remark that the GVF provides
insights on how close the rating system is with respect to the lowest heterogeneity case.

In practice, the rating classes have different means and heterogeneous variances and they are unbal-
anced. Thus, the problem of their comparison in terms of internal variability intensifies. In general,
when the means of classes differ significantly, comparing the absolute differences in variability (i.e.
TAI) or the variances (i.e. MSD) can be misleading. For example, in Equation (4.9) the MSD does not
explicitly consider the relative variations within each class. When comparing rating systems, it is impor-
tant to account for this effect in order to ensure an accurate and effective comparison. This is because
the absolute differences may be influenced more by the class means rather than the inherent variability
within each class. However, this is not the case when considering measures of relative variability, which
account for these differences in means. One of such measures is the coefficient of variation (Olivieri and
Pitacco, 2015)

CV =
√

σ 2
P

P
(4.13)

where σ 2
P is the variance of the premiums. Olivieri and Pitacco (2015) state that the CV is suitable to

compare the riskiness of classes composed of a different number of policyholders. Mahmoudvand and
Oliveira (2018) use the CV to measure concentration risk in a loan portfolio, while in the actuarial
literature Donnelly (2014) adopts it to quantify the mortality risk in a defined-benefit pension scheme.

When comparing rating systems in terms of overall homogeneity of their risk classes, we can adopt the
coefficients of variation for every risk class and then average. However, a simple arithmetic average of all
coefficients of variations of the risk classes of a rating system might not be a good indicator of the general
homogeneity of that system. Namely, a risk class with fewer insured that might be more homogeneous
will receive the same weight as a risk class with more insured, producing a distortion. Since different
rating systems are based on different combinations of the selected risk factors, they are based on different
risk classes. We want to aggregate the coefficient of variations of the risk classes of a rating system in
order to make comparisons between rating systems. We consider a linear combination of the coefficients
of variation. Precisely, an arithmetic mean would be a misleading indicator of homogeneity since classes
with different sizes would receive the same weight. Conversely, adopting weighted means can give the
right weight to the homogeneity of risk classes composed of a large number of insured. Hence, we
propose to compare rating systems using the weighted mean of coefficient of variations (WMCV)

WMCV =
∑R

r=1 nr · CVr∑R
r=1 nr

. (4.14)

With this approach, we are able to firstly compute the homogeneity of each risk class (with the coef-
ficient of variation) and, secondly, we take the weighted mean to have a measure for the entire rating
system. We consider the WMCV the most appropriate index to compare rating systems in terms of
overall homogeneity.

5. Numerical application
We perform the steps previously described using a well-known Australian car insurance dataset, avail-
able in the R package InsuranceData. The dataset represents an insurance portfolio composed of
67,856 policies, of which 4624 have at least one claim. The description of the variables contained in the
dataset is provided in Table 1. For a detailed description of the dataset, see de Jong and Heller (2008).
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Table 1. Variables description.

Variables Levels/Range
Driver’s age band 1 (youngest), 2, 3, 4, 5, 6
Gender Male and Female
Driver’s area of residence A, B, C, D, E, F
Vehicle age 1(new), 2, 3, 4
Vehicle body type Bus, convertible, coupe, hatchback, hardtop, motorized

caravan – combi, minibus, panel van, roadster,
sedan, station wagon, truck, utility vehicle

Vehicle value† 0–34.56 (in $10,000s)
†Discretized following de Jong and Heller (2008).

The first five risk factors listed in Table 1 are factor variables (whose corresponding levels are
mentioned), while vehicle value is a continuous variable. As done in de Jong and Heller (2008),
we discretize the variable vehicle value. This is a necessary step to avoid the number of risk classes
exploding in the construction of the rating systems. For this reason, we follow de Jong and Heller
(2008) and discretize the risk factor into six different intervals with the same values. We assign to each
observation the mean value of the interval where the observation falls. The intervals are the follow-
ing: (0, 25, 000$] with 54,971 policies, (25, 000$, 50, 000$] with 11,439 policies, (50, 000$, 75, 000$]
with 1265 policies, (75, 000$, 100, 000$] with 104 policies, (100, 000$, 125, 000$] with 44 policies, and
finally (125, 000$, ∞) with 33 policies.

The presented variables in Table 1 are the six risk factors that we use in our Two-Part models to esti-
mate the individual premiums. In the dataset, there are four other variables: Exposure, Claim occurrence,
Claim amount, and Number of claims. Exposure is a continuous variable bounded between 0 and 1: the
value of one indicates that the policy covers the entire year, while a value less than one means that it cov-
ers only the corresponding part of the year. Claim occurrence is a binary variable in which 0 is assigned
to policies with no claims occurrence and 1 to the ones that suffered at least one claim. These policies
also have a positive value of the variable Claim amount, which indicates the insurance company’s loss.
Of course, the policies with zero claims correspond to a claim amount value of zero dollars. The variable
Numbers of claims counts how many accidents the policyholder has suffered during the year.

All computations have been performed on a standard laptop with 8GB RAM. The PQRR and QRPC
have been implemented in the R-software and took around 14 and 2 min, respectively. The estimation
of the Shapley effects took around 94 min using the MATLAB software. All codes are available at
https://github.com/giovanni-rabitti/ratingsystemshapley.

5.1. Individual premium estimation
The first step of the Two-Part model consists of the estimation of the probability of having no claims.
In this case, we use a GLM regression of the binomial family with a logit link function adjusted for the
exposure in Equation (2.1). The R code for the logit exposure adjusted is provided by de Jong and Heller
(2008). In Table A.1, we report the parameters of the logit GLM regression obtained via the maximum
likelihood estimation.

In the second step, we estimate the severity component. We first perform the PQR to find the
premiums with the PQRR approach (see Section 2.1). The selected function b(θ ) to implement the
procedure is a SLP of degree 1. In particular, the regression coefficient has the following formulation:
βl(θ , γl) = γl0 + γl1(2θ − 1), l = 0, . . . , 27.2

2Recall that l = 0 is the intercept of the regression, while l = 1, . . . 27 are the parameters in the regression for risk factors.
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Table 2. Wald test for rating factors.

chi-square df p-value
(Intercept) 526.569 2 < 2e-16∗∗∗

veh_age 21.915 6 0.00125∗∗

veh_value 2.053 2 0.35832
veh_body 62.371 24 2.93e-05∗∗∗

agecat 36.017 10 8.36e-05∗∗∗

area 31.266 10 0.00053∗∗∗

gender 5.486 2 0.06438

Baione and Biancalana (2021) use in the same dataset a SLP of degree 3, since in their numerical
application the purpose is the estimation of insurance premiums for the eight risk classes that compose
the rating system they construct. In our case, we need to use a SLP of degree 1 since a degree equal to 3
produces numerical instability. In particular, using a polynomial of the second or third degree, we obtain
some exceptional small/large values (outliers) for the severity component. Figure A.2 in the Appendix A
shows that the goodness-of-fit of this model is satisfactory despite the low degree. Estimated parameters
of the PQR are reported in Table A.4 in the Appendix A. In Table 2, the Wald test for the significance
of rating factors is shown. From Table 2, we can see that the most statistically significant risk factors
are vehicle body, agecat, and area. However, as previously explained, a selection based on the p-values
might be misleading due to the lack of interpretability of the ranking in terms of importance of the
risk factors. To solve this critical issue, we use the Shapley effects approach to be able to obtain factor
prioritization. The Wald test for the b(θ ) components is also provided in Table A.5 in the Appendix.
Using Equation (2.6), we estimate the quantile premium principle. As previously done in Heras et al.
(2018) and Baione and Biancalana (2021) on this dataset, we use a Gamma GLM with log link function
to estimate the conditional expectation of the loss distribution (regression coefficients are provided in
Table A.3 in the Appendix).

Finally, we need to calibrate the loading factor α using Equation (2.9). The value obtained through
the calibration procedure is α = 6.84%. The severity component can also be estimated using QR and
the individual premiums can be found by applying the QRPC approach (explained in Section 2.2): this
method requires to find the probability level θ ∗ such that the balance Equation (2.12) holds. In our
application, the resulting value is θ ∗ = 78.60%. We recall that we are able to run a unique QR with this
probability level. The obtained parameters estimates are shown in Table A.2 (see the Appendix). At
this point, we can compute the individual insurance premium using the quantile premium principle in
Equation (2.11).

5.2. Application of Shapley effects to the rating system construction
Once individual premiums are estimated, we apply the Shapley effects algorithm to the datasets{(

PQRPC
i , xi

)}n

i=1
and

{
(PPQRR

i , xi)
}n

i=1
to identify the two risk factors that, in combination, explain a greater

amount of variance compared to any other pair of variables. The utilization of Shapley effects is further
justified by the dependence analysis depicted in Figure A.1 in the Appendix. This analysis reveals that
the risk factors are not independent, strengthening the rationale for employing the Shapley effects algo-
rithm. Given the presence of six discrete risk factors, it is important to define the notion of similarity
between two observations within a subset u. Specifically, two observations are considered similar with
respect to subset u if they share the same values for the coordinates indexed by u. In the case of discrete
risk factors, the similarity function in Equation (3.11) is set to δj = 0 (as done in Mase et al., 2019).
By applying the algorithm to the premiums obtained with QRPC and PQRR, we display the results in
Figure 1. Risk factors agecat and vehicle body explain together 82.45% of individual premium total
variance in case of the QRPC approach and 77.77% in case of the PQRR approach. These two risk
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Figure 1. Shapley effects for the individual premiums computed with QRPC and PQRR. The y-axis
shows the Shapley effects for each risk factor (displayed on the x-axis). By the efficiency property, the
Shapley effect normalized by the variance can be interpreted as the proportion of explained variance
by a single risk factor.

factors are the greatest drivers of the individual premiums. Conversely, vehicle value is negligible and
could be “frozen” to a constant value, reducing the model complexity (see, for instance, Saltelli et al.,
2008 for a discussion on freezing irrelevant factors). Also, gender and vehicle age have a low impact on
the variability of the individual premiums. These insights enable model interpretability since the analyst
knows the main drivers of the pricing models. We note that, despite some differences in premiums at
the individual level between the two pricing methods, at the global level the importance of risk factors
is the same for both QRPC and PQRR premiums, as shown in Figure 1. Only the fourth and fifth most
important risk factors are switched between QRPC and PQRR: vehicle age and gender are, respectively,
the fourth and fifth most important risk factors for QRPC, while their roles are inverted for the PQRR.
However, the magnitude of the fourth highest Shapley effect is relatively small (around 3–4% for the
two pricing methods). We lastly note that discretizing the variable veh_value does not change its irrele-
vant importance. If it is left continuous, its Shapley effects are 0.0014 for the QRPC and 0.0047 for the
PQRR, while as a discrete variable they are 0.0036 and 0.0150, respectively.

5.3. Rating systems comparison
The estimation of Shapley effects provides us insights about the most important risk factors from a
statistical point of view. On the other hand, we need an actuarial valuation to demonstrate that the rating
system we have constructed is the one with less variability in the insurance premium. We adopt the
indices presented in Subsection 4.2 as a measure to assess the variability within each risk class in a
rating system and to evaluate the riskiness of the overall rating system.

With our dataset, composed of 6 risk factors, we can construct 15 different systems made up of 2
risk factors each (remember that we refer to the discretized variable vehicle value). In the literature,
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Table 3. Weighted mean coefficient of variation, mean-squared difference, and goodness of variance fit.

WMCV MSD GVF
Number of

Rating system PQRR QRPC PQRR QRPC PQRR QRPC risk classes
veh_age – gender 0.328 0.365 15673.898 19559.036 0.043 0.031 8
veh_body – veh_age 0.295 0.314 12973.676 15145.669 0.208 0.250 49
veh_body – gender 0.294 0.321 12976.694 16006.447 0.208 0.207 26
veh_body – agecat 0.139 0.143 3418.100 3839.513 0.791 0.810 78
veh_age – area 0.301 0.341 13106.800 17166.138 0.200 0.150 24
gender – agecat 0.181 0.211 5519.245 7382.024 0.663 0.634 12
veh_body – area 0.263 0.292 10366.884 13338.936 0.367 0.339 76
veh_age – agecat 0.189 0.197 5985.256 6908.135 0.635 0.659 24
gender – area 0.297 0.348 12897.895 17646.811 0.213 0.126 12
area – agecat 0.152 0.183 3639.166 5674.259 0.778 0.719 36
veh_age – veh_value 0.332 0.366 16058.956 19706.286 0.020 0.024 21
gender – veh_value 0.329 0.372 15833.626 20090.619 0.034 0.005 12
veh_body – veh_value 0.298 0.322 13262.095 16200.813 0.191 0.198 48
agecat – veh_value 0.191 0.213 6146.620 7706.653 0.625 0.618 36
area – veh_value 0.303 0.348 13292.165 17782.359 0.189 0.119 33

two examples of rating systems constructed with this dataset are provided. Heras et al. (2018) build a
system using the risk factors vehicle age and agecat selected with the p-values resulting from the logistic
regression model. However, vehicle age is not an important risk factor as Figure 1 shows. The second
application is offered in Baione and Biancalana (2019) and (2021): the rating system is constructed by
using gender and vehicle age to simplify the representation of their models.

For every rating system based on two risk factors, we estimate the weighted mean of the variation
coefficient via Equation (4.14) and the number of non-empty risk classes. Furthermore, we compute
the MSD between the individual premiums using the quantile models with all risk factors included and
quantile models based on two risk factors only. Note that, for the latter case of two factors, the PQRR
and the QRPC for each rating system were recalibrated.3

The results, as presented in Table 3, demonstrate that the rating system built on the factors of
vehicle body and agecat exhibits the lowest overall variability in average premiums within each risk
class. Additionally, from Table 3 we note the following remarkable aspects. To begin with, all rating
systems constructed using the risk factor agecat exhibit low values of WMCV. This was expected since
agecat explains the largest fraction of the variance of the premiums. The MSD is also minimized for
both models, when the risk factors are selected using Shapley effects. Consequently, the GVF is maxi-
mized as per Equation (4.12) note that it takes values around 0.8, which are close to 1 (recall that a GVF
close 1 indicates a high degree of homogeneity). Furthermore, it is important to point out that the low
WMCV and the high GVF are not a consequence of the high number of classes. In fact, the selected
rating system with vehicle body and agecat has 78 risk classes, but also the rating system composed
of vehicle body and area, for instance, has a high number of risk classes (76). The difference between
the two is that the latter has classes that are overall not homogeneous. We highlight that by using the
ranking provided by the Shapley effects, it is possible to select the two risk factors explaining together
the highest fraction of the variance subject to a desirably reduced number of classes.

Finally, we computed the TAI in Equation (4.11). However, this index is not informative for both
the PQRR and the QRPC, since all values are close to 1. For instance, the minimum and the maximum
values of the index for the QRPC are 0.9999854 and 0.9999936, respectively (confirming the rating

3To avoid numerical instability in the calibration of the PQRR, a different degree of the SLP among 1, 2, and 3 is used.
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Figure 2. Boxplots showing the differences between the premiums estimated using the complete model
and two different reduced models. One of the reduced models is suggested by Heras et al. (2018), and
the other is constructed using Shapley values.

system with vehicle body and agecat as the best one in any case). From now on, we consider as the
best reduced model the one including the two risk factors with the highest Shapley effects. By using
the indicators in Table 3, there is evidence that the premium that a policyholder is charged in the rating
class in this system is “closer” to what this policyholder would have been priced at the individual level.
We provide a graphical analysis to investigate this point. In Figure 2, we compare the differences of the
individual premiums found with the complete regression model (including all risk factors), with the best
reduced model and the model with the two risk factors selected by Heras et al. (2018) (denoted with
HMVZ).

Figure 2 illustrates that the model constructed with the two primary risk factors explaining the major-
ity of the variance produces premiums that closely align with the individual premiums estimated using
the complete model. This observation holds true irrespective of whether the PQRR or QRPC approach is
employed for computing the individual premium. In contrast, the HMVZ model demonstrates a greater
disparity from the estimated individual premiums. This is coherent with the findings from Table 3 and
suggests that constructing a rating system using variables selected based on global sensitivity indices is
more appropriate than relying only on p-values. We perform further analyses to delve deeper into the
tail behavior. In Figure 3, we compute the empirical probability that the absolute value of the difference
between the premiums exceeds a fixed threshold. Figure 3 shows that the tail of the best model converges
to zero with a higher pace with respect to the HMVZ model. This fact confirms empirically our findings
in Proposition 4.1 for a non-linear pricing model for which Chebyshev bounds cannot be obtained in a
closed form. Finally, we want to demonstrate the validity of our Shapley effects approach even for the
case in which the actuarial analyst wants to construct the rating system using more than two risk factors.
To show this, we compute the WMCV for all possible rating systems composed of 1–6 rating factors.
In Figure 4, we plot the WMCV for each rating system versus the number of selected risk factors in the
system, for the insurance prices found via the PQRR approach (left panel) and QRPC approach (right
panel), respectively. Let a be the total number of risk factors, a = 6 in our case, and let b be the number
of selected risk factors, b = 1, . . . , 6 in our case. The number of possible rating system we can construct
for a selected number of risk factor b is given by

(
a
b

)= a!
b!(a−b)! . For this reason, the number of gray bullets

in the plot increases up to b = 3 and then decreases. The linked black bullets represent the rating system
constructed with the risk factors found through the Shapley effects algorithm. As expected, these rating
systems are the ones with lower WMCV for every number of selected risk factors. The WMCV shows a
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Figure 3. Empirical probability that the individual premiums, computed with the complete model, dif-
fer from their class premiums by more than a threshold ξ , computed with the Shapley model and the
HMVZ model. In both panels (PQRR on the left and QRPC on the right), given the same threshold, this
probability is higher for the HMVZ model. This implies that ceteris paribus in the latter system more
policyholders pay a class premium differing from the individual ones the fixed difference ξ .

decreasing trend as the number of selected risk factors that compose the rating systems increases, since
the premium computed within each risk class is clearly more accurate by using more risk factors. This
is clearly intuitive. However, our approach shows that the reduction in heterogeneity varies depending
on the considered risk factors. Specifically, the downward trend is more pronounced when consider-
ing up to three selected risk factors, after which the decrease becomes less significant, particularly in
the case of PQRR. This is in accordance with the results obtained via the Shapley effects algorithm,
since the three risk factors agecat, vehicle body, and area explain approximately 94% of the variance
in both the PQRR model and QRPC model. Hence, considering also the fourth most important risk
factors does not lead to a drastic decrease of the WMCV especially for the PQRR case. Note that if
we select four risk factors, the rating system with smaller WMCV is for the PQRR case the one com-
posed by agecat, vehicle body, area, and gender, while for the QRPC case the one composed by agecat,
vehicle body, area, and vehicle age, in accordance with the ranking obtained with the Shapley effects
algorithm. Finally, we remark that there is a trade-off between the number of risk classes and the overall
homogeneity of the system. One could for instance directly estimate the WMCV without computing
the Shapley effects. However, we suggest to estimate the Shapley effects at first and then compute the
WMCV of the desired combination of the risk factors. Indeed, the WMVC needs to be estimated for
all possible systems and this step has to be repeated every time the analyst wants to include more risk
factors in the construction, as it happens in Figure 4.

6. Conclusions
This work presents an original procedure for the data-driven construction of rating systems using
Shapley effects, with the remarkable advantage of selecting the most influential risk factors for a rating
system construction.
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Figure 4. WMCV for rating systems composed by a different number of risk factors. Black dots rep-
resent the WMCV of each rating system based on PQRR (left panel) and QRPC (right panel). On the
x-axis, we display the number of risk factors that compose the rating systems. The dotted line links rat-
ing systems constructed using risk factors found via the Shapley effects algorithm applied to insurance
prices obtained via PQRR and QRPC.

We started with the computation of the individual quantile premium using two different methods:
the QRPC approach and the PQRR approach. Nonetheless, we remark that our research does not focus
on estimating individual premiums. We aim to construct rating systems based on individual premiums.
As a result, our methodology is flexible and compatible with any method used to determine individual
premiums. We computed the Shapley effects for these two sets of premiums. In particular, we estimated
the Shapley effects by merging the cohort approach of Mase et al. (2019) with the Möbius inverses rep-
resentation of Plischke et al. (2021). We consider this approach more appropriate to rank and choose the
risk factors with respect to the selection based on p-values, since the latter does not provide information
on how to rank risk factors on the basis of their importance. Moreover, p-values are not reliable in the
case of dependent risk factors, which is typically the case in insurance datasets. Finally, in order to pro-
vide an actuarial evaluation of the quality of our approach, we introduced a new indicator, the WMCV,
to compare the homogeneity of the rating systems. Results on a well-known dataset confirm the validity
of our approach, since this indicator is minimized for the rating systems constructed using risk factors
with the highest Shapley effects, along with other measures of homogeneity.

We believe there is broad margin for future research based on our work. To our best knowledge, the
present work is the first one where a global sensitivity measure is adopted to construct a rating system.
More precisely, we used Shapley effects as global importance measures. A reviewer interestingly sug-
gested to adopt kernel methods to construct the similarity cohorts: we believe this intuition deserves
a full investigation in the future. A possible drawback of the use of Shapley effects lies in their com-
putational cost (2k − 1), which is expensive for insurance datasets characterized by a large number of
risk factors. Horiguchi and Pratola (2023) propose a method for estimating Shapley effects by fitting
Bayesian additive regression trees. This metamodel allows the authors to obtain posterior concentration
rates, which reduce the dimensionality of the risk factors, enhancing the computational feasibility of the
method. Moreover, other global importance measures might be considered to construct suitable rating
systems, such as those of Merz et al. (2021) and Makam et al. (2021). Another research line consists
in investigating the global importance of interactions for the two pricing models, which is possible due
to adoption of the Möbius inverse algorithm we have proposed. This analysis of interactions requires a
dedicated future research project.
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