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Square Integrable Representations and the
Standard Module Conjecture for General
Spin Groups

Wook Kim

Abstract. In this paper we study square integrable representations and L-functions for quasisplit gen-

eral spin groups over a p-adic field. In the first part, the holomorphy of L-functions in a half plane is

proved by using a variant form of Casselman’s square integrability criterion and the Langlands–Shahidi

method. The remaining part focuses on the proof of the standard module conjecture. We generalize

Muić’s idea via the Langlands–Shahidi method towards a proof of the conjecture. It is used in the work

of M. Asgari and F. Shahidi on generic transfer for general spin groups.

Introduction

This paper concerns the representation theory of general spin groups over a p-adic

field. We shall study square integrable representations and use them to prove the

standard module conjecture for general spin groups which also implies the validity

of standard module conjecture for spin groups (Proposition 5.6). The importance of

the standard module conjecture for general spin groups lies in its application to the

proof of a functorial lift from general spin groups to general linear groups [2].

To be specific, let G be a connected reductive quasisplit algebraic group defined

over a p-adic field F. Fix a Borel subgroup B of G, and write B = TU, where U is the

unipotent radical of B and T is a fixed maximal torus of G. Let P = MN be a standard

parabolic subgroup of G, where M is a Levi subgroup and N is the unipotent radical

of P. Let π be an irreducible tempered representation of M = M(F) and ν ∈ a
∗
C

,

where a
∗
C

is the complex dual of the real Lie algebra of the split component A of M.

An induced representation I(ν, π) is called a standard module if the parameter ν is in

the positive Weyl chamber. A standard module I(ν, π) has a unique irreducible quo-

tient J(ν, π), the Langlands quotient ([6, Theorem 2.11]). For an irreducible tem-

pered generic representation π of M(F) (see [20, 22] or Section 1 for the definition

of generic representations), the standard module conjecture states that a standard

module I(ν, π) is irreducible if and only if the Langlands quotient J(ν, π) is generic

(Conjecture 5.1). It was proved by Vogan in [28], using Kostant’s characterization

of large (generic) representations [13], when F = R. In the p-adic case, Casselman

and Shahidi proved the standard module conjecture when π is an irreducible uni-

tary, generic, supercuspidal representation [8]. Since then, there has been progress

towards proving some special cases of this conjecture. We refer to [8] for an extensive
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reference on this progress. Meanwhile Muić proved the standard module conjecture

for quasisplit classical groups in full generality in [14]. His method depended upon

the representation theory of classical groups developed by Tadić and others [3, 26]

and the theory of L-functions developed by Shahidi [20, 22]. Our approach is based

on Muić’s idea and the Langlands–Shahidi method [17, 19–22].

Section 1 provides definitions and notations to be used in this paper. The multi-

plicative property of γ-factors and L-functions is reviewed in detail, since it proves to

be important when we use the L-function theory of Shahidi. A general result of Sil-

berger on square integrable representations via Plancherel measures (Theorem 1.3)

is also a key to our approach.

General spin groups are to spin groups as the general linear groups are to special

linear groups. As in the case of general linear groups, the derived group of a gen-

eral spin group is a spin group. Furthermore, Levi subgroups of general spin groups

are isomorphic to a product of general linear groups and a general spin group of

smaller rank. Therefore the theory of representations of general spin groups are sim-

ilar to that of classical groups. The definition and the structure theory of the general

spin group GSpinm are introduced in Section 2. An explicit description of Langlands

L-functions associated to irreducible components of adjoint action of LM on L
n is

also given there, after discussing Galois action on quasisplit GSpin2n.

In Section 3, we study square integrable representations of GSpinm. First, we inter-

pret Casselman’s square integrability criterion [7] in the form of Proposition 3.2. It

was Tadić who originally introduced this type of interpretation of Casselman’s square

integrability criterion to study square integrable representations of classical groups of

type Bn or Cn in a series of papers [26, 27]. The same idea was used in Ban’s work

for SO2n of type Dn [3]. Following these ideas, we prove Theorem 3.3 as they did for

classical groups. Then we prove the holomorphy of L-functions for GSpinm. For split

GSpinm, it was done by Asgari who followed the idea presented in [8], and we also use

the idea of Casselman and Shahidi. It is interesting to observe that the representation

theory is intimately related to L-function theory. The concepts of segments are used

in the proof of holomorphy of L-functions. Due to possible cancellations between L-

functions in the multiplicative property of γ-factors, it is important to know which

representations of GLn or GSpinm contribute such cancellations. Segments are used

in order to simplify situations in Theorem 3.10 as in [8].

In Section 4 we generalize a square integrability criterion, proved by Muić for

classical groups, to one for general spin groups. It is an application of the Langlands–

Shahidi method [17, 19–22] and the results proved in this paper for representations

of GSpinm.

In Section 5 we prove the standard module conjecture for GSpinm and consider its

application. The standard module conjecture implies an important result concerning

holomorphy of normalized intertwining operators which is called Assumption A by

H. Kim [10] (see Conjecture 5.7 for the statement). Assumption A is one of the key

ingredients in establishing functioriality as H. Kim explained in his recent paper [12]

where he proved many cases of holomorphy for local L-functions and related results

on the normalized intertwining operators via the standard module conjecture in the

general context. Using the standard module conjecture for GSpinm, the Langlands–

Shahidi method and the converse theorems of Cogdell and Piatetski-Shapiro [9], As-
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gari and Shahidi have proved the functoriality of a generic transfer from general spin

groups to general linear groups in [2].

1 Preliminaries

Fix a nonarchimedean local field F of characteristic zero. Let OF be the ring of integers

in F, p the maximal ideal, and̟F a uniformizing element of p. The cardinality of the

residue field O/p is denoted by q = qF, and the absolute value of F is normalized so

that |̟|F = q−1.

Let G be a connected reductive quasisplit algebraic group defined over F. Fix a

Borel subgroup B of G and write B = TU, where U is the unipotent radical of B and

T is a maximal torus of G. We also fix a maximal torus T. Let Td be the maximal F-

split subtorus of T. Then the Weyl group W = W (G,Td) of Td in G acts both on the

character group X∗(T)F and the cocharacter group X∗(T)F. Denote by χ∨ the coroot

of a root χ. Let P = Pθ be a standard parabolic subgroup corresponding to θ ⊂ ∆

where ∆ is the set of simple roots. There is a unique Levi decomposition P = MN

such that N ⊃ B and M ⊃ T.

For any algebraic group H, let H = H(F) be the F-rational points of H. For exam-

ple, we have the corresponding F-points G,B,T,U , P,M,N of groups G,B,T,U,P,

M,N.

For the group X(M)F of F-rational characters, let

a
∗

= X(MF)⊗Z R.

Then a
∗ is the dual of the real Lie algebra a of the split component A of M. Denote

by a
∗
C

the complexification of a
∗. There is a homomorphism

HM : M → a = Hom(X(M)F,R)

characterized by q〈χ,HM (m)〉
= |χ(m)|F for any m ∈ M, χ ∈ X(M)F.

Let P be a maximal parabolic subgroup generated by θ = ∆ \ {α}, and let ρP be

half the sum of the positive roots in N. Let α̃ = 〈ρP, α〉−1ρP ∈ a
∗. Since P = P∆\{α}

is maximal, a/z ∼= R where z is the Lie algebra of the center of G. Thus, we may

identify (a/z)∗
C

with C under the correspondence sα̃ ←→ s. According to [20], the

adjoint action of LM on L
n decomposes to the irreducible submodules Vi = {Xβ∨ ∈

n
L : 〈α̃, β〉 = i}, 1 ≤ i ≤ m, and it is denoted by r =

⊕m
i=1 ri . Suppose ψ = ψF is a

generic character of U = U(F). Choose a generic character ψM of UM = U ∩M such

that ψM = ψ|UM
. Now let π be a ψM-generic tempered representation of M. Then

there exist complex-valued functions γ(s, π, ri , ψF) such that

γ(s, π, ri , ψF) = ǫ(s, π, ri, ψF)
L(1− s, π, r̃i)

L(s, π, ri )

where ǫ(s, π, ri , ψF) is a monomial in q−s. The following conjecture is expected to be

true in general [1, 8, 22].

Conjecture 1.1 If π is tempered, then L(s, π, ri) is holomorphic for Re(s) > 0.

https://doi.org/10.4153/CJM-2009-033-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2009-033-3


620 W. Kim

Next, we describe the multiplicative property of γ-factors and L-functions. Sup-

pose that π →֒ IndM
P1

(π1) where P1 = M1N1 is a parabolic subgroup of M and π1

is a representation of M1 = M1(F). Let w be the longest element in the Weyl group

of Td in G modulo that of Td in M. Fix a reduced decomposition w = wn−1 · · ·w1.

For each j, there exists a unique simple root α j such that w j(α j) < 0. Set w1 = 1

and w j = w j−1 · · ·w1 for 2 ≤ j ≤ n − 1. Let θ1 ⊂ ∆ such that M1 = Mθ1
, and

define θ j+1 = w j(θ j). For each j, set Ω j = θ j ∪ {α j}. Then MΩ j
contains Mθ j

as

the Levi subgroup of a maximal parabolic subgroup and w j(π) is a representation of

Mθ j
. Each irreducible constituent of ri |LM1

is equivalent to, under w j , an irreducible

constituent of the adjoint action of Mθ j
on L

nθ j
for a unique j, 2 ≤ j ≤ n−1. Denote

by i( j) the index of the irreducible component of Mθ j
. Let Si be the set of all such

j for a given i. The importance of the multiplicative property lies in the following

theorem [21, 22].

Theorem 1.2 (Multiplicativity of γ-factors and L-functions) For each j ∈ Si , let

γ(s,w j(π1), ri( j), ψF), 1 ≤ i ≤ m, be the corresponding γ-factors. Then

γ(s, π, ri , ψF) =
∏
j∈Si

γ(s,w j(π1), ri( j), ψF).

Furthermore, if Conjecture 1.1 is true for every L(s,w j(π1), ri( j)), then we have the cor-

responding multiplicative property of L-functions

L(s, π, ri) =
∏
j∈Si

L(s,w j(π1), ri( j)).

Let π be an irreducible unitary representation of M(F). The (normalized)

Plancherel measure µ(s, π) defined in [22] has the following property proved by Sil-

berger [25].

Theorem 1.3 If π is a square integrable representation (modulo center), then µ(s, π)

has at most a double zero at s = 0.

Furthermore, if π is a generic representation, there is a connection between the

γ-factors and the Plancherel measures. More precisely, we have the following result

by Shahidi [22].

Theorem 1.4 If π is a ψ-generic representation, then

µ(s, π) =

m∏
i=1

|γ(is, π, ri, ψF)|2 for Re(s) = 0.

2 Structure Theory and L-Functions of GSpinm

Spin groups are the simple simply connected algebraic groups of type Bn or Dn. We

define the general spin group to be

GSpinm =
GL1 × Spinm

{(1, 1), (−1, c)} , m ≥ 3
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where c = α∨
n−1(−1)α∨

n (−1) if m = 2n, and c = α∨
n (−1) if m = 2n + 1. Here

αn−1, αn are the roots of Spinm. For m ≤ 1, GSpin0 = GSpin1 = GL1. It is clear from

the definition that the derived group of GSpinm is Spinm. To get precise information

on GSpinm, we need to look at its root datum. We follow Asgari’s description ([1,

Proposition 2.4]).

Proposition 2.1 Let X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen and X∨
= Ze∗0 ⊕ Ze∗1 ⊕ · · · ⊕ Ze∗n

be free abelian groups of rank n equipped with the standard Z-pairing on X×X∨. Then

in the root datum (X,R,X∨,R∨) the set of simple roots ∆ and that of coroots ∆
∨ are as

follows:

(i) GSpin2n+1 of type Bn

∆ = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en}
∆

∨
= {α∨

1 = e∗1 − e∗2 , . . . , α
∨
n−1 = e∗n−1 − e∗n , α

∨
n = 2e∗n − e∗0}

◦ ◦ ◦ ··· ◦ ◦ > ◦
α1 α2 αn−1 αn

(ii) GSpin2n of type Dn

∆ = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en}
∆

∨
= {α∨

1 = e∗1 − e∗2 , . . . , α
∨
n−1 = e∗n−1 − e∗n , α

∨
n = e∗n + e∗n − e∗0}.

◦

xx

αn−1

◦ ◦ ◦ ··· ◦ ◦
jjjjjjj

TTTTTTT

α1 α2 αn−2 ◦ αn

The dual groups of GSpin2n+1 and GSpin2n are the similitude groups GSp2n and

GSO2n, respectively. The groups GSp2n and GSO2n can be described by their matrix

representations. More precisely,

GSp2n = {g ∈ GL2n : tg Jg = µ(g) J}

and

GSO2n = {g ∈ GL2n : t g J ′g = µ(g) J ′}◦,
where

J =




1
...

1

−1
...

−1




, J ′ =




1
...

1

1
...

1




and µ(g)’s are the similitude characters of groups GSp2n and GSO2n. The correspond-

ing root data for these groups are as follows.
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Proposition 2.2 Let X = Ze0 ⊕ Ze1 ⊕ · · · ⊕ Zen and X∨
= Ze∗0 ⊕ Ze∗1 ⊕ · · · ⊕ Ze∗n

be free abelian groups of rank n equipped with the standard Z-pairing on X×X∨. Then

in the root datum (X,R,X∨,R∨) the set of simple roots ∆ and that of coroots ∆
∨ are as

follows:

(i) GSp2n of type Cn

∆ = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = 2en − e0}
∆

∨
= {α∨

1 = e∗1 − e∗2 , . . . , α
∨
n−1 = e∗n−1 − e∗n , α

∨
n = e∗n}

(ii) GSO2n of type Dn

∆ = {α1 = e1 − e2, . . . , αn−1 = en−1 − en, αn = en−1 + en − e0}
∆

∨
= {α∨

1 = e∗1 − e∗2 , . . . , α
∨
n−1 = e∗n−1 − e∗n , α

∨
n = e∗n−1 + e∗n}.

Next we construct an explicit outer automorphism of GSpin2n. In [3], Ban defines

an explicit outer automorphism of SO2n by s(g) = sgs−1, g ∈ SO2n, where

s =




In−1

J2

In−1


 , J2 =

(
0 1

1 0

)
.

The outer automorphism s of SO2n can be lifted to that of Spin2n by the universal

property of the covering map p : Spin2n → SO2n, in such a way that the following

diagram commutes

Spin2n

s ′

//

p

��

Spin2n

p

��

SO2n

s
// SO2n.

Fix a lifting s′ of Spin2n. The automorphism defined by

GL1 × Spin2n → GL1 × Spin2n : (a, x) 7→ (a, s′(x)), a ∈ GL1, x ∈ Spin2n

induces an outer automorphism s̃ : GSpin2n → GSpin2n. This automorphism will be

used to describe parabolic subgroups.

For G = GSpinm, a Levi subgroup M of a maximal standard parabolic group

Pθ = P = MN corresponding to θ = ∆ \ {αk} is isomorphic to GLk × GSpinm ′

(2k + m ′
= m) if m = 2n + 1, or if k ≤ n− 2 and n = 2m. In the case k = n− 1 and

n = 2m, M is isomorphic to GLk × GSpin0 via an outer automorphism s̃. It follows

from the maximal case that

M ∼= Gn1
× · · · × GLnk

× GSpinm ′ ⊂ GSpinm, 2(n1 + · + nk) + m ′
= m.

Now we consider the Galois action on GSpinm. The Galois group acts trivially on

GSpin2n+1, and therefore GSpin2n+1 splits over F. For quasisplit GSpin2n(n 6= 4)
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which is not split over F, the absolute Galois group Gal(F/F) acts non-trivially and

permutes the last two rootsαn−1, αn. Let E/F be a field extension over which GSpin2n

splits. By considering the restrictions to E of automorphisms of F we may assume that

Galois group is Γ = Gal(E/F). We leave out the triality case for quasisplit GSpin8 for

a future work, and we assume [E : F] = 2 throughout this paper for quasisplit

GSpin2n defined over F. We refer the reader to [16] for more information on the

classification of quasisplit groups over a perfect field, and to [20] for the Galois action

on the groups of type Dn.

Fix a maximal torus T in quasisplit GSpin2n. The torus T can be described by

T = {t =

n∏
i=0

e∗i (ti) | ti ∈ GL1, i = 0, 1, . . . , n}.

The Galois group Γ = Gal(E/F) fixes ei ’s for i = 0, 1, . . . , n− 1, and sends en to−en.

It follows that the maximal F-split torus Td in T consists of elements of the form

td =
∏n−1

i=0 e∗i (ti), ti ∈ GL1, i = 0, 1, . . . , n− 1. The restricted root datum of GSpin2n

is of type Bn−1, and the set ∆F of F-simple roots consists of βi = αi = ei − ei+1 for

1 ≤ i ≤ n − 2 and βn−1 = en−1 = αn−1|Td
= αn|Td

. The L-group of quasisplit

GSpin2n is GSO2n(C) ⋊ Γ. The nontrivial element ǫ in Γ acts on GSO2n(C) by

ǫ(g) = wn
t g−1w−1

n , g ∈ GSO2n(C),

where

wn =




Jn−1

I2

Jn−1


 , Jn−1 =




1
...

1
...

1




and

I2 =

(
1 0

0 1

)
.

We now describe L-functions of GSpinm(F) explicitly. To accomplish such a goal,

we need to determine the adjoint action of LM on L
n. In [21], Shahidi determined

the irreducible components ri(1 ≤ i ≤ m) in terms of highest weight vectors for

quasisplit reductive algebraic groups. Then Asgari computed those representations

ri , i = 1, 2, explicitly for split general spin groups. We review split cases, and deter-

mine ri , i = 1, 2 explicitly for quasisplit GSpinm via the general method of Shahidi.

Let M = Mθ be the Levi subgroup of a standard parabolic subgroup Pθ = MθNθ

of G = GSpinm for θ = ∆ \ {αk}. The adjoint action of LM on L
n is denoted by r =⊕m

i=1 ri . Then each ri , 1 ≤ i ≤ m, is irreducible by [20, Proposition 4.1]. Let ρk,R
1
2n

and R2
2n be the standard matrix representations of the groups GLk(C),GSp2n(C), and

GSO2n(C), respectively, and let µ be the similitude character appearing in the defini-

tion of GSp2n(C) or GSO2n(C). We have the following cases.
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(a) Suppose that

M = M(F) ∼= GLk(F)× GSpin2n+1(F) ⊂ GSpin2n+2k+1(F).

Then r = r1 ⊕ r2 with r1 = ρk ⊗ R̃1
2n, r2 = Sym2 ρk ⊗ µ−1 if n ≥ 1 and

r = r1 = Sym2 ρk ⊗ µ−1 if n = 0.

(b) Suppose that GSpin2n splits over F, and that

M = M(F) ∼= GLk(F)× GSpin2n(F) ⊂ GSpin2n+2k(F)(n 6= 1).

Then r = r1 ⊕ r2 with r1 = ρk ⊗ R̃2
2n, r2 =

∧2
ρk ⊗ µ−1 if n ≥ 2 and r = r1 =∧2

ρk ⊗ µ−1 if n = 0.

(c) Suppose that GSpin2n does not split over F, but splits over E. Let r◦i be the re-

striction of ri on LM◦(i = 1, 2). For θ = ∆F \ {βk}, k ≤ n− 2,

M = M(F) ∼= GLk(F)× GSpin2n(F) ⊂ GSpin2n+2k(F).

Then r = r1 ⊕ r2 with r◦1 = ρk ⊗ R̃2
2n, r◦2 =

∧2 ρk ⊗ µ−1. Each r◦i is irreducible

for i = 1, 2. For θ = ∆F \ {βn−1},

M = M(F) = GLk(F)× E1 × GL1(F) ⊂ GSpin2n(F)

where E1 is the multiplicative group of norm one elements in E. Then r = r1⊕ r2

with r◦1 = ρk ⊗ R̃2
2, r

◦
2 =

∧2
ρk ⊗ µ−1. We note that r◦1 is reducible since the

standard matrix representation R̃2
2 of GSO2(C) is reducible, but r◦2 is irreducible.

Finally, we consider L-functions for quasisplit generalized spin groups. Let π be

an unramified representation of M(F) = GLk(F) × GSpin2n(F). Then there is a

unique semisimple conjugacy class (t ⋊ ǫ) in LT◦ ⋊ Γ determined by the Satake iso-

morphism. Furthermore, t can be chosen as an element fixed by the Galois action

([5, Proposition 6.7]). So we may assume t ∈ LT◦
d . For each irreducible component

ri , the Langlands L-function can be described by

L(s, π, ri ) = det(1− r◦i (t ⋊ ǫ)q−s)−1.

For a ramified representation, the L-functions are defined via the Langlands–Shahidi

method (See Section 1).

3 Square Integrable Representations of General Spin Groups

Let σ ⊗ τ be an irreducible admissible representation of

M(F) ∼= GLk(F)× GSpinm ′(F).

We write σ = νsσu where

νs(h) = | det(h)|sF, s ∈ R, h ∈ GLk(F)
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and σu is a unitary representation of GLk(F). The (normalized) induced representa-

tion IndG
P (σ ⊗ τ) = I(s, σu ⊗ τ) is denoted by σ ⋊ τ . We shall use similar notations

for parabolic inductions induced from nonmaximal parabolic subgroups. There is

a general result concerning irreducibility of induced representations induced from

generic ones. In terms of our notation for GSpinm, Theorem 8.1 of [22] can be stated

as follows.

Theorem 3.1 Let σu be an irreducible unitary supercuspidal representation of GLk(F)

and let τ0 be an irreducible generic supercuspidal representation of GSpinm(F). If σu ≇

σ̃u, then νsσu ⋊ τ0 is irreducible. If σu ∼= σ̃u, then there exists s0 ∈ {0, 1/2, 1} such

that ν±s0σu ⋊ τ0 reduces, and νsσu ⋊ τ0 is irreducible for any real number s 6= s0.

To state Casselman’s square integrability criterion for GSpinm, we need to intro-

duce some notations. Let π = σ1 ⊗ · · · ⊗ σl ⊗ τ be an irreducible representation of

M = GLn1
(F)×· · ·×GLnl

(F)×GSpinm ′(F) ⊂ GSpinm(F) with 2(n1 +· · ·+nl)+m ′
=

m. We write σi = νe(σi )σu
i , where σu

i is unitary and e(σi) ∈ R, 1 ≤ i ≤ l. We define

ξ1, . . . , ξn, e∗(π) ∈ R
n as follows:

ξi = (1, . . . , 1︸ ︷︷ ︸
i times

, 0, . . . , 0), 1 ≤ i ≤ n− 2 or i = n,

ξn−1 =

{
(1, . . . , 1, 0) if G = GSpin2n+1,

(1, . . . , 1,−1) if G = GSpin2n,

and

e∗(π) = (e(σ1), . . . , e(σ1)︸ ︷︷ ︸
n1 times

, . . . , e(σk), . . . , e(σk)︸ ︷︷ ︸
nl times

0, . . . , 0︸ ︷︷ ︸
[ m ′

2
] times

).

In the following proposition, (v,w) denotes the standard inner product on R
n.

Proposition 3.2 Let G = GSpinm(F) with m = 2n + 1 or m = 2n. Suppose

that τ is an irreducible representation of G. Assume that P = MN is a standard

parabolic subgroup that is minimal among all standard parabolic subgroups which sat-

isfy rM,G(τ) 6= 0, where rM,G(τ) denotes the (normalized) Jaquet module of τ with re-

spect to P. Let M = GLn1
(F)×· · ·×GLnl

(F)×GSpinm0
(F) and let π = σ1⊗· · ·⊗σl⊗τ0

be any irreducible supercuspidal subquotient of rM,G(τ). If τ is a square integrable rep-

resentation of G, then the central character of τ is unitary and

(e∗(π), ξn1
) > 0,

(e∗(π), ξn1+n2
) > 0,

...

(e∗(π), ξn1+n2+···+nl
) > 0.

Conversely, if the central character of τ is unitary and the above inequalities hold for any

subquotient π of rM,G(τ) such that rM,G(τ) 6= 0, then τ is square integrable.
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Proof The proof follows immediately from [7, Theorem 6.5.1].

Theorem 3.3 Suppose σ1 ⊗ · · · ⊗ σk ⊗ τ0 is an irreducible generic supercupidal rep-

resentation of M = GLn1
(F) × · · · × GLnl

(F) × GSpinm0
(F) ⊂ GSpinm(F). Write

σi = νe(σi )σu
i where e(σi) ∈ R and σu

i is unitary supercuspidal for each i = 1, . . . , l.

(i) If σ1 × · · · × σl ⋊ τ0 contains a square integrable subrepresentation or a square

integrable subquotient, then σu
i
∼= σ̃u

i for i = 1, . . . , l.
(ii) If σ1 × · · · × σl ⋊ τ0 contains a square integrable subrepresentation or a square

integrable subquotient, then 2e(σi) ∈ Z for i = 1, . . . , l.

Proof Since Asgari gave a detailed proof for GSpin2n+1 in [1], we give only a proof

for GSpin2n. If GSpin2n is quasisplit but not split over F, then the F-root system

is of type Bn−1 and the proof is similar to that of GSpin2n+1. So we may assume

that G = GSpin2n is split. First, assume that τ is an irreducible square integrable

subrepresentation of σ1×· · ·×σl ⋊τ0 where π = σ1⊗· · ·⊗σl⊗τ0 is a supercuspidal

representation of M = GLn1
(F) × · · · × GLnl

(F)× GSpin2n ′(F). Fix i0 ∈ {1, . . . , l}
and set

Y 0
i0

= {i ∈ {1, . . . , l} : ∃k ∈ Z such that σi0
∼= νkσi},

Y 1
i0

= {i ∈ {1, . . . , l} : ∃k ∈ Z such that σ̃i0
∼= νkσi},

Yi0
= Y 0

i0
∪ Y 1

i0
,

Y c
i0

= {1, . . . , k} \ Yi0
.

Suppose that σu
i0

≇ σ̃u
i0

. For j0, j ′0 ∈ Y 0
i0
, j1, j ′1 ∈ Y 1

i0
and jc ∈ Y c

i0
, we have the

following isomorphisms due to Bernstein and Zelevinsky [4, 29]

σ j0
× σ̃ j ′0

∼= σ̃ j ′0
× σ j0

, σ j1
× σ̃ j ′1

∼= σ̃ j ′1
× σ j1

,

σ j0
× σ j1

∼= σ j1
× σ j0

, σ̃ j0
× σ̃ j1

∼= σ̃ j1
× σ̃ j0

,

σ j0
× σ jc

∼= σ jc
× σ j0

, σ̃ j0
× σ jc

∼= σ jc
× σ̃ j0

,

σ j1
× σ jc

∼= σ jc
× σ j1

, σ̃ j1
× σ jc

∼= σ jc
× σ̃ j1

.

By Theorem 3.1, we also have σ j0
⋊ τ0

∼= σ̃ j0
⋊ τ0, σ j1

⋊ τ0
∼= σ̃ j1

⋊ τ0. Write

Y 0
i0

= {a1 < a2 < · · · < al0},Y 1
i0

= {b1 < b2 < · · · < bl1}, and Y c
i0

= {d1 < d2 <
· · · < dlc}. Using the above isomorphisms, we get

σ1 × · · · × σl ⋊ τ0

∼= σa1
× · · · × σal0

× σd1
× · · · × σdlc

× σb1
× · · · × σbl1

⋊ τ0

∼= σa1
× · · · × σal0

× σd1
× · · · × σdlc

× σb1
× · · · × σbl1−1

× σ̃bl1
⋊ τ0

∼= σa1
× · · · × σal0

× σd1
× · · · × σdlc

× σ̃bl1
× σb1

× · · · × σbl1−1
⋊ τ0

...

∼= σa1
× · · · × σal0

× σ̃bl1
× · · · × σ̃b1

× σd1
× · · · × σdlc

⋊ τ0.
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Similarly, we get

σ1 × · · · × σl ⋊ τ0
∼= σb1

× · · · × σbl1
× σ̃al0

× · · · × σ̃a1

× σd1
× · · · × σdlc

⋊ τ0.

It follows from the Frobenius reciprocity that the representations

π ′
= σa1

⊗ · · · ⊗ σal0
⊗ σ̃bl1

⊗ · · · ⊗ σ̃b1
⊗ σd1

⊗ · · · ⊗ σdlc
⊗ τ0,

π ′ ′
= σb1

⊗ · · · ⊗ σbl1
⊗ σ̃al0

⊗ · · · ⊗ σ̃a1
⊗ σd1

⊗ · · · ⊗ σdlc
⊗ τ0

are quotients of corresponding Jacquet modules. Note that σa1
× · · · × σal0

× σb1
×

· · · × σbl1
is a representation of GLu(F), u ≤ n. Suppose n′ ≥ 2. Then

(e∗(π ′), ξu) = −(e∗(π ′ ′), ξu)

which contradicts Proposition 3.2. Next we assume n′
= 0. In this case, M =

GLn1
(F)× · · · × GLnl

(F)× GSpin0(F). If u 6= n− 1, then

(3.1) (e∗(π ′), ξu) = −(e∗(π ′ ′), ξu)

and if u = n− 1, then

(3.2) (e∗(π ′), ξn−1) + (e∗(π ′), ξn) = −(e∗(π ′ ′), ξn−1)− (e∗(π ′ ′), ξn).

Both (3.1) and (3.2) contradict Proposition 3.2. We must have σu
i
∼= σ̃u

i for i =

1, . . . , l. This completes the proof of (i) when σ1 × · · · × σl ⋊ τ0 contains a square

integrable subrepresentation. If σ1 × · · · × σl ⋊ τ0 contains a square integrable sub-

quotient, then σ̃1 × · · · × σ̃l ⋊ τ0 contains a square integrable subrepresentation.

Since σ̃i = ν−e(σi )σ̃u
i , its proof follows from the subrepresentation case. Finally, if

2e(σi0
) /∈ Z for some i0, then we repeat a similar argument to complete (ii).

Remark 3.4. This type of argument for classical groups of type Bn or Cn is due to

Tadić who also interpreted Casselman’s square integrability criterion in the form of

Proposition 3.2. Ban used a similar argument for SO2n (of type Dn) in [3]. We refer

the reader to [3, 26] for more details.

The following result is based on the local-global argument which was used in the

proof of Lemma 3.6 of [23]. The result of Lemma 3.5 is stated implicitly in [24].

We note that Shahidi used spin groups to get the twisted symmetric or exterior

L-functions in [24], while we get them from general spin groups.

Lemma 3.5 Let σ be an irreducible unitary supercuspidal representation of GLk(F)

and let χ be a unitary character of GL1(F) = F×. Then

(3.3) L(s, σ × (σ ⊗ χ−1)) = L(s, σ ⊗ χ,
2∧
ρk ⊗ µ−1)L(s, σ ⊗ χ, Sym2 ρk ⊗ µ−1).
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Proof Since GSpin0(F) = GSpin1(F) = F×, we may consider σ ⊗ χ as a represen-

tation of M = GLk(F)× GSpin0(F) ⊂ GSpin2k(F) or M ′
= GLk(F)× GSpin1(F) ⊂

GSpin2k+1(F). The L-functions on the right hand side of (3.3) appear as the first L-

functions of the representation σ ⊗ χ of M and M ′, respectively. The L-function on

the left hand side of (3.3) is the L-function for the Rankin-Selberg product of σ and

σ ⊗ χ−1.

Choose a globally generic cusp form Σ =
⊗

v Σv of GLk(AF) such that Σv0
= σ

and Σv is unramified for any finite v 6= v0, and a unitary grössen-character X =⊗
v Xv of A

×
F /F× such that Xv0

= χ and Xv is unramified for any finite v 6= v0. The

equality

L(s,Σv × (Σv ⊗ X−1
v )) = L(s,Σv ⊗ Xv,

2∧
ρk ⊗ µ−1)L(s,Σv ⊗ Xv, Sym2 ρk ⊗ µ−1)

holds for any finite v 6= v0 by a direct computation and for archimedean places v by

[19, Theorem 3.1]. The global L-functions

L(s,Σ⊗ X,
2∧
ρk ⊗ µ−1), L(s,Σ⊗ X, Sym2 ρk ⊗ µ−1), and L(s,Σ× (Σ⊗ X−1))

satisfy the required functional equations [17, 22, 24]. The uniqueness of γ-factors

implies (3.3).

Using multiplicativity of γ-factors (see Theorem 1.2 or [21]) together with

Lemma 3.5, we obtain the following proposition.

Proposition 3.6 Let σ be an irreducible square integrable representation of GLk(F)

and χ a unitary character of GL1(F). Choose an irreducible unitary supercuspidal

representation σ0 of GLa(F) with k = ab such that σ is the unique subrepresenta-

tion of σ1 × · · · × σb, σi = ν(b+1)/2−iσ0, 1 ≤ i ≤ b. For the sake of simplicity, let

re
2,k =

∧2 ρk ⊗ µ−1 and rs
2,k = Sym2 ρk ⊗ µ−1. If k is even, then

L(s, σ ⊗ χ, re
2,k) =

b/2∏
i=1

L(s, σi ⊗ χ, re
2,a)L(s, ν−1/2σi ⊗ χ, rs

2,a)

L(s, σ ⊗ χ, rs
2,k) =

b/2∏
i=1

L(s, σi ⊗ χ, rs
2,a)L(s, ν−1/2σi ⊗ χ, re

2,a).

If k is odd, then

L(s, σ ⊗ χ, re
2,k) =

(b+1)/2∏
i=1

L(s, σi ⊗ χ, re
2,a)

(b−1)/2∏
i=1

L(s, ν−1/2σi ⊗ χ, rs
2,a)

L(s, σ ⊗ χ, rs
2,k) =

(b+1)/2∏
i=1

L(s, σi ⊗ χ, rs
2,a)

(b−1)/2∏
i=1

L(s, ν−1/2σi ⊗ χ, re
2,a).
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Remark 3.7. Suppose that σ⊗ τ is a generic square integrable representation of M =

GLk(F)×GSpinm(F). Let χ be the central character of τ . Since the second L-function

L(s, σ ⊗ τ, r2) depends only on σ and χ, we have

L(s, σ ⊗ τ, r2) = L(s, σ ⊗ χ, r2)

where L(s, σ ⊗ χ, r2) is the first L-function attached to the representation σ ⊗ χ of

M ′
= GLk(F)× GSpin0(F).

Corollary 3.8 Let σ ⊗ τ be an irreducible generic representation of M = GLk(F) ×
GSpinm(F). If σ ⊗ τ is square integrable modulo center, then the second L-function

L(s, σ ⊗ τ, r2) is holomorphic for Re(s) > 0.

Proof By Remark 3.7, we may replace τ by its central character χ. Then χ is unitary

by Theorem 3.3. Choose an irreducible unitary supercuspidal representation σ0 of

GLa(F) with k = ab such that σ is the unique square integrable subrepresentation of

σ1 × · · · × σb, σi = ν(b+1)/2−iσ0, i = 1, . . . , b. Assume that r2 =
∧2

ρk ⊗ µ−1 and k

is even. By Proposition 3.6,

L(s, σ ⊗ χ, re
2,k) =

b/2∏
i=1

L(s + b + 1− 2i, σ0 ⊗ χ, re
2,a)L(s + b− 2i, σ0 ⊗ χ, rs

2,a),

where re
2,k =

∧2
ρk ⊗ µ−1 and rs

2,k = Sym2 ρk ⊗ µ−1. For any i, 1 ≤ i ≤ b/2,

Re(s + b + 1− 2i) > Re(s + b− 2i) ≥ Re(s) > 0.

Now the holomorphy of the second L-function follows from [22, Proposition 7.3].

The other cases can be proved similarly.

Corollary 3.9 Let σ be a square integrable representation attached to a segment

∆ = [ν−nσ0, ν
nσ0], where σ0 is an irreducible unitary supercuspidal representation

of GLa(F), and let τ be a square integrable representation of GSpinm(F). Then L(s, σ ⊗
τ, r2) is holomorphic for Re(s) > 0 and it has a pole at s = 1− 2c, c ∈ R, if and only if

one of the following holds:

(i) L(0, σ0 ⊗ τ, r2) =∞, n + c ∈ 1/2 + Z, 0 < c ≤ n + 1/2.

(ii) L(0, σ0 ⊗ τ, r2) 6=∞, n + c ∈ Z, 0 < c ≤ n.

Proof The holomorphy of L-functions is proved in Corollary 3.8. After replacing

τ by its central character χ, it follows immediately from Lemma 3.3 and Proposi-

tion 3.6.

We are ready to prove the holomorphy of L-functions attached to a generic tem-

pered representation of M = GLk(F)×GSpinm(F). By multiplicativity of L-functions

it is enough to prove the holomorphy of L-functions for generic square integrable

representations.

Theorem 3.10 Let σ ⊗ τ be an irreducible generic representation of GLk(F) ×
GSpinm(F). If σ ⊗ τ is square integrable modulo center, then each L-function L(s, σ ⊗
τ, ri) is holomorphic for Re(s) > 0 (i = 1, 2).
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Proof Since this theorem is proved for split generalized spin groups by Asgari in [1],

we only consider quasisplit G = GSpin2n(m = 2n). According to [20], there are

three cases to be considered. In the case of 2Dn − 2 or 2Dn − 3, the holomorphy

follows immediately from multiplicativity of γ-factors and Proposition 7.3 of [22].

The holomorphy of the second L-function is proved in Corollary 3.8.

Let L(s, σ ⊗ τ, r1) be the first L-function attached to a square integrable represen-

tation σ ⊗ τ of M = GLk(F) × GSpin2n(F) in the case of 2Dn − 1. After replacing

τ by its contragredient, we denote the given L-function by L(s, σ × τ). Choose an

irreducible unitary supercuspidal representation σ0 of GLa(F) with k = ab such that

σ is the unique subrepresentation of σ1×· · ·×σb where σi = ν(b+1)/2−iσ0, 1 ≤ i ≤ b

(ν(g) = | det(g)|F). Assume that τ is a subrepresentation of ρ1× · · · × ρc ⋊ τ0 where

ρu
j , 1 ≤ j ≤ c, are supercuspidal representations of GLn j

(F) and τ0 is a unitary super-

cuspidal representation of GSpin2n ′(F). We write ρ j = νe jρu
j , e j ∈ R, 1 ≤ j ≤ c. By

Proposition 3.3, we have e j ∈ 1
2

Z and ρu
j
∼= ρ̃u

j for 1 ≤ j ≤ c. Set si = s + b+1
2
− i, 1 ≤

i ≤ b. For the simplicity of notation, we write γ(s, π) for γ(s, π, ψF). By multiplica-

tivity of γ-factors (Theorem 1.2 or [21]),

γ(s, σ × τ) =

b∏
i=1

γ(s, σi × τ) =

b∏
i=1

γ(si, σ0 × τ)

=

b∏
i=1

[
γ(si, σ0 × τ0)

c∏
j=1

γ(si + e j , σ0 × ρu
j )γ(si − e j , σ0 × ρ̃u

j )
]
.

The L-functions in the product

c∏
j=1

L(si + e j, σ0 × ρu
j )L(si − e j , σ0 × ρu

j )

are non-trivial only if ρu
j
∼= νd j σ̃0 for some d j ∈

√
−1 · R. Since we are interested

in the holomorphy of L-functions, we may assume that ρu
j = σ0 after shifting s by

d j ∈
√
−1 · R. From this observation it suffices to prove that

b∏
i=1

[
γ(si , σ0 × τ0)

c∏
j=1

γ(si + e j, σ0 × σ0)γ(si − e j , σ0 × σ0)
]

is non-zero for Re(s) > 0. First, we prove that

(3.4)
b∏

i=1

γ(si, σ0 × τ0) 6= 0 for Re(s) > 0 (si = s + (b + 1)/2− i).

We recall

(3.5) L(s, π̃, ri) = L(−s, π, ri)

for any unitary supercuspidal representation π (see the proof of [21, Theorem 5.5]

for details). The product
∏b

i=1 γ(si , σ0 × τ0) of γ-functions is equal to

b∏

i=1

L(s + (b + 1)/2− i − 1, σ0 × τ0)

L(s + (b + 1)/2− i, σ0 × τ0)
=

L(s− (b + 1)/2, σ0 × τ0)

L(s + (b− 1)/2, σ0 × τ0)
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up to a monomial in q−s by (3.5). Now (3.4) follows from [22, Proposition 7.3].

To continue, we use the technique of Casselman and Shahidi in [8, Section 3].

We define a σ0-chain to be a sequence of representations νe1σ0, . . . , ν
elσ0 such that

e j+1 − e j = 1, 1 ≤ j ≤ l − 1. Since σ0 is fixed, we also write {e j}l
j=1 for {νe jσ0}l

j=1.

For a σ0-chain {e j}l
j=1, we define

(3.6) γ(s; e1, . . . , el) =

l∏
j=1

γ(s + e j , σ0 × σ0)γ(s− e j , σ0 × σ0).

In terms of L-functions, by (3.5), (3.6) reads

γ(s; e1, . . . , el) =

l∏

j=1

L(s + e j − 1, σ0 × σ0)L(s− e j − 1, σ0 × σ0)

L(s + e j, σ0 × σ0)L(s− e j , σ0 × σ0)

=
L(s + e1 − 1, σ0 × σ0)L(s− el − 1, σ0 × σ0)

L(s− e1, σ0 × σ0)L(s + el, σ0 × σ0)
.

Now we define several concepts related to σ0-chains.

Definition 3.1 Two σ0-chains are equivalent if they have the same γ-functions. A

nonnegative σ0-chain {e j}l
j=1 is called regular if either e1 = 0, 1/2 or e1 = 1 and

L(s, σ0×σ0)−1 divides L(1− s, σ0× τ0)−1. A pair of σ0-chains {e j}l
j=1 and {e j ′}l ′

j ′=1

with e1 6= 1/2, e ′1 6= 1/2 is called a singular pair if e1 + e ′1 = 1.

The meaning of a σ0-chain being completed to a larger σ0-chain is understood in

the obvious manner. Then every σ0 chain is γ-equivalent to a σ0-chain that can be

completed to a chain which is γ-equivalent to either a regular chain, a pair of regular

chains, or a singular pair [8, Proposition 4.16]. The same method used in the proofs

of Lemmas 18, 19, and 20 of [8, Theorem 4.1] can be adapted to prove the following

lemma. (The proofs in [8] do not use any special properties of a classical group G

except the property that maximal Levi subgroups are of the form GLk × G′, which is

true for GSpin2n.)

Lemma 3.11 We keep the notation si = s + (b + 1)/2− i, 1 ≤ i ≤ b.

(a) Let {e j}l
j=1 be a regular chain with e1 = 0 or 1/2. Then

b∏
i=1

γ(si ; e1, . . . , el) 6= 0 for Re(s) > 0.

(b) Let {e j}l
j=1 and {e ′j ′}l ′

j ′=1 be a singular pair. Then

b∏
i=1

γ(si ; e1, . . . , el)γ(si ; e ′1, . . . , e
′
l ′ ) 6= 0 for Re(s) > 0.
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(c) Let ∪h
k=1{ek

j}lk
j=1 be the union of σ0-chains with ek

1 = 1, 1 ≤ k ≤ h. Then

b∏
i=1

γ(si, σ0 × τ0)
b∏

i=1

h∏
k=1

γ(si ; ek
1, . . . , e

k
lk

) 6= 0 for Re(s) > 0.

Now we apply Lemma 3.11 to each σ0-chain appearing in ρ1 × · · · × ρc to prove

γ(s, σ × τ) 6= 0 for Re(s) > 0.

4 A Square Integrability Criterion in Terms of γ-Factors

We now generalize a result on classical groups proved by Muić to our case (Theo-

rem 4.4). It is not only important for the proof of the standard module conjecture but

also interesting on its own. To begin with, we state a well-known result concerning

poles of Rankin-Selberg L-functions attached to a pair of representations of GLn. The

proof follows immediately from multiplicativity of L-functions and the knowledge of

L-functions of unitary supercuspidal representations. In [14] Muić reformulated the

result as follows.

Lemma 4.1 Let ∆ = [ν−nσ0, ν
nσ0] and ∆

′
= [ν−n ′

σ ′
0, ν

n ′

σ ′
0] be segments where

σ0, σ
′
0 are irreducible unitary supercuspidal representations. Denote by σ = σ(∆) and

σ ′
= σ ′(∆ ′) the square integrable representations attached to the segments ∆ and ∆

′,

respectively (see [29] for the definition of segments and the related theory of representa-

tions of general linear groups). Let c be a nonnegative real number. Then L(s, ρ× ρ ′) is

holomorphic for Re(s) > 0, and it has a pole at s = −c if and only if

σ ′
0
∼= σ̃0, n′ + c ≥ n ≥ |c − n′| and n + n′ − c ∈ Z.

The method used in the proof of [14, Theorem 5.1] can be employed to prove the

following lemma.

Lemma 4.2 Let τ be a generic square integrable representation of GSpinm(F), and let

σ be an irreducible square integrable representation of GLk(F). Assume that L(s, σ× τ)

has a pole at s = 0. Then, for any square integrable representation σ ′ of GLn(F) and for

any s0 ∈ R,

ords0
L(s, σ ′ × τ) ≥ ords0

L(s, σ ′ × σ̃)

where ords0
denotes the order of the pole at s0.

Remark 4.3. Let σ ⊗ τ be an irreducible ψF-generic representation of GLk(F) ×
GSpinm(F). Then we define L(s, σ ⊗ τ, r1) via the Langlands–Shahidi method. On

the other hand, we have L(s, σ × τ) defined as the Rankin–Selberg L-function at-

tached to (σ, τ). Note that L(s, σ × τ) = L(s, σ ⊗ τ̃ , r1). There is no confusion if we

only consider the first L-functions as in the proof of Theorem 3.10, but it may cause

some notational confusion when we consider first and second L-functions at the same

time. Since we want to keep Rankin–Selberg L-function notation for L(s, σ ⊗ τ, r1),

we replace τ by its contragredient. We use the same convention for γ-factors, i.e.,

γ(s, σ × τ) = γ(s, σ ⊗ τ̃ , r1). For example, the local coefficient reads

C(s, σ ⊗ τ̃ ,w0, ψF) = γ(s, σ × τ, ψF)γ(s, σ ⊗ τ̃ , r2, ψF).
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We sometimes drop ψF from γ-factors when their dependence on the generic char-

acter ψF is clearly understood.

Let τ be an irreducible ψF-generic representation of G(F), where G is either

GSpin2n+1 or GSpin2n. There exists a standard parabolic subgroup P = MN with

M ∼= GLn1
× · · · × GLnl

× G0,

where G0 is of the same type as G with a smaller rank, and aψF-generic supercuspidal

representation σ1 ⊗ · · · ⊗ σl ⊗ τ0 of M(F) such that τ is a subquotient of σ1 × · · · ×
σl ⋊ τ0. Write σi = νe(σi )σu

i where σu
i is unitarizable and e(σi) ∈ R, 1,≤ i ≤ l.

Theorem 4.4 An irreducible ψF-generic representation τ is square integrable modulo

center if and only if the central character of τ is unitary and τ satisfies the following two

conditions:

(i) σu
i
∼= σ̃u

i and 2e(σi) ∈ Z.

(ii) The function γ(s, σ⊗τ, r1, ψF)γ(2s, σ⊗τ, r2, ψF) is holomorphic along the imag-

inary axis Re(s) = 0 and it has at most a simple zero at s = 0 for any irreducible

square integrable representation σ of GL∗.

Proof Assume that τ is square integrable modulo center. Then the central character

of τ is unitary and (i) is true by Theorem 3.3. By Theorem 1.4, we have

µ(s, σ ⊗ τ) = |γ(s, σ ⊗ τ, r1, ψF)γ(2s, σ ⊗ τ, r2, ψF)|2, Re(s) = 0,

for any ψF-generic representation σ ⊗ τ . Since σ ⊗ τ is square integrable, we may

apply Theorem 1.3 to obtain (ii).

For the converse, assume that the central character of τ is unitary and τ satisfies (i)

and (ii). If τ is not square integrable, then there exists a standard parabolic subgroup

P = MN with M ∼= GLn1
× · · · × GLnk

× G1, where G1 is of the same type as G

with a smaller rank, and a representation σ1 ⊗ · · · ⊗ σk ⊗ τ1 of M(F) such that τ
is a unique irreducible subquotient of σ1 × · · · × σk ⋊ τ1, where σi ’s are essentially

square integrable representations of GLni
(F), 1 ≤ i ≤ k, and τ1 is a generic tempered

representation of G1(F) (the Langlands quotient theorem, [6, Theorem 2.11]). Each

essentially square integrable representation σi can be written as the representation

attached to a segment ∆i = [ν−mi +eiσi,0, ν
mi +eiσi,0] where 2mi ∈ Z,mi ≥ 0, and σi,0

is a unitary supercuspidal representation for i = 1, . . . , k. The Langlands data imply

that

(4.1) e1 ≥ · · · ≥ ek > 0

unless G = GSpin2n splits and M ∼= GLn1
× · · · × GLnk−1

× GL1 × GSpin0 (nk = 1).

In that case,

(4.2) e1 ≥ · · · ≥ ek−1 > |ek|.

Assumption (i) implies

σu
i
∼= σ̃u

i and 2ei ∈ Z, 1 ≤ i ≤ k.
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Since τ is generic, by Proposition 5.4 of [8], we have

L(1, σ̃i × σ j )
−1 6= 0, L(1, σ̃i × σ̃ j)

−1 6= 0, 1 ≤ i, j ≤ k,

L(1, σ̃i × τ1)−1 6= 0, L(1, σ̃i ⊗ τ̃1, r2)−1 6= 0, 1 ≤ i ≤ k.

(4.3)

To handle (4.2), we need the following lemma.

Lemma 4.5 If G = GSpin2n splits over F and

M ∼= GLn1
× · · · × GLnk−1

× GL1 × GSpin0 (nk = 1),

then ek 6= 0.

Proof Suppose ek = 0. Then σk is a self-dual unitary character of GL1(F) = F×.

Since G1 = GSpin0 = GL1, τ1 is just a unitary character of GL1(F). Note that

γ(2s, σk ⊗ τ, r2) is trivial. By multiplicativity of γ-factors (Theorem 1.2 or [21]),

we have

γ(s, σk × τ̃ ) = γ(s, σk × τ̃1)γ(s, σk × σk)2
k−1∏
i=1

γ(s, σk × σi)γ(s, σk × σ̃i).

It follows from (4.3) that γ(0, σk × τ̃1) 6= ∞ and γ(0, σk × σ̃i ) 6= ∞ for all i =

1, . . . , k− 1. Since γ(0, σk×σi ) 6=∞, 1 ≤ i ≤ k− 1, and γ(0, σk× σk) = 0 by (4.3)

and Lemma 4.1, γ(s, σk × τ̃ ) has a double zero. It contradicts assumption (ii) (with

σ = σk).

If ek < 0, then we may apply an outer automorphism s̃ of GSpin2n (see Section 2)

so that we can assume ek > 0. From now on, we shall assume that the Langlands data

is of the form (4.1).

Now we consider assumption (ii). Let σ be an arbitrary square integrable repre-

sentation of GL∗ such that σ ∼= σ̃, and let ∆ = [ν−mσ0, ν
mσ0] be the corresponding

segment of σ where σ0 is a self-dual unitary supercuspidal representation. By multi-

plicativity of γ-factors,

γ(s, σ × τ̃) = γ(s, σ × τ̃1)
k∏

i=1

γ(s, σ × σi)γ(s, σ × σ̃i).

Since the L-functions attached to tempered representations are holomorphic for

Re(s) > 0 by Theorem 3.10, assumption (ii) implies that

L(s, σ × τ̃1)L(2s, σ ⊗ τ1, r2)

k∏

i=1

L(s− ei, σ × σ̃u
i )

L(1− s− ei , σ × σ̃u
i )

is nonzero at s = 0 and it has at most simple pole at s = 0 (note that L(2s, σ⊗τ, r2) =

L(2s, σ ⊗ τ1, r2) follows from Remark 3.7). Let

H(s, σ) =

k∏

i=1

L(s− ei , σ × σ̃u
i )

L(1− s− ei , σ × σ̃u
i )
.
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By multiplicativity of L-functions, we have

(4.4) H(s, σ) =

k∏

i=1

min(2m+1,2mi +1)∏

j=1

L(s− ei + m + mi − j, σ0 × σ0,i)

L(1− s− ei + m + mi − j, σ0 × σ0,i)

for any square integrable representation σ = σ(∆),∆ = [ν−mσ0, ν
mσ0]. The repre-

sentation τ1 is a priori tempered but we shall show that it is square integrable.

Lemma 4.6 τ1 is square integrable.

Proof Suppose τ1 is a subquotient of ρ1 × · · · × ρl ⋊ τ2 where ρ1 ⊗ · · · ⊗ ρl ⊗ τ2

is a square integrable representation. By assumption (i) of Theorem 3.3, the ρi ’s are

self-dual. By multiplicativity of L-functions,

L(s, ρ1 × τ̃1) = L(s, ρ1 × τ̃2)
l∏

a=1

L(s, ρ1 × ρa)L(s, ρ1 × ρ̃a).

Since ρ1 is self-dual by assumption (i), L(s, ρ1× τ̃1) has at least a double pole at s = 0.

For each i, 1 ≤ i ≤ k, we apply multiplicativity of L-functions,

L(s− ei , σ̃u
i × τ1) = L(s− ei, σ̃u

i × τ2)
l∏

a=1

L(s− ei , σ̃u
i × ρa)L(s− ei , σ̃u

i × ρ̃a).

Since L(1− ei , σ̃u
i × τ1)−1

= L(1, σ̃i × τ1)−1 6= 0 by (4.3), we must have

L(1, ρ1 × σ̃i )
−1

= L(1− ei , ρ1 × σ̃u
i )−1 6= 0 for all i, 1 ≤ i ≤ k.

It follows that H(0, ρ1) 6= 0. Now the function L(s, ρ1 × τ̃1)L(s, ρ1 ⊗ τ1, r2)H(s, ρ1)

has at least a double pole at s = 0, which contradicts assumption (ii).

Now we fix d ∈ {0, 1/2} and an irreducible self-dual supercuspidal representation

σ0 of GL∗. Then consider a set S such that

S =
{

i ∈ {1, . . . , k} : σi,0
∼= σ0 and mi + ei ∈ d + Z

}
.

(Recall that τ is a subquotient of σ1 × · · · × σk ⋊ τ1 and σi = σi(∆i) where ∆i =

[ν−mi +eiσi,0, ν
mi +eiσi,0].) Note that the set S depends only on d and σ0. We may

assume S is not empty by the assumption (i). Choose i0 such that ei0
+ mi0

is maximal

among ei + mi, i ∈ S. Let σ be the square integrable representation attached to the

segment ∆ = [ν−ei0
−mi0σ0, ν

ei0
+mi0σ0]. With this choice of σ, it is easy to see that

H(s, σ) has a pole at s = 0. If there is i 6= i0 such that ei0
+ mi0

= ei + mi , then H(s, σ)

will have at least a double pole at s = 0, which contradicts assumption (ii). It means

that i0 is unique. Since L(s, σ × τ̃1)L(2s, σ ⊗ τ1, r2)H(s, σ) can have at most a simple

pole at s = 0 by assumption (ii), it follows that L(2s, σ⊗ τ1, r2) cannot have a pole at

s = 0. This fact, in turn, implies the following (by Corollary 3.9):

(4.5)

{
L(0, σ0 ⊗ τ1, r2) 6=∞ if d = 0, or

L(0, σ0 ⊗ τ1, r2) =∞ if d = 1/2.
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Finally, if ei − mi < 1 for some i ∈ S, then Corollary 3.9 and (4.5) imply L(1 −
2ei, σ

u
i ⊗ τ1, r2) =∞. It follows from [22, Proposition 7.8] that

L(1− 2ei , σ̃u
i ⊗ τ̃1, r2) = L(1, σ̃i ⊗ τ̃1, r2) =∞

which is against (4.3). We must have ei −mi ≥ 1 for all i ∈ S.

Let m = ei0
− mi0

− 1. Then m is nonnegative by what we have observed

from above. We define another square integrable representation σ attached to

∆ = [ν−mσ0, ν
mσ0] with m we just defined. Using the fact that ∆i and ∆i0

is not

linked for any i 6= i0, we deduce from (4.4) that H(0, σ) = 0. Since L(2s, σ ⊗ τ1, r2)

cannot have a pole at s = 0 by Corollary 3.9 and (4.5), it follows from assumption

(ii) that L(s, σ× τ̃1) has a pole at s = 0. Note that L(1− ei0
, σu

i0
× σ) =∞ by Lemma

4.1. Now apply Lemma 4.2: ords0
L(s, σ ′ × τ̃1) ≥ ords0

L(s, σ ′ × σ̃) > 0 with σ ′
= σu

i0

and s0 = 1 − ei0
. It follows that L(1 − ei0

, σu
i0
× τ̃1) = ∞. By [22, Proposition 7.8],

we have L(1− ei0
, σ̃u

i0
× τ1) = L(1, σ̃i0

× τ1) =∞, which contradicts (4.3).

5 The Standard Module Conjecture and its Application to
Functoriality

In this section we prove the standard module conjecture for GSpinm. First we give

the definition of standard modules in the general setting. Let G be a connected,

reductive, quasisplit algebraic group, not necessarily a general spin group, defined

over F. Suppose π is an irreducible tempered representation of M(F) where M is a

Levi subgroup of a standard parabolic subgroup P = MN of G. A standard module

is an induced representation

I(ν, π) = IndG
P (q〈ν,HM (·)〉 ⊗ π) = IndG

P (πν), πν = q〈ν,HM (·)〉 ⊗ π

with ν in the positive Weyl chamber of the complex dual of the Lie algebra of the split

component A of M. This induced representation has the Langlands quotient J(ν, π).

Now we state the standard module conjecture.

Conjecture 5.1 Let π be a generic tempered representation of M(F). A standard

module I(ν, π) is irreducible if and only if the Langlands quotient J(ν, π) is generic.

From now on, we assume G is a general spin group. We start with a consequence

of Theorem 4.4.

Proposition 5.2 Let σ1 ⊗ · · · ⊗ σl ⊗ τ0 be an irreducible ψF-generic supercuspidal

representation of M(F) where M ∼= GLn1
× · · · ×GLnl

×GSpinm0
. If σ1× · · · × σl⋊τ0

contains a square integrable representation, then the unique ψF-generic irreducible sub-

quotient is square integrable.

Proof There is a unique ψF-generic subquotient of σ1 × · · · × σl ⋊ τ0 by Rodier’s

Theorem [15]. Denote by τ the unique ψF-generic subquotient. Let τ ′ be a square

integrable subquotient of σ1 × · · · × σl ⋊ τ0. We shall use Theorem 4.4 to prove

that τ is square integrable. The necessary condition (i) of Theorem 4.4 is satisfied
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by Theorem 3.3 applied to the assumption of this proposition that τ ′ is a square

integrable subquotient of σ1×· · ·×σl ⋊τ0. To check another necessary condition (ii)

of Theorem 4.4, let σ be any square integrable representation of GL∗. Multiplicativity

of γ-factors (Theorem 1.2) implies that

γ(s, σ ⊗ τ, r1) = γ(s, σ ⊗ τ0, r1)
l∏

i=1

γ(s, σ ⊗ σ̃i , r1)γ(s, σ ⊗ σi , r1).

On the other hand, by multiplicativity of Plancherel measures [25], we have

µ(s, σ ⊗ τ ′) = µ(s, σ ⊗ τ0)
l∏

i=1

µ(s, σ ⊗ σi)µ(s, σ ⊗ σ̃i).

By [18, Theorem 6.1],

(5.1) µ(s, σ ⊗ σi) = γ(s, σ ⊗ σi)γ(−s, σ̃ ⊗ σ̃i), i = 1, . . . , l.

Using (5.1), Remark 3.7, and Theorem 1.4, we obtain the following equality

|γ(s, σ ⊗ τ, ψF)γ(2s, σ ⊗ τ, r2, ψF)|2 = µ(s, σ ⊗ τ ′).

Since τ ′ is square integrable modulo center, µ(s, σ⊗τ ′) is holomorphic and can have

at most double zero at s = 0 by Theorem 1.3. This completes the proof.

The following corollary of Theorem 5.1 concerns tempered subquotients.

Corollary 5.3 Let σ1 ⊗ · · · ⊗ σl ⊗ τ0 be an irreducible ψF-generic supercuspidal

representation of M(F) where M ∼= GLn1
× · · ·×GLnl

×GSpinm0
. If σ1× · · ·×σl ⋊ τ0

contains an irreducible tempered representation, then the unique ψF-generic irreducible

subquotient is tempered.

Proof Let τ be a tempered subquotient of σ1 × · · · × σl ⋊ τ0. Since τ is tempered,

τ can be realized as an irreducible direct summand of ρ1 × · · · × ρk ⋊ τ1 where

ρ1 ⊗ · · · ⊗ ρk ⊗ τ1 is a square integrable representation of M1(F). We may assume

that τ1 is an irreducible subquotient of σl ′ × · · · × σl ⋊ τ0 for some l ′. Let τ ′ be

the unique ψF-generic irreducible subquotient of σl ′ × · · · × σl ⋊ τ0. By Proposition

5.2, τ ′ is square integrable. Any irreducible subquotient of ρ1 × · · · × ρk ⋊ τ ′ is a

subquotient of σ1 × · · · × σl ⋊ τ0, in particular, the unique ψF-generic subquotient

of ρ1× · · ·× ρk ⋊ τ ′ is a subquotient of σ1× · · ·× σl ⋊ τ0. It follows that the unique

ψF-generic irreducible subquotient of σ1 × · · · × σl ⋊ τ is tempered.

Now we provide a proof of the standard module conjecture for GSpinm.

Theorem 5.4 Suppose ρ1, . . . , ρk are essentially tempered representations of GLni
(F)

with e(ρ1) > · · · > e(ρk) > 0, where ρi = νe(ρi )ρu
i , e(ρi) ∈ R, and τ is a ψF-generic

tempered representation of GSpinm(F). The standard module ρ1× · · ·× ρk ⋊ τ reduces

if and only if the Langlands quotient J(ρ1 ⊗ · · · ⊗ ρk ⊗ τ) is not ψF-generic.
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Proof Denote by π the Langlands quotient J(ρ1⊗ · · ·⊗ ρk⊗ τ). Let T be the (fixed)

torus of G, and let Z the center of G. Define Ts be the quotient of T by the connected

component of Z. We associate to π its real parameter

νπ = (e(ρ1), . . . , e(ρ1)︸ ︷︷ ︸
n1 times

, . . . , e(ρk), . . . , e(ρk)︸ ︷︷ ︸
nk times

, 0, . . . , 0︸ ︷︷ ︸
m times

) ∈ X(Ts)F ⊗Z R.

We shall use the partial ordering on X(Ts) ⊗Z R defined by Borel and Wallach [6].

Suppose ρ1 × · · · × ρk ⋊ τ reduces. We need to show that π canot be ψF-generic. Let

π ′ be an irreducible subquotient of ρ1 × · · · × ρk ⋊ τ which is not isomorphic to π.

Then π ′ can be written as the unique Langlands quotient J(ρ ′1⊗· · ·⊗ρ ′k ′⊗τ ′), where

ρ ′1, . . . , ρ
′
k ′ are essentially tempered representations of GLn ′

i
(F), with e(ρ ′1) > · · · >

e(ρ ′k ′) > 0, and τ ′ is a tempered representation of GSpinm ′(F). By [6, Lemma 2.13],

we have νπ ′ < νπ. We observe that π and π ′ have the same supercuspidal support.

To be precise, suppose that ρ ′1 × · · · × ρ ′k ′ is a subquotient of σ1 × · · · × σl ′ where

σ1, . . . , σl ′ are supercuspidal representations of GL∗(F), and τ ′ is a subquotient of

σl ′+1 × · · · × σl ⋊ τ0 where σl ′+1, . . . , σl and τ0 are supercuspidal representations of

GL∗(F) and GSpinm0
(F), respectively. Then

σ1 × · · · × σl ′ × σl ′+1 × · · · × σl ⋊ τ0

contains all the irreducible subquotients of ρ1× · · ·× ρk ⋊ τ and ρ ′1× · · ·× ρ ′k ′ ⋊ τ ′.

Note that τ0 is ψF-generic. Let τ ′ ′ be the unique ψF-generic irreducible subquotient

of σl ′+1 × · · · × σl ⋊ τ0. Then τ ′ ′ is tempered by Corollary 5.3. Let π ′ ′ be the

Langlands quotient of ρ ′1 × · · · × ρ ′k ′ ⋊ τ ′ ′. Now we have νπ ′ ′ = νπ ′ < νπ. It

follows that π cannot be an irreducible subquotient of ρ ′1 × · · · × ρ ′k ′ ⋊ τ ′ ′ by [6,

Lemma 2.13]. On the other hand, the unique irreducible ψF-generic subquotient of

σ1 × · · · × σl ′ × σl ′+1 × · · · × σl ⋊ σ is a subquotient of ρ ′1 × · · · × ρ ′k ′ ⋊ τ ′ ′. We

conclude that π cannot be ψF-generic.

Remark 5.5. In the statement of Theorem 5.4, e(ρ1) > · · · > e(ρk) > 0 is not a

restrictive assumption. There are two types of Langlands situation, either e(ρ1) >
· · · > e(ρk) > 0 or e(ρ1) > · · · > |e(ρk)|. The latter can happen if G = GSpin2n

splits over F and

M ∼= GLn1
× · · · × GLnk−1

× GL1 × GSpin0 (nk = 1).

As in the proof of Theorem 4.4, we may apply an outer automorphism of GSpin2n

if e(ρk) is negative. So we may assume e(ρ1) > · · · > e(ρk) > 0 without loss of

generality.

Theorem 5.4 also implies the standard module conjecture for spin groups. This

fact follows from a more general argument. More precisely, we have the following

proposition by Asgari and Shahidi [2].

Proposition 5.6 Let G and G′ be reductive quasisplit algebraic groups such that

G ⊂ G′. Assume that G and G′ have the same derived group. Let P ′
= M ′N be a

maximal standard parabolic subgroup of G′ and P = MN the corresponding one of
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G with M = M ′ ∩ G. Suppose π ′ is an irreducible quasi-tempered representation of

M ′(F). Let π be the restriction of π ′ to M(F). Denote by πi the irreducible components

of π =
⊕
πi . Then IndG

P ′(π ′) is standard and irreducible if and only if each IndG
P (πi) is

standard and irreducible.

Finally we consider an application of the standard module conjecture. Let G be

a reductive quasisplit algebraic group, not necessarily a general spin group. Suppose

that P = MN is a maximal parabolic subgroup of G. Let π =
⊗

v πv be a generic cus-

pidal representation of M(AF). Denote by A(s, πv,w0) the local intertwining operator

for I(s, πv). The normalized intertwining operator is defined by

N(s, πv,w0) =

m∏

i=1

L(1 + is, πv, ri)ǫ(is, πv, ri, ψ)

L(is, πv, ri)
A(s, πv,w0).

The following conjecture concerning holomorphy of normalized intertwining oper-

ators has a profound implication in Langlands functorial lifting problems.

Conjecture 5.7 N(s, πv,w0) is holomorphic and non-vanishing for Re(s) ≥ 1/2.

This conjecture is true, by the result of [11,12], if the standard module conjecture

is proved and if L-functions attached to tempered representations are holomorphic

for Re(s) > 0 (Conjecture 1.1). Since the holomorphy of L-functions and the stan-

dard module conjecture are proved for general spin groups in this paper, Conjecture

5.7 is a theorem for general spin groups. This fact is a necessary ingredient in the

proof of functoriality of a generic transfer from general spin groups to general linear

groups [2].
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