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A Truncated Integral of the Poisson
Summation Formula
Jason Levy

Abstract. Let G be a reductive algebraic group defined over Q , with anisotropic centre. Given a rational
action of G on a finite-dimensional vector space V , we analyze the truncated integral of the theta series
corresponding to a Schwartz-Bruhat function on V (A). The Poisson summation formula then yields
an identity of distributions on V (A). The truncation used is due to Arthur.

0 Introduction

This paper is an extension of the previous paper [8]. In these two papers we extend
some of the results about integrating the Poisson summation formula in Weil’s fa-
mous paper [13], using methods developed by Arthur to deal with infinities in the
trace formula. We will use many results from the paper [8], and that paper provides
good preparation for the complicated geometric constructions in Section 3 and for
the analysis in Section 4.

Suppose that V is a finite-dimensional vector space and that f is a Schwartz func-
tion on V (A), the rational adelic points of V . The Poisson summation formula tells
us that ∑

γ∈V (Q)

f (γ) =
∑

γ̂∈V̂ (Q)

f̂ (γ̂),

where V̂ is the vector space dual to V and f̂ is the Fourier transform of f . Now
suppose that a reductive algebraic group G defined over Q acts on V via a rational
representation π : G → GL(V ). The Poisson summation formula can now be used
to show that for every element g of G(A),

∑
γ∈V (Q)

f
(
π(g−1)γ

)
= | detπ(g)|

∑
γ̂∈V̂ (Q)

f̂
(
π̃(g−1)γ̂

)
,(0.1)

with π̃ : G→ GL(V̂ ) the representation of G contragredient to π. Define the function
φ f ,π on G(A) by

φ f ,π(g) =
∑

γ∈V (Q)

f
(
π(g−1)γ

)
;

then the equality (0.1) gives a relation between the two functions φ f ,π and φ f̂ ,π̃ on
G(A). Notice that for any f and π, the function φ f ,π is left G(Q)-invariant.
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Weil [13] noticed that when the dimension of the representation is small com-
pared to the rank of the group, the function φ f ,π is integrable. When this occurs, we
may integrate the function φ f ,π over G(Q) \ G(A) and produce an equality of two
G(A)-invariant distributions through the integration of the equality (0.1). One then
easily obtains (see [8]) an equality of sums of orbital integrals on V and on V̂ . This
equality is the basis of the Siegel-Weil formula. For general representations, how-
ever, the function φ f ,π will not be integrable over G(Q) \ G(A) and a more refined
approach must be used. We must somehow regularize the functions φ f ,π and φ f̂ ,π̃
before integrating.

The regularization that we use is a truncation invented by Arthur, and described
in [8]. The important properties of this truncation are reviewed in the next section.
The problem is then to determine the behaviour of the integral of the truncation of
φ f ,π as a function of the truncation parameter T. In the previous paper we dealt with
reductive algebraic groups with rational rank at most two and with anisotropic cen-
tre. In this paper we deal with arbitrary reductive algebraic groups with anisotropic
centre. Given a general reductive algebraic group G, the algebraic subgroup G1 de-
fined as the kernel of all rational characters of G is reductive with anisotropic centre,
and G is the product of G1 and the maximal split torus Z in the centre of G. The
action of Z can be introduced by making a Shintani zeta function, but we will not
discuss this further in this paper. See [14] for more about Shintani zeta functions.

We prove that the positive Weyl chamber is a finite union of sub-cones depending
only of π satisfying the following property: within each sub-cone, the integral of the
truncation of φ f ,π with respect to the point T asymptotically approaches the value of
a finite sum of products of polynomials in T and exponentials of linear functionals
of T. These functions do depend on the sub-cone.

Given a sub-cone C, write JC( f , π) for the constant term of the analytic function
of the previous paragraph (see Section 4 for our definition of constant term). Then
the basic form of the truncated Poisson summation formula is the statement

JC( f , π) = JC( f̂ , π̃).

We can do better than this, as in the Selberg-Arthur trace formula, by breaking up
both sides as sums over certain equivalence classes in the respective vector spaces; this
is the way we present the material.

Notice that we obtain several truncated formulas this way. Because our proof does
not explicitly produce the numbers JC( f , π), it is not clear whether they are actually
distinct for different sub-cones C.

The truncated Poisson summation formula developed here is potentially useful
both for producing a “regularized” Siegel-Weil theorem, extending results from [13]
(see [7] for a different approach to this), and for new results about Shintani zeta
functions.

The results in this paper were obtained during postdoctoral fellowships at the In-
stitute for Advanced Study and Oklahoma State University. The author also wishes
to thank IHES, MSRI, and the University of Toronto, for their hospitality during the
preparation of this paper. The author thanks J. Bernstein, M. McConnell and D. Witte
for helpful conversations.
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1 Preliminaries

Let G be a reductive algebraic group over Q with anisotropic centre. Let P0 be a min-
imal parabolic subgroup of G, and M a Levi component and N the unipotent radical
of P0, all defined over Q . These will be fixed throughout the paper. Write A for the
maximal Q-split torus of G contained in M and a for the corresponding real vec-
tor space Hom

(
X(A)Q ,R

)
. We will use the phrase “parabolic subgroup” to denote a

standard parabolic subgroup, that is, a parabolic subgroup P of G defined over Q and
containing P0. Given a parabolic subgroup P we can define NP, its unipotent radical,
MP the unique Levi component of P containing M, and AP, the split component of
the centre of MP. We will use standard notation (see [8] or [1]) for roots, weights,
and so forth. In particular, a+ denotes the points in a where all positive roots are
positive.

Fix a maximal compact subgroup K =
∏

v Kv of G(A) that is admissible relative to
M, as in [2]. With this choice we can define as in [1] a continuous map H : G(A)→ a

invariant under right multiplication by K. Given a parabolic subgroup P ⊆ G, write
HP for the projection of H to aP. Then HP is left P(Q)-invariant, and so can be seen
as a map from P(Q) \ G(A) to aP.

Given P ⊆ Q parabolic subgroups of G and X a point or subset of a [resp. a∗],
write XQ

P for the projection of X to the subspace a
Q
P of a [resp. a∗

Q
P of a∗], and exp(XQ

P )
for the pre-image of XQ

P in AQ
P (R)0 under the map HP. To simplify notation, we will

remove all occurrences of P0 as a subscript; for example the Levi component of P0 is
M = MP0 . Notice that since the centre of G is anisotropic, aG = 0 and so we can also
eliminate all occurrences of G as a superscript. When it will cause no confusion we
may also simplify expressions with subscripts and superscripts such as P1 as follows:
we will write a2

1, for example, for a
P2
P1

where P1 ⊆ P2 are parabolic subgroups.
In the previous paper [8] we proved a result relating certain functions on quotients

of G(A) and certain functions on a. This result is the key geometric principle that will
allow us to produce the truncated Poisson summation formula.

We first recall the functions involved. We fix throughout this paper a point T1 in
−a+ and a compact subset ω of N(A)M(A)1 such that

G(A) = P(Q)
{

pak | p ∈ ω, a ∈ A(R)0, k ∈ K, α
(

H(a)− T1

)
> 0 for all α ∈ ∆P

}
for every parabolic subgroup P ⊆ G. Then for a given T ∈ a+, write FP(·,T) for the
characteristic function of the relatively compact set of all points g ∈ P(Q) \ G(A)
with a representative in the set

{
pak | p ∈ ω, a ∈ A(R)0, k ∈ K, α

(
H(a)− T1

)
> 0 for all α ∈ ∆P,

	
(

H(a)− T
)
≤ 0 for all 	 ∈ ∆̂P

}
.

Given T ∈ a+, we also define Γ(·,T) by

Γ(X,T) =
∑

R:P⊆R⊆Q

(−1)dim(AR/AQ)τR
P (X)τ̂Q

R (T − X), X ∈ a,
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and for parabolic subgroups P ⊆ Q we define ΓQ
P (·,T) by ΓQ

P (X,T) = Γ(XQ
P ,T

Q
P ),

X ∈ a. Lemma 3.4 of [8] states that the function X 	→ ΓQ
P (X,T), X ∈ a

Q
P , is the

characteristic function of a convex set whose closure is the convex hull of the points
TR, P ⊆ R ⊆ Q.

A relation between the functions F and Γ is given in Corollary 3.3 of [8] and runs
as follows: Let T2 ∈ a+ be a fixed sufficiently regular point. Then for T ∈ T2 + a+,
S ∈ a+, and g ∈ G(Q) \ G(A),

FG(g,T + S)− FG(g,T)

=
∑

P⊆Q�G

∑
δ∈P(Q)\G(Q)

FP(δg,T2)ΓQ
P

(
HP(δg)− T2,T − T2

)
ΓQ

(
HQ(δg)− T, S

)
.

(1.1)

Let π be a rational representation of G on a finite-dimensional vector space V . The
following definitions were introduced in [8] and require only that G be a reductive
algebraic group defined over Q .

Define a semisimple vector in V to be one whose geometric orbit π
(

G(Q)
)
γ ⊂

V (Q) is Zariski closed, and define a nilpotent vector in V to be one such that the
origin is contained in the Zariski closure of its geometric orbit. If the representation
π is the Adjoint representation of G on its Lie algebra g, then these definitions give
the standard notions of semisimple and nilpotent elements of g. Since the properties
of being semisimple and nilpotent are both invariant under the action of G(Q), we
will call an orbit, either rational or geometric, semisimple or nilpotent if its elements
are.

Let γ be an element of V (Q). A standard argument in invariant theory shows
that the Zariski closure of the geometric orbit π

(
G(Q)

)
γ of γ contains a unique

closed geometric orbit in V (Q). The set of rational points in this closed G(Q)-orbit
is a union of semisimple G(Q)-orbits in V (Q)—a non-empty union by the rational
Hilbert-Mumford Theorem [6]. We define the geometric semisimple component of the
element γ ∈ V (Q) to be this union. If the representation π is the Adjoint represen-
tation then the geometric semisimple component of an arbitrary element γ ∈ V (Q)
is the set of rational points in the geometric orbit of the semisimple part γs of γ given
by the Jordan decomposition, which may be larger than the G(Q)-orbit of γs. De-
fine a geometric equivalence class to be the set of elements in V (Q) whose geometric
semisimple component equals a given closed geometric orbit.

Remark For general representations, there is no known natural assignment of a
single semisimple vector to each vector, extending the assignment to an element of
its Lie algebra to its semisimple component in the Jordan decomposition, and such
an assignment is unlikely to exist. (See [12] for an analysis of the case of direct sums
of the Adjoint representation.) However, it may be possible to identify a canonical
rational (rather than geometric, as done above) semisimple orbit to a given vector, by
the following procedure, and that would be sufficient for our purposes. Define the
Hilbert-Mumford closure of an orbit π

(
G(Q)

)
γ, γ ∈ V (Q), to be the set of points
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in V (Q) that can be expressed as

lim
t→0

π
(

p(t)g
)
γ

for some homomorphism p : Gm → G defined over Q and some g in G(Q). Luna’s
property (A) (see [10]) asserts that the topological closure of every orbit π

(
G(R)

)
v

of a point v ∈ V (R) contains a unique G(R) orbit of semisimple elements. Together
with the rational Hilbert-Mumford theorem [6], property (A) implies that when the
base field is R the Hilbert-Mumford closure of the rational orbit of a vector con-
tains a unique rational semisimple orbit. This latter property trivially holds over
algebraically closed fields, and is also known to hold over p-adic fields [11], but ap-
pears to be unknown in general over Q . Some progress towards this question can
be found in [9]. If it were true, then we would define the semisimple component of
γ to be this unique semisimple orbit, and the equivalence class of γ to be the set of
elements in V (Q) whose semisimple component equals the semisimple component
of γ. We note that if the Hilbert-Mumford closure of every G(Q)-orbit contains a
unique semisimple orbit, then all the following results hold with equivalence classes
rather than geometric equivalence classes.

The key property of the geometric equivalence classes is the following lemma,
which generalizes Lemma 2.1 of [8] and is easily proven.

Lemma 1.1 Let G be a reductive algebraic group defined over Q , let π be a rational
representation of G on a finite-dimensional vector space V , and let A be a torus in G that
is split over Q . Suppose thatΛ0 andΛ+ are two sets of rational characters on A such that
there exists a point a ∈ A(Q) satisfying

|λ(a)| = 1 for every λ ∈ Λ0,

|λ(a)| > 1 for every λ ∈ Λ+.

Write
V0 =

⊕
λ∈Λ0

V λ, V+ =
⊕
λ∈Λ+

V λ,

with V λ the weight space in V corresponding to λ. Then for every geometric equivalence
class o in V (Q) and subset S of V0(Q),(

S + V+(Q)
)
∩ o = (S ∩ o) + V+(Q).

Recall that the weight space in V corresponding to λ ∈ X∗(A)Q is the vector
subspace {v ∈ V | π(a)v = λ(a)v for all a ∈ A} of V .

Let o be a geometric equivalence class in V , and define the function

φπ,o(g, f ) =
∑
γ∈o

f
(
π(g−1)γ

)
, g ∈ G(A),

a left G(Q)-invariant function of G(A). We will eliminate the subscript π when the
representation is understood. The Poisson summation formula implies that∑

o∈O

φπ,o(g, f ) =
∑
õ∈Õ

φπ̃,õ(g, f̂ ),(1.2)
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where O and Õ are the collections of geometric equivalence classes with respect to
the representations π and π̃, respectively—recall that we are assuming that the centre
of G is anisotropic, so | detπ(g)| = 1.

Given a Schwartz-Bruhat function f on V (A), a point T ∈ a+, and a geometric
equivalence class o ∈ O, define

JT
o ( f , π) =

∫
G(Q)\G(A)

FG(g,T)φπ,o(g, f ) dg.

As in [8] we will try to find asymptotic formulas for JT
o for T in certain cones (to

be defined later) in a+ by examining differences JT+S
o ( f , π)− JT

o ( f , π) where T and S
both lie in one cone and ‖S‖ ≤ 1. As on pages 1392–3 of [8], we can write Jo(T +S)−
Jo(T) as the finite sum over pairs (P,Q) of parabolic subgroups of G with P ⊆ Q � G
of ∫

NP(Q)\NP(A)

∫
AP(R)0

e−2ρP(HP(a))φo(na, f MP ,K,T2 )

× ΓQ
P

(
HP(a),T − T2

)
ΓQ

(
HP(a)− T, S

)
da dn,

(1.3)

where

f MP,K,T2 (v) = e−2ρP((T2)Q
P )

∫
ωMP

FP(m,T2)

∫
K

f

(
π
(

exp
(

(T2)Q
P

)
mk
)−1

v

)
dk dm,

with ωMP a fundamental domain of MP(Q) \ MP(A)1 and T2 ∈ a+ a fixed suffi-
ciently regular point. Estimating each of the integrals (1.3) requires some lengthy
preliminary constructions on the vector space V ; these constructions of the subject
of Section 3.

2 A Result of Brion-Vergne

In this section, we recall a result [4, Theorem 4.2] on Fourier transforms of convex
polyhedra and give some consequences. The proof of our main theorem relies on the
application of this result to certain polytopes to be constructed in Section 3. Before
we can state Brion-Vergne’s result, we must introduce some notation.

Suppose that V is a finite-dimensional real vector space. In Section 3, we will take
V = aP, so will write V ∗ instead of V̂ for the dual of V . Suppose that µ1, . . . , µN are
elements of V ∗. Given x = (x1, . . . , xN ) ∈ RN we can define the convex polyhedron

P(x) := {v ∈ V | µi(v) + xi ≥ 0, 1 ≤ i ≤ N}.(2.1)

Assume that for some x ∈ RN , the polyhedron P(x) is non-empty and contains
no line; this implies that µ1, . . . , µN span V ∗. Write B for the set of subsets σ of
{1, . . . ,N} such that {µi | i /∈ σ} is a basis of V ∗. Given σ ∈ B we define the fol-
lowing three objects: {ui,σ}i /∈σ is the basis of V dual to the basis {µi | i /∈ σ} of V ∗,
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sσ : RN → V is the linear map sending x = (x1, . . . , xN ) ∈ RN to the unique point
v ∈ V with µi(v) + xi = 0, i /∈ σ, and C(σ) is the set {x ∈ RN | sσ(x) ∈ P(x)}.

One can verify using an alternative description of C(σ)—the one given in [4, 3.1,
4.1]—that C :=

⋃
σ∈B C(σ) is the set of x ∈ RN such that P(x) is non-empty. To

any setΣ ⊂ B, write CΣ for the intersection
⋂
σ∈ΣC(σ), and to any x ∈ C assign the

set Σx = {σ ∈ B | x ∈ C(σ)}. Then each set CΣx , x ∈ C , is a closed convex cone
containing x, and we obtain finitely many cones this way. If we set B(γ) := {σ ∈ B |
γ ⊂ C(σ)} for any such cone γ, then γ = CB(γ). If γ is maximal among these cones,
we call it a chamber of C (in [4] it would be called the closure of a chamber).

The following result is Theorem 4.2 of [4].

Theorem 2.1 Suppose that V is a finite-dimensional real vector space, that µ1, . . . , µN

are in V ∗, and that at some point in RN , (2.1) defines a non-empty polyhedron contain-
ing no line. Let γ be a chamber in C and x a point in γ.

(a) The extreme points of P(x) are the sσ(x), σ ∈ B(γ), with possible repetition.
(b) For generic

µ ∈
{ N∑

i=1

ciµi | ci ≥ 0
}
,

we have the identity

∫
P(x)

e−µ(v) dv =
∑

σ∈B(γ)

e−µ(sσ(x)) vol{
∑

i /∈σ tiui,σ | ti ∈ [0, 1]}∏
i /∈σ µ(ui,σ)

,(2.2)

where dv and vol denote the same Lebesgue measure on V .

Remark Notice that if (2.2) holds for a given µ, then the integral, as a function of
x ∈ RN , is a finite linear combination of exponentials of linear functionals.

We will need to tweak somewhat the statement of this theorem to suit our needs.

Lemma 2.2 Keep the assumptions in Theorem 2.1, and suppose also that for all x ∈ C,
the set P(x) is bounded. Then the set

{ N∑
i=1

ciµi | ci ≥ 0
}

is all of V ∗.

Proof This follows from the theory of the polar. It follows immediately from [5,
6.1(a) and 9.1(b).]

Recall that the bounded polyhedra are just the polytopes, the convex hulls of finite
sets of points.
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Recall from [8] that we call a function f on RN t-finite if it is expressible (uniquely)
as a finite sum

∑
pλ(x)eλ(x), with λ ∈ (RN )∗, pλ ∈ C[x1, . . . , xN ].

Lemma 2.3 Keep the assumptions of Lemma 2.2. Then for any µ ∈ V ∗, the function

x 	→ Fµ(x) :=

∫
P(x)

eµ(v) dv, x ∈ γ

is t-finite. In fact, each polynomial pλ in its decomposition has degree at most n (n − 1
for λ �= 0).

Proof Let µ ∈ V ∗, and pick µ0 ∈ V ∗ so that for every t ∈ (0, 1), µ + tµ0 is generic.
For any x ∈ γ consider the function t ∈ R 	→ Fµ+tµ0 (x). It is a continuous function
whose value at t = 0 is Fµ(x). On the other hand, for t ∈ (0, 1), its value is given by
(2.2). Expanding the exponentials in the right-hand side of (2.2) into a power series
in t and letting t → 0 gives the desired result.

Lemma 2.4 Keep the assumptions of Lemma 2.2, and let x = (x1, . . . , xN ) and y =
(y1, . . . , yN ) be points in RN. If for each extreme point vx of P(x), the set {v ∈ V | if
µi(vx) + xi = 0, then µi(v) + yi = 0, i = 1, . . . ,N} contains a single point vy that is
extreme in P(y), then y ∈ γ.

Proof Fix σ ∈ B(γ). By Theorem 2.1, sσ(x) is an extreme point of P(x). The extra
hypothesis of the Lemma implies that sσ(y) is an extreme point of P(y), in particular
that sσ(y) ∈ P(y), so that y ∈ C(σ). Therefore y ∈ CB(γ) = γ.

Remarks (1) The map from the extreme points of P(x) to those of P(y) given in the
Lemma is surjective, by Theorem 2.1(a).

(2) There is a surjection from the power set of {1, . . . ,N} to the set of faces of
P(x), x ∈ γ, sending a set S to the set of points v ∈ P(x) satisfying

µi(v) + xi = 0, for all i ∈ S,(2.3)

or equivalently, to the convex hull of those extreme points of P(x) satisfying (2.3).
Under the hypotheses of Lemma 2.4, this leads to a surjection from the set of faces of
P(x) to the set of faces of P(y). If the hypotheses of the Lemma also hold with x and
y reversed, then this map between faces is a bijection.

3 Geometry on a

As mentioned in the introduction, we will find that the integral JT
o ( f , π) does not

have simple asymptotic behaviour as T approaches infinity in a+, but rather that
there exist convex open cones in a+ such that the function JT

o ( f , π) is asymptotic to
a t-finite function in T as T tends to infinity within each cone. Let us first describe
these cones.

Let Ψπ ⊂ a∗ be the union of the set ∆ of simple roots of (G,A) and the set of
non-zero weights of π with respect to A. Define a function d on a as follows: for
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X ∈ a, d(X) is the minimum, over all parabolic subgroups P ⊆ Q � G and subsets
S ⊆ Ψπ,P such that span(S)∩a∗Q does not equal the trivial subspace 0, of the distance

dist
(

ker S, cvx(XR)P⊆R⊆Q

)
between the kernel ker S ⊂ aP of the set S and the convex hull cvx(XR)P⊆R⊆Q ⊂
aP ⊆ a of the projections of X to aR, P ⊆ R ⊆ Q. Notice that for t ∈ R+ and
X ∈ a, d(tX) = td(X). This function d is the correct analogue to this situation of the
functions denoted similarly in [3] and [8].

This definition may appear strange at first glance. The restriction on S comes
about for the following reason: for any parabolic subgroups P ⊆ Q, and any S ⊂
a∗P , if span S ∩ a∗Q = 0 then there must be points in ker S ∩ cvx(XR)P⊆R⊆Q for any
X ∈ a. The converse of this holds for any S ⊂ Ψπ,P if d(X) �= 0. Consider as an
example the case where G = SL(4), π is the irreducible representation of G whose
highest weight is three times the sum of the fundamental weights, P = P0, Q satisfies
∆Q = {α3}, and S = {α1 − α3, α2 − α3}. Then span S ∩ a∗Q �= 0 since it contains

−3(α1−α3)+2(α2−α3) = (−3α1+2α2)Q, and dist
(

ker S, cvx(XR)P⊆R⊆Q

)
measures

the distance between the line α1 = α2 = α3 and the line segment cvx(X,XQ) in
a ∼= R3.

The set of zeros of d is a finite union of closed convex cones, each corresponding
to a single choice of P, Q and S. Each of these cones has positive codimension; this
is because ker S ∩ cvx(XR)P⊆R⊆Q is contained in ker S ∩ (XQ + a

Q
P ) and this set is

non-empty only if XQ lies in ker
(

(span S)∩ a∗Q
)

, a non-trivial condition by the non-
triviality of (span S) ∩ a∗Q. If we choose P = Q and S to be a singleton {λP}, λ ∈

Ψπ , the subspace ker
(

(span S) ∩ a∗Q
)

is the hyperplane kerλP, so d maps each of
these hyperplanes to 0. We will see that the function JT

o ( f , π) is asymptotic to a real-
analytic function as T tends to infinity in each convex open cone in the complement
in a+ of the set of zeros of d.

Notice that the above facts about the zeros of d trivially imply that the complement
to d = 0 in a+ can be expressed as a finite union of convex open cones that may
intersect. Call the cones appearing in such a decomposition theπ-dependent cones in
a+. The asymptotics of the function JT

o ( f , π) as T varies in the different π-dependent
cones in a+ will in general be different; it seems likely however that their constant
terms (when defined correctly, see the comments before Theorem 4.5) will often be
the same. If π is the Adjoint representation, then d is the function given in [3], and
there is only one π-dependent cone, namely the whole of a+.

Remark The complement of the set of zeros of d in a+ decomposes as a finite union
of disjoint convex open cones in a+. We will not require this fact in the paper, so we
will not prove it here.

Choose a non-empty convex open cone in the complement in a+ of the set of zeros
of d and call it C. The cone C will be fixed throughout this section. Given ε > 0, we
write Cε for the set of X in C satisfying d(X) > ε‖X‖. Fix for the remainder of this
section ε > 0 sufficiently small that Cε is a non-empty convex open cone in a+. We
also write Cε(1) for the set of X ∈ Cε with ‖X‖ ≤ 1.
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The inner integral in (1.3) is over the set of a ∈ AP(R)0 such that

ΓQ
P

(
HP(a),T − T2

)
ΓQ

(
HP(a)− T, S

)
= 1,

that is, HP(a) lies in a polytope in real Euclidean space aP. The key to estimating
(1.3) is breaking up this polytope into pieces on which the integral is much easier to
evaluate.

Fix for the remainder of this section two parabolic subgroups P ⊆ Q � G. Define
RQ

P (T, S) as the support of the function X 	→ ΓQ
P (X,T)ΓQ(X − T, S), X ∈ aP, so

that the integral in (1.3) can be taken over a with HP(a) ∈ RQ
P

(
T − (T2)Q

P , S
)

. We

will break up RQ
P (T, S) in a complicated way depending on the hyperplanes kerλ,

λ ∈ Ψπ,P that intersect it.

For T ∈ a+, define R ′QP (T) ⊂ TQ + a
Q
P as the convex hull cvx(TR)P⊆R⊆Q of the

projections of T to aR; this is the support in TQ + a
Q
P of the function X 	→ ΓP(X,T).

Then for T, S ∈ a+,

RQ
P (T, S) = R ′

Q
P (T) + R ′Q(S) ⊇ R ′

Q
P (T),

so if ‖S‖ ≤ 1, every point in RQ
P (T, S) is within unit distance of R ′QP (T).

We say that a hyperplane H in an affine space is a boundary hyperplane of a con-
vex polytope with non-empty interior if H is the affine span of a codimension one
face (a facet) of the polytope, and that a half-space is a boundary half-space of a
polytope it contains if its bounding hyperplane is a boundary hyperplane. Let the
relative interior, the relative boundary, and a relative boundary hyperplane of a re-
gion be, respectively, its interior, its boundary, and a boundary hyperplane of the
region considered as an object in its affine span. The dimension of a polytope means
the dimension of its affine span.

Lemma 3.1 For T in a+, the non-empty faces of R ′QP (T) are exactly the convex hulls

cvx(TR)P1⊆R⊆P2 = R ′
2
1(T),

where P1 and P2 are parabolic subgroups satisfying P ⊆ P1 ⊆ P2 ⊆ Q. Furthermore,
the dimension of R ′21 is dim a2

1.

Proof Notice that the affine span of R ′QP is TQ + a
Q
P . A face of R ′QP in the intersection

of R ′QP with some of its relative boundary hyperplanes. Lemma 3.4 of [8] implies that
the relative boundary hyperplanes of R ′QP are

{X ∈ TQ + aQ | α(X) = 0},(3.1)

for roots α ∈ ∆Q
P , and

{X ∈ TQ + a
Q
P | 	(X) = 	(T)},(3.2)
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for weights 	 ∈ ∆̂Q
P . Consider a collection of these hyperplanes in TQ + a

Q
P whose

intersection intersects R ′QP non-trivially. Choose parabolic subgroups P1, P2, P ⊆ P1,
P2 ⊆ Q, so that∆1

P is the set of roots whose corresponding hyperplane (3.1) is in the
collection and ∆̂Q

2 is the set of weights whose hyperplane (3.2) is in the collection.

Suppose that there were a root α ∈ ∆1
P whose dual weight 	α in (a

Q
P )∗ lay in ∆̂Q

2 .
Since 	α can be written in the form

	α = cα +
∑
	∈∆̂Q

P
	 �=	α

d		

with c positive and all d nonnegative, we see that for every X in the intersection of the
given collection of hyperplanes,∑

	∈∆̂Q
P

	 �=	α

d		(X) = 	α(X) = 	α(T) = cα(T) +
∑
	∈∆̂Q

P
	 �=	α

d		(T).

Since cα(T) > 0 and all d	 are non-negative, it must be that 	(X) > 	(T) for
some 	 ∈ ∆̂Q

P . Therefore the intersection of R ′QP with the collection of hyperplanes
is trivial. This gives a contradiction, so no such α can exist. This proves that P1 ⊆ P2.

Therefore every non-empty face of R ′QP is the set of points X in TP2 + a2
1 such that

α(X) ≥ 0 for every α ∈ ∆Q
P ,

	(X) ≤ 	(T) for every 	 ∈ ∆̂Q
P .

This trivially equals the set of points X in TP2 + a2
1 such that

α(X) ≥ 0 for every α ∈ ∆Q
1 ,

	(X) ≤ 	(T) for every 	 ∈ ∆̂2
P.

(3.3)

Consider the smaller collection of inequalities

α(X) ≥ 0, for every α ∈ ∆2
1

	(X) ≤ 	(T), for every 	 ∈ ∆̂2
1,

(3.4)

for X ∈ TP2 + a2
1. Since every weight	 ∈ ∆̂2

P \ ∆̂
2
1 can be written in the form

	 = 	1 +
∑
	 ′∈∆̂2

1

d	 ′	
′

with	1 in ∆̂1
P and all d	 ′ non-negative, if X ∈ TP2 +a2

1 satisfies the inequalities (3.4),
it satisfies all the inequalities in the second line of (3.3). Since every rootα ∈ ∆Q

1 \∆
2
1

can be written in the form
α = α2 −

∑
	∈∆̂2

1

d		
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with α2 in∆2 and all d	 non-negative, if X ∈ TP2 + a2
1 satisfies the inequalities (3.4),

then

α(X) = α2(X)−
∑
	∈∆̂2

1

d		(X)

≥ α2(T)−
∑
	∈∆̂2

1

d		(T) = α(T) > 0,

for anyα ∈ ∆Q
1 \∆

2
1, so that the inequalities (3.3) and (3.4) are equivalent on TP2 +a2

1.
By Lemma 3.4 of [8], the set of X ∈ TP2 +a2

1 satisfying (3.4) is exactly cvx(TR)P1⊆R⊆P2 .
This proves the first statement of the Lemma. The second statement is trivial, as T
lies in a+.

The following lemma points out the key properties of the region C.

Lemma 3.2

(i) The collection of subsets S of Ψπ,P such that ker S intersects R ′QP (T) is independent
of T ∈ C.

(ii) Given T ∈ Cε, parabolic subgroups P ⊆ Q � G and a subset S of Ψπ,P, if the

distance from ker S to R ′QP (T) is less than ε‖T‖, then ker S must actually intersect
R ′QP (T).

Proof (i) Suppose that ker S intersects R ′QP (T) but not R ′QP (T ′), with S ⊆ Ψπ,P,

and T,T ′ ∈ C. Consider a minimal face of R ′QP (T) that intersects ker S, so that the
intersection is a single point in the relative interior of the face. By Lemma 3.1 this face
is of the form R ′21(T) for two parabolic subgroups P1, P2, with P ⊆ P1 ⊆ P2 ⊆ Q,
and hence ker S intersects the affine space TP2 + a2

1 = affspan R ′21(T) in a point. If we
write S1 for the set of projections of weights in S to a∗1 , this implies that

span(S1, a∗2 ) = a∗1 .(3.5)

Now, by our assumptions, ker S intersects R ′21(T) but not R ′21(T ′). Therefore
for some point T ′ ′ ∈ C on the line segment joining T and T ′, ker S intersects
only the relative boundary of R ′21(T ′ ′), not its relative interior. The intersection
(ker S) ∩ R ′21(T ′ ′) = (ker S1) ∩ R ′21 (T ′ ′) is again a single point, and it must lie on a
relative boundary hyperplane of R ′21(T ′ ′). First suppose that this relative boundary
hyperplane is of the form (kerα1) ∩ (T2 + a2

1), for some α1 ∈ ∆2
1. By (3.5) we know

that α1 is in the span of S1 and a∗2 , so that

span(S1 ∪ {α1}) ∩ a∗2 �= 0.

But this contradicts the facts that ker(S1∪{α1}) intersects R ′21(T ′ ′) and that T ′ ′ ∈ C.
Next suppose that the relative boundary hyperplane of R ′21(T ′ ′) is of the form

{X ∈ T2 + a2
1 | 	(X) = 	(T)}
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for some 	 ∈ ∆̂1. Again, by (3.5) we know that 	 is in the span of S1 and a∗2 , so if
we choose P3 � P2 to be the parabolic subgroup with ∆̂3 = ∆̂2 ∪ {	}, we have

span(S1) ∩ a∗3 �= 0.

But this contradicts the facts that ker S1 intersects R ′31(T ′ ′) and that T ′ ′ ∈ C. We
have proven part (i).

(ii) Consider a minimal face R ′21(T) of R ′QP (T) such that

dist
(

ker S,R ′
2
1(T)
)
= dist

(
ker S,R ′

Q
P (T)
)
≤ ε‖T‖.

Then, since T lies in Cε, we know that span(S1) ∩ a∗2 = 0, so that ker S intersects
T1 +a2

1. Clearly, given a convex set A and an affine subspace S that intersects the affine
span of A but not A itself, the points on A closest to S lie on the relative boundary of
A. But then the minimality of R ′21(T) implies that ker R intersects R ′21(T) ⊆ R ′QP (T),
which proves (ii).

Given a functional λ ∈ a∗P , write Hλ for the hyperplane kerλ of aP. Given in
addition a positive real number b, define a “thickened hyperplane” Hλ(b) to be the
set of points X ∈ aP such that |λ(X)| ≤ b; it depends on λ, not just the hyperplane.
We will say that T ∈ C is sufficiently large if ‖T‖ is sufficiently large. We will also say
(T, S) is well-situated if S,T ∈ Cε, T is sufficiently large, and ‖S‖ ≤ 1. Recall that
ε > 0 is fixed throughout this section.

Remark Since the largest angle between two vectors in the convex cone Cε ⊂ a+ is
less than π/2, it is valid to conclude that if (T, S) and (T ′, S ′) are both well-situated,
then so is every point (T ′ ′, S ′′) on the line segment in a× a joining them.

Lemma 3.3 There exists B ∈ a∗, positive on C, such that for every parabolic subgroup
P ⊆ Q, every subset S ofΨπ,P, and all well-situated (T, S), the intersection

⋂
λ∈S

Hλ

(
B(T)
)
∩ RQ

P (T, S)

is non-empty if and only if the intersection

⋂
λ∈S

Hλ ∩ R ′
Q
P (T) = (ker S) ∩ R ′

Q
P (T)

is non-empty.

Proof We first observe that since Ψπ is finite there exists a positive constant κ >
1 such that for any b > 0, parabolic subgroup P, and S ⊆ Ψπ,P, if X ∈ aP lies
in
⋂
λ∈S Hλ(b), then dist(X, ker S) < κb. This follows from repeated applications

of the following: given a subspace S of aP not contained in a hyperplane H ⊂ aP

through 0, a point within distance B of both S and H is within B/ sin(θ/2) of their
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intersection, where θ is the minimum angle between the projections of S and H to
aP/(S∩H). (Notice that the projection of S is one-dimensional and not contained in
the projection of H, so the angle θ is well-defined and positive. The distance from the
given point to S ∩ H is the length of the diagonal through S ∩ H of a parallelogram
in aP/(S ∩ H) with one side in the projection of S, an adjacent side in the projection
of H, and all side lengths at most B. This length is at most B/ sin(θ/2), the length of
the long diagonal of a rhombus with inner angles θ ≤ π − θ whose parallel sides are
distance B apart.)

Fix a parabolic subgroup Q ⊇ P. Since RQ
P (T, S) contains R ′QP (T), ker S ∩

R ′QP (T) �= ∅ implies ( ⋂
λ∈S

Hλ(b)
)
∩ RQ

P (T, S) �= ∅,

for any b ≥ 0. On the other hand, if an intersection
⋂
λ∈S Hλ(b) intersects RQ

P (T, S),

then since every point in RQ
P (T, S) is within unit distance of R ′QP (T),

dist
(

R ′
Q
P (T),

⋂
λ∈S

Hλ

)
≤ dist

(
RQ

P (T, S),
⋂
λ∈S

Hλ

)
+ 1 ≤ κb + 1.

For b ≤ ε
2κ‖T‖ and T sufficiently large, this implies that the distance between

R ′QP (T) = cvx(TR)P⊆R⊆Q and
⋂
λ∈S Hλ is less than ε‖T‖. Since T ∈ Cε, Lemma 3.2

lets us conclude that
⋂
λ∈S Hλ intersects R ′QP (T).

We therefore need only find B ∈ a∗ such that 0 < B(T) ≤ ε
2κ‖T‖ for all T ∈ C.

The choice B = ε
2κ‖α‖α, α any simple root in∆, satisfies this condition.

Let B be as in Lemma 3.3, and let us return to the fixed parabolic subgroups P ⊆
Q � G. For the remainder of this section we will work in aP so that by the kernel of a
linear functional we will mean the kernel in aP, and by the interior of a region in aP,
its interior in the topology of aP. Write Π = ΠP ∈ a∗P for the set of non-zero weights
of π with respect to the torus AP. Given any subset Π+ of Π, write RQ

P (Π+,T, S) for
the closure of the set of X ∈ RQ

P (T, S) ⊂ aP such that for λ ∈ Π, λ(X) > 0 exactly
when λ ∈ Π+. Clearly each non-empty set RQ

P (Π+,T, S) is a closed convex polytope
with non-empty interior in aP, and for (T, S) fixed, any two have disjoint interiors,
and their (finite) union over Π+ ⊆ Π is RQ

P (T, S).
Let Π+ ⊂ Π be a set such that RQ

P (Π+,T, S) is non-empty. Given any subset
Λ ⊆ Ψπ,P = Π ∪ ∆P, define Λ+ = Λ ∩ Π+, Λ− = Λ \ Π+, and define the sign
sgn(λ) of a weight λ ∈ Π to be 1 if λ ∈ Π+ and −1 if λ ∈ Π−. For any functional
λ ∈ ∆P ∪∆Q ∪ ∆̂Q ∪ ∆̂

Q
P , define sgnλ = 1. We will now decompose RQ

P (Π+,T, S)
as a union of closed convex polytopes in aP with disjoint non-empty interiors; in
the following section we will evaluate the contribution to (1.3) of the integral over
each of these latter polytopes. The construction of these polytopes requires a lengthy
recursion.

Let δ = 1/|Π|. Then for any Π+ ⊆ Π, any positive number b, any subset S of Π,
any linear combination

µ =
∑
λ∈S

dλλ,
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and any X ∈ a+
P such that

(sgnλ)λ(X) > 0, for all λ ∈ Π,

µ(X) > b,

some λ ∈ S with dλ(sgnλ) > 0 must satisfy

λ(X) > δb/dλ.(3.6)

The 0-th step of the recursion proceeds as follows: for each subset Λ0 of Π, let
RQ

P (Λ0;Π+,T, S) be the closure of the set of X ∈ RQ
P (Π+,T, S) such that for λ ∈ Π,

(sgnλ)λ(X) ≥ B(T) exactly for λ ∈ Λ0. Notice that each non-empty set
RQ

P (Λ0;Π+,T, S) is a closed convex polytope in aP, that the non-empty sets corre-
sponding to different Λ0 have disjoint nonempty interiors, and that their union over
all Λ0 ⊂ Π equals RQ

P (Π+,T, S).
Now suppose that we have constructed, at the k-th step, a non-empty region

RQ
P (Λ0, . . . ,Λk;Π+,T, S),

with Λ0, . . . ,Λk disjoint subsets of Π. Our “inductive hypothesis” is that the re-
gion RQ

P (Λ0, . . . ,Λk;Π+,T, S) has non-empty interior, and that X ∈ aP belongs to
RQ

P (Λ0, . . . ,Λk;Π+,T, S) exactly when X satisfies the following inequalities:

(sgnλ)λ(X) ≥ 0 for all λ ∈
(
Π \

k⋃
i=0

Λi

)
∪∆P,

(sgnλ)λ(X) ≥ δiB(T) for all λ ∈ Λi , i = 0, . . . , k,

(sgnλ)λ(X) ≤ δiB(T) for all λ ∈ Λi+1, if i = 0, . . . , k− 1,

and all λ ∈ Π \
k⋃

j=0

Λ j , if i = k,

(3.7)

the inequalities of immediate concern to us, and

	(X) ≤ 	(T), for all 	 ∈ ∆̂Q
P ,

α(X) ≥ α(T), for all α ∈ ∆Q

	(X) ≤ 	(T + S), for all 	 ∈ ∆̂Q.

(3.8)

The constants δi are all positive, with δ0 = 1. We will now express RQ
P (Λ0, . . . ,Λk;

Π+,T, S) as a union of regions with disjoint non-empty interiors.
If the intersection

ker
(
Π \

k⋃
i=0

Λi

)
∩ RQ

P (Λ0, . . . ,Λk;Π+,T, S)
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is non-empty, we end the recursion and do not break up the set RQ
P (Λ0, . . . ,Λk;

Π+,T, S) any further. Otherwise, there exists an assignment a of constants ca(λ)

(independent of T, S) for each functional λ ∈
⋃k

i=0 Λi ∪ ∆P such that the linear
combination

µa =
∑

λ∈
⋃
Λi∪∆P

ca(λ)λ ∈ span
( k⋃

i=0

Λi ∪∆P

)

lies in span(Π \
⋃k

i=0 Λi), and the weighted sum of certain of the inequalities (3.7) is
an inequality of the form µa(X) ≥ caB(T) with the number ca strictly positive—this
follows from a very special case of the Krein-Milman theorem together with Lem-
mas 3.2 and 3.3. Pick one such assignment a and write µa as a linear combination of

elements of span(Π \
⋃k

i=0 Λi):

µa =
∑

λ∈Π\
⋃k

i=0 Λi

dλλ.

Let D be the maximum of |dλ|, λ ∈ Π \
⋃k

i=0 Λi . By (3.6) we can conclude that for

all X in RQ
P (Λ0, . . . ,Λk;Π+,T, S), at least one λ ∈ Π \

⋃k
i=0 Λi satisfies

(sgnλ)λ(X) ≥
δca

D
B(T).

Let δk+1 equal δca/D, and for each subset Λk+1 ofΠ \
⋃k

i=0 Λi define

RQ
P (Λ0, . . . ,Λk+1;Π+,T, S)

to be the closure of the set of points X satisfying the strict inequality of each inequality
in (3.7) and (3.8) and also

(sgnλ)λ(X) > δk+1B(T) for all λ ∈ Λk+1

(sgnλ)λ(X) < δk+1B(T) for all λ ∈ Π \
k+1⋃
i=0

Λi .

The non-empty sets R(Λ0, . . . ,Λk+1;Π+,T, S), are the regions constructed at the
(k + 1)-st step. Notice that these regions are determined by inequalities of the form
(3.7) and (3.8), that their union over all non-emptyΛk+1 is RQ

P (Λ0, . . . ,Λk;Π+,T, S),
and that their interiors are pairwise disjoint.

Since Π is finite and each Λi , i ≥ 1, is non-empty in a given non-empty region
RQ

P (Λ0, . . . ,Λk;Π+,T, S), we can write RQ
P (T, S) as a finite union⋃

(Λ0,...,Λk;Π+)∈I(T,S)

RQ
P (Λ0, . . . ,Λk;Π+,T, S)(3.9)

of convex polytopes with disjoint non-empty interiors, indexed by a (finite) set I(T, S)
of ordered tuples of varying size, such that the region corresponding to each tuple
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(Λ0, . . . ,Λk;Π+) ∈ I(T, S) is not broken up by the above algorithm. We will use this
decomposition of RQ

P (T, S) in the next section, by estimating an integral of the form
of (1.3) over each of these regions. Notice that by Lemmas 3.2 and 3.3, the index set
I(T, S) and the implicit constants δi and other implicit choices made for each element
of I(T, S), can be chosen independently of S ∈ Cε(1) and sufficiently large T ∈ Cε.
We can therefore denote this set simply as I; it depends on P, Q, and, of course, π.
The set I is in no way canonical, but is sufficient for our purposes.

Consider a region Ri(T, S) = RQ
P (Λ0, . . . ,Λk;Π+,T, S) corresponding to

i = (Λ0, . . . ,Λk;Π+) ∈ I(T, S),

and write

Π0 = Π \
k⋃

i=0

Λi, Π+ =
k⋃

i=0

Λ+
i ⊆ Π

+, Π− =
k⋃

i=0

Λ−i ⊆ Π
−.

Notice that by the construction of Ri(T, S), the set of weights of π that vanish on
kerΠ0∩Ri(T, S) equalsΠ0, so in particular (spanΠ0)∩Π = Π0. The region Ri(T, S)
is a convex polytope bounded by the inequalities (3.7) and (3.8), so that each bound-
ary hyperplanes of Ri(T, S) is given by one of the following equations:

λ(X) = 0, λ ∈
(
Π \

k⋃
i=0

Λi

)
∪∆P,

(sgnλ)λ(X) = δiB(T), λ ∈ Λi , i = 0, . . . , k,

(sgnλ)λ(X) = δiB(T), λ ∈ Λi+1, if i = 0, . . . , k− 1, and all

λ ∈ Π \
⋃k

j=0 Λ j , if i = k,

(3.7) ′

and

	(X) = 	(T), 	 ∈ ∆̂Q
P ,

α(X) = α(T), α ∈ ∆Q

	(X) = 	(T + S), 	 ∈ ∆̂Q.

(3.8) ′

Let Y be an extreme point of Ri(T, S), let H1(T, S) and H2(T, S) be the set of
boundary hyperplanes of Ri(T, S) of the form (3.7) ′ and (3.8) ′, respectively, that
contain Y . Each of the hyperplanes in Hk(T, S), k = 1, 2, depends explicitly on T and
S through the corresponding equality in (3.7) ′ or (3.8) ′, so that given any T ′, S ′ ∈ a,
we can naturally define the sets Hk(T ′, S ′).

Lemma 3.4 Suppose that we are given (T, S) well-situated, i ∈ I(T, S), and Y an
extreme point of Ri(T, S). Let H1, H2 send elements of a× a to sets of hyperplanes in aP

as described above. If (T ′, S ′) is also well-situated, then the intersection⋂
H∈H1(T ′,S ′)∪H2(T ′,S ′)

H(3.10)

has exactly one element. Call this element Y (T ′, S ′). Then Y (T ′, S ′) is an extreme point
of Ri(T ′, S ′).
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Proof Let S(k) be
⋂

H∈Hk(T,S) H, for k = 1, 2. Let S ⊂ Ψπ,P be the set of functionals λ
such that the point Y satisfies an equality in (3.7) ′ involving λ, and let R ⊆ Q be the
parabolic subgroup containing P so that ∆̂Q

R is the set of 	 ∈ ∆̂Q
P whose hyperplane

	(X) = 	(T) appears in H2(T, S). Then Lemma 3.3 and the definition of d imply
that span(S) ∩ a∗R = 0. Since we also know that S(1) ∩ S(2) = {Y}, we can conclude
that

a∗P = span S⊕ a∗R,(3.11)

and that the intersection of the hyperplanes HR, H ∈ H2(T, S), of aR is the point
YR. Since Y lies in Ri(T, S), YQ − TQ must lie in R ′Q(S), and projecting the preceding
sentence to aQ, we find that the point YQ − TQ is extreme in R ′Q(S). Lemma 3.1 then

says that for some parabolic subgroup P1 ⊇ Q, {YQ − TQ} = R ′11 = {S1}, with S1

the projection of S to a1, so YQ = TQ + S1. The definition of R tells us that Y Q
R = TQ

R ,
so that YR = TR + S1. Putting all this together, we see that S(2) = TR + S1 + aR

P .
Going now to T ′ and S ′, notice that the hyperplanes in H1(T ′, S ′) are of all the

form
λ(X) = kB(T ′),

where the constants k and functionals λ ∈ Ψπ,P are determined by Y . The intersec-

tion
⋂

H∈H1(T ′,S ′) H equals B(T ′)
B(T) S(1) =

B(T ′)
B(T) Y + ker S. Also, the previous paragraph

implies the equality

⋂
H∈H2(T ′,S ′)

H = T ′R + S ′1 + ker a∗R.(3.12)

We conclude from (3.11) that the set (3.10) contains a single point Y (T ′, S ′). This
proves the first statement of the Lemma.

Since Y (T ′, S ′) lies on a collection of boundary hyperplanes of Ri(T ′, S ′) that
intersect in a point, it suffices to prove simply that Y (T ′, S ′) lies in Ri(T ′, S ′), that is,
that Y (T ′, S ′) satisfies all the inequalities in (3.7) and (3.8).

We will first consider the inequalities in (3.8). The inequalities on the last two
lines of (3.8) follow immediately from (3.12). The inequalities on the first line of
(3.8) hold for 	 ∈ ∆̂Q

R and are actually equalities in the case, again by (3.12). Lastly,

let 	 ∈ ∆̂Q
P \ ∆̂

Q
R . Since a∗P = span S⊕ a∗R, we know that

span S ∩ a∗R ′ �= 0,(3.13)

where R ′ ⊆ Q is the parabolic subgroup satisfying ∆Q
R ′ = ∆

Q
R ∪ {	}, and that

	(Y ) ≤ 	(T). If 	
(

Y (T ′, S ′)
)
> 	(T ′), then for some (T ′ ′, S ′′) on the line seg-

ment joining (T, S) and (T ′, S ′) (and by an earlier remark, necessarily well-situated),
the point Y (T ′ ′, S ′′) would satisfy 	

(
Y (T ′ ′, S ′′)

)
= 	(T ′′). But then (3.13) and

Lemma 3.3 would yield a contradiction.
We next show that Y (T ′, S ′) lies in RR

P(T ′, S ′). Given the above paragraph, this is
equivalent to showing that α

(
Y (T ′, S ′)

)
≥ 0 for all α ∈ ∆R

P . Assume otherwise, and
let (T ′ ′, S ′ ′) be the point on the line segment joining (T, S) and (T ′, S ′) such that
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• α
(

Y (T ′ ′, S ′′)
)
≥ 0 for all α ∈ ∆R

P ,
• β
(

Y (T ′ ′, S ′′)
)
= 0 for some β ∈ ∆R

P with β
(

Y (T ′, S ′)
)
< 0.

Then the point Y (T ′ ′, S ′′) lies in⋂
λ∈S∪{β}

Hλ

(
B(T ′ ′)

)
∩ RR

P(T ′ ′, S ′ ′),

so by Lemma 3.3, the set ker(S ∪ {β}) ∩ R ′RP(T ′ ′) is non-empty, and since T ′ ′ lies
in Cε, we see that span(S ∪ {β}) ∩ a∗R = 0. By (3.11) this implies that β ∈ span S.
But then β

(
Y (T ′, S ′)

)
and β

(
Y (T ′ ′, S ′′)

)
= 0 can be explicitly given as cB(T ′)

and cB(T ′′), respectively, for some constant c. The constant c must be zero, and we
obtain a contradiction to the definition of β. Therefore Y (T ′, S ′) does in fact lie in
RR

P(T ′, S ′).
Now, let µ be any linear functional inΨπ,P. We must show that the inequalities in

(3.7) that mentionµ hold for the point Y (T ′, S ′) (and T ′ instead of T). If µ ∈ span S,
then µ(Y ) and µ

(
Y (T ′, S ′)

)
are explicitly given as cB(T) and cB(T ′), respectively, for

some constant c. Since Y satisfies all the inequalities in (3.7) (with T), Y (T ′, S ′) must
satisfy those inequalities from (3.7) that mention µ (with T ′). Next, suppose that
µ /∈ span S. Because of (3.11) we must have that span(S ∪ {µ}) ∩ a∗R �= ∅, so since
T ∈ Cε, dist

(
ker(S ∪ {µ}),R ′RP

)
> ε‖T‖. Lemma 3.3 then says that given a point

X ∈ RR
P(T, S), |λ(X)| > B(T) for some λ ∈ S ∪ {µ}. Now, Y ∈ RR

P(T, S) and
|λ(Y )| ≤ B(T) for all λ ∈ S, so (sgnµ)µ(Y ) > B(T). The inequalities (3.7) must be
consistent with this, so since each δk ≤ 1, the only inequality in (3.7) that mentions
µ must be of the form (sgnµ)µ ≥ B(T). On the other hand, Y (T ′, S ′) ∈ RR

P(T ′, S ′),
so that we can similarly obtain the inequality (sgnµ)µ

(
Y (T ′, S ′)

)
> B(T ′). This

finishes our proof that Y (T ′, S ′) lies in, and hence is an extreme point of, Ri(T ′, S ′).

In the course of estimating an integral over Ri(T, S) in the next section, we will
express the integrand as a sum of terms corresponding to certain subsets ofΠ0, and to
estimate the integral of the piece of the integrand corresponding to one subset Π1 of
Π0, we will need to further manipulate the set Ri(T, S). The necessary constructions
form the remainder of this section.

Let Π1 ⊆ Π0 be a subset of Π0 satisfying

Π1 =
{
λ ∈ Π | λ

(
(kerΠ1) ∩ Ri(T, S)

)
= 0
}
,

so that in particular (spanΠ1) ∩ Π0 = Π1. (Note that both {0} ∩ Π0 and Π0 satisfy
this property.) Let B ⊆ Π1 be a basis and let d be the dimension of spanΠ1. We want
to examine the dependence of the convex polytope

(X + kerΠ1) ∩ Ri(T, S)(3.14)

on T, S and X ∈ Ri(T, S).
Write aP for the quotient space aP/ kerΠ1, and make the natural identification of

the dual space of aP with spanΠ1. The projection map aP → aP sending X ∈ aP to
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its projection, to be denoted X, in aP sends polytopes to polytopes, so the projection
of Ri(T, S) is a polytope Ri(T, S).

The dependence of the set (3.14) on X is clearly through X. To simplify matters, we
will consider only points X ∈ Ri(T, S) close to zero, in a sense to be defined presently.

The point 0 = kerΠ1 lies in Ri(T, S) since kerΠ1 ⊇ kerΠ0 intersects Ri(T, S), and
it is an extreme point because of the inequalities (sgnλ)λ ≥ 0, λ ∈ Π1, that hold on
Ri(T, S). The polytope Ri(T, S) has finitely many facets F through 0; the boundary
half-space corresponding to one such facet F is given by an inequality of the form∑

λ∈B

cF
λλ ≥ 0,(3.15)

for some numbers cF
λ, λ ∈ B.

Lemma 3.5 For any well-situated (T ′, S ′), the inequality (3.15) defines a boundary
half-space of Ri(T ′, S ′).

Proof That the half-space defined by (3.15) is a boundary half-space of Ri(T, S) is
equivalent to the following statement: The point

∑
λ∈B cF

λλ is among those µ ∈
spanΠ1 such that µ(X) ≥ 0 for all X ∈ Ri(T, S) and is not the non-trivial convex
combination of non-proportional elements of this set. We must prove that if we
replace (T, S) with (T ′, S ′), this statement is still true.

By the theory of the polar [5, Theorem 6.4] and the extremality of
∑

λ∈B cF
λλ, the

inequality (3.15) can be written as a linear combination of the inequalities (3.7) and
(3.8). Furthermore, if we take X ∈ Ri(T, S) a pre-image of 0 ∈ F, then each inequality
that appears in the above linear combination with non-zero coefficient is actually an
equality at X. Let Λ [resp. W ] be the set of functionals appearing in equalities from
(3.7) ′ [resp. (3.8) ′] that hold at X. Then we have an equality

∑
λ∈Λ

dλλ +
∑
	∈W

d		 =
∑
λ∈B

cF
λλ,

for some constants dλ, d	. The set span(W )+ a∗Q is of the form a∗R for some parabolic

subgroup R ⊆ Q. The point X lies in RR
P(T, S) and in

⋂
λ∈Λ∪B Hλ

(
B(T)
)

, so by
Lemma 3.3 and the well-situatedness of (T, S), span(Λ∪B)∩ a∗R = ∅, and so all the
constants d	 must be 0. Therefore the inequality (3.15) is a linear combination just
of inequalities from (3.7), and so takes the form∑

λ∈B

cF
λλ ≥ cB(T),

for some constant c. The constant c must clearly be 0.
Going now to Ri(T ′, S ′), we see that taking the same linear combination of the

inequalities (3.7) (with T ′ instead of T), we find that the inequality (3.15) holds also
on Ri(T ′, S ′). If the point

∑
λ∈B cF

λλ were a non-trivial convex combination of non-
proportional functionals µ ∈ spanΠ1 that are non-negative on all of Ri(T ′, S ′), then
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we could reason as above to find that these functionals are also non-negative on all
of Ri(T, S), and so obtain a contradiction to the above-stated extremality of

∑
cF
λλ.

This completes our proof.

The functional
λB =

∑
λ∈B

(sgnλ)λ

is non-negative on all Ri(T, S) (and vanishes on the non-empty set (kerΠ1)∩Ri(T, S))
for any well-situated (T, S). The proof of Lemma 3.5 implies that the value of λB at
each extreme point Y (T, S) =

⋂
H∈H1(T,S)∪H2(T,S) H of Ri(T, S) is determined from

the equalities in (3.7) ′ that define hyperplanes H1(T, S), so that there exists a con-
stant cY independent of T and S such that for any well-situated (T ′, S ′), we have
λB

(
Y (T ′, S ′)

)
= cyB(T ′), where Y (T ′, S ′) is the extreme point of Ri(T ′, S ′) given

in Lemma 3.4. Therefore, for well-situated (T, S), the minimal non-zero value of λB

on the extreme points of Ri(T, S) is given by 2δ ′B(T) for some non-zero constant δ ′

independent of T and S. Since the non-zero extreme points of Ri(T, S) are projections
of those extreme points of Ri(T, S) where λB is non-zero, and λB is left invariant by
projection to aP, the hyperplane {X ∈ aP | λB(X) = δ ′B(T)} of aP separates 0 from
the other extreme points of Ri(T, S).

Let Ri(δ ′,T, S) be the set of X in Ri(T, S) satisfying

λB(X) =
∑
λ∈B

(sgnλ)λ(x) ≤ δ ′B(T).(3.16)

The boundary hyperplanes of Ri(δ ′,T, S) are exactly the boundary hyperplanes of
Ri(T, S) that intersect (kerΠ1) ∩ Ri(T, S), and the hyperplane λB = δ ′B(T) from
(3.16). This is because every face of Ri(T, S) that does not intersect kerΠ1 is the
convex hull of a collection of extreme points of Ri(T, S) not in kerΠ1, and so has no
points satisfying (3.16). This argument also shows that the projection Ri(δ ′,T, S) of
Ri(δ ′,T, S) to aP is a pyramid with apex 0 whose boundary half-spaces are exactly
those given by (3.15) and (3.16).

We want to examine the dependence of (3.14) on X, T, S, with (T, S) well-situated,
and X in the interior of Ri(δ ′,T, S). A basic example is the intersection of translates
of the line y = z = 0 with the octahedron R ⊂ R3 given by

0 ≤ y + z, y − z, x + y − z, x + y + z ≤ B(T)

(the polytope 0 ≤ y + z, y − z ≤ δB(T), δB(T) ≤ x + y − z, x + y + z ≤ B(T) is
similar); this models the points of the intersection (X + kerΠ1)∩ Ri(T, S) in TP + a

Q
P

when dim a
Q
P = 3. The intersection

(
(x0, y0, z0) + L

)
∩ R, (x0, y0, z0) ∈ Int(R),

is a line segment and each of its two endpoints lies on a boundary hyperplane of R.
The two hyperplanes on which the end points lie are x + y − z = 0, x + y + z = B(T)

https://doi.org/10.4153/CJM-2001-006-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-006-1


A Truncated Integral of the Poisson Summation Formula 143

if z0 ≥ 0 and are x + y + z = 0, x + y − z = B(T) if z0 ≤ 0. Therefore, the extreme
points of (

(x0, y0, z0) + L
)
∩ R

are linear in T and in (x0, y0, z0) on a specified side of z0 = 0. We will see that the
general situation is similar.

Notice that λB(X + kerΠ1) = λB(X), so that for any point X in Ri(δ ′,T, S), the
polytope (3.14) equals (X + kerΠ1) ∩ Ri(δ ′,T, S).

Given X in the interior Int Ri(δ ′,T, S) of Ri(δ ′,T, S) and an extreme point Y of
the polytope (3.14), there is a face F of Ri(δ ′,T, S) such that

(X + kerΠ1) ∩ affspan F = {Y}.(3.17)

Since X ∈ Int Ri(δ ′,T, S), λB(Y ) < δ ′B(T), so F is not contained in the hyperplane
λB = δ ′B(T). Therefore F intersects kerΠ1, so that affspan F ∩ Ri(T, S) is a face of
Ri(T, S) of dimension dim F. Since (3.17) contains a unique point, elementary linear
algebra implies that

|(Z + kerΠ1) ∩ (affspan F)| ≤ 1 for all Z ∈ aP.(3.18)

Suppose that (T ′, S ′) is also well-situated, that F is a face of Ri(δ ′,T, S) satisfying
(3.18), and that F ′ is the corresponding face of Ri(δ ′,T ′, S ′) (more precisely, the in-
tersection with Ri(δ ′,T ′, S ′) of the face of Ri(T ′, S ′) corresponding, by Lemma 3.4
and the remark after Lemma 2.4, to Ri(T, S) ∩ affspan F; F ′ clearly also satisfies
(3.18)). Suppose also that X ∈ Int Ri(δ ′,T, S), X ′ ∈ Int Ri(δ ′,T ′, S ′) satisfy

• (X + kerΠ1) ∩ affspan F contains a (unique) point, which is extreme in (X +
kerΠ1) ∩ Ri(δ ′,T, S),

• (X ′ + kerΠ1) ∩ affspan F ′ contains a (unique) point, which is not extreme in
(X ′ + kerΠ1) ∩ Ri(δ ′,T ′, S ′).

Then for some point (X ′ ′,T ′ ′, S ′ ′) ∈ aP×a×a on the line segment joining (X,T, S)
and (X ′,T ′, S ′) (so that (T ′ ′, S ′ ′) is well-situated and X ′ ′ lies in Int Ri(δ ′,T ′′, S ′′)),
X ′ ′ + kerΠ1 intersects a face F̃ of Ri(δ ′,T ′ ′, S ′ ′) strictly contained in F ′ ′, the face
corresponding for F. Notice also that since F ′ ′ � F̃ satisfies (3.18), there must exist
points Z arbitrarily close to X ′′ such that Z + kerΠ1 does not intersect F̃ (or even
affspan F̃). Let us examine these faces F̃.

Let F̃ be a maximal face of Ri(δ ′,T, S) such that for some X ∈ Int Ri(δ ′,T, S) the
intersection (X + kerΠ1) ∩ affspan F is non-empty, but that there exist points in any
neighbourhood of X such that the corresponding intersection is empty. We will call
all such faces problematic. The face F̃ must intersect kerΠ1, so the projection H of
affspan F to aP is a subspace. In fact, maximality of F̃ is easily seen to imply that H is
actually a hyperplane through 0 in aP, and so can be given by an equality

∑
λ∈B

dF̃
λλ = 0.(3.19)
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An argument similar to that in Lemmas 3.4 and 3.5 shows that given a problematic
face F̃ of Ri(δ ′,T, S), and any well-situated (T ′, S ′), the corresponding face F̃ ′ of
Ri(δ ′,T ′, S ′) is also problematic and its projection to aP is a hyperplane given by the
equation (3.19). The complement in Ri(δ ′,T, S) [resp. Ri(δ ′,T, S)] of the union over
all problematic faces F̃ of Ri(δ ′,T, S), of the hyperplanes in aP [resp. aP] determined
by (3.19), is a finite, disjoint union of convex open polytopes, each of whose closures
is given as the set of X in Ri(δ ′,T, S) [resp. Ri(δ ′,T, S)] satisfying

j(F)
∑
λ∈B

dF̃
λλ(X) ≥ 0, for each problematic face F̃,(3.20)

with j an assignment of ±1 to each problematic face of Ri(δ ′,T, S). Let Ji be the set
of assignments j such that the set of X in Ri(δ ′,T, S) satisfying (3.20) has non-empty
interior in aP. Then Ji is independent of well-situated (T, S).

Definition 3.5

(a) Given (T, S) well-situated, i ∈ I, j ∈ Ji , define Ri, j(δ ′,T, S) [resp. Ri, j(δ ′,T, S)]
to be the set of X in Ri(δ ′,T, S) [resp. Ri(δ ′,T, S)] satisfying the inequalities
(3.20).

(b) Given X ∈ aP, i ∈ I, define Ri(T, S)X to be the polytope

(
(X + kerΠ1) ∩ Ri(T, S)

)
− X ⊂ kerΠ1.

We have proven the following Lemma.

Lemma 3.6 Fix i ∈ I, j ∈ Ji . Suppose that we are given (T, S), (T ′, S ′) well-situated,
and X ∈ Ri, j(δ ′,T, S), X ′ ∈ Ri, j(δ ′,T ′, S ′). If Y is an extreme point of (3.14), let F
be a face of Ri(T, S) satisfying (3.17), and let F ′ be the corresponding face of Ri(T ′, S ′).
Then (X ′ + kerΠ1) ∩ F ′ is an extreme point of (X ′ + kerΠ1) ∩ Ri(T ′, S ′).

Corollary 3.7 Fix i ∈ I, j ∈ Ji , µ ∈ a∗. Then the integral

∫
Ri (T,S)X

eµ(H) dH, (T, S) well-situated, X ∈ Ri, j(δ
′,T, S),

is t-finite in X, T, S.

Proof This is immediate from Lemmas 3.6, 2.3, 2.4.

Notice lastly that for every j, the polytope Ri, j(δ ′,T, S) is again a pyramid with
apex 0, whose bounding half-spaces are given by the inequalities from (3.15), (3.20)
and (3.16) (giving the base), and so is independent of S.

Write Ri, j for the polyhedron bounded only by the inequalities from (3.15) and
(3.20); the penultimate step in the proof of our main theorem (3.3) will be noticing
that Ri, j does not depend on T or S.
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4 The Main Theorem

In [8], we saw that if the rank of G is at most two, then the truncated integral JT
o ( f , π)

was asymptotic, as T approached infinity in certain sub-cones of a+, to a t-finite
function of T. In this section we prove this for general G.

Theorem 4.1 Let G be a rational reductive group with anisotropic centre, and let π
be a rational representation of G on a finite-dimensional vector space V . For each π-
dependent cone C in a+, each geometric equivalence class o ∈ O, and each Schwartz-
Bruhat function f on V (A), there exists a unique t-finite function Po,C on a such that
for every sufficiently small ε > 0 and every c > 0 there exists a continuous seminorm
‖ · ‖ = ‖ · ‖ε,c on the space of Schwartz-Bruhat functions on V (A) such that∑

o∈O

| JT
o ( f , π)− Po,C(T)| < ‖ f ‖e−c‖T‖,

for all T in Cε. The function

PC(T) =
∑
o∈O

Po,C(T)

is also t-finite.

The basic outline of our proof of this theorem is the same as that of Theorem 6.1
of [8], however there are additional complications, arising from the constructions
of Section 3 and the need to watch the dependence on f . As in [8] we prove the
Theorem by examining differences Jo(T + S)− Jo(T) and then applying Lemma 4.2,
whose proof is easily adapted from the proof of Lemma 4.2 of [8].

Lemma 4.2 Suppose that { Jo}o∈O is a collection of continuous functions on an open
cone C in a+, and that there exists a collection, indexed by o ∈ O, of t-finite functions
{po} on a× a and a constant b such that for every c > 0 there exists a constant Cc such
that ∑

o∈O

| Jo(T + S)− Jo(T)− po(S,T)| < Cce
−c‖T‖,

for all S in C(1) and every T in the cone with ‖T‖ ≥ b. Then for each o ∈ O there exists
a unique t-finite function Po and for every c > 0 there exists a constant dc depending
only on c such that ∑

o∈O

| Jo(T)− Po(T)| < dcCce
−c‖T‖

for every T in the cone.

We used reduction theory to reduce the difference Jo(T +S)− Jo(T) to expressions
of the form (1.3). The idea now is to use the Poisson summation formula and the
constructions of Section 3 to reduce the problem to an application of Corollary 3.7.
A simplified example to keep in mind is the following: for f a Schwartz function on
R, the integral over x in the interval from 0 to T of

∑
n∈Z f (exn) approaches

(e−T − 1) f̂ (0) +

∫ ∞
0

∑
n �=0

ex f̂ (exn) dx
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as T tends to infinity in the cone R− of negative reals and approaches

T f (0) +

∫ ∞
0

∑
n �=0

f (exn) dx

as T tends to infinity in the cone R+ of positive reals. The t-finite functions T and
e−T − 1 are integrals of the form of Corollary 3.7.

Proof of Theorem 4.1 Fix a geometric equivalence class o ∈ O and an ε > 0 suffi-
ciently small that the set Cε is non-empty. Clearly, if for each sufficiently small ε > 0
there exists a t-finite function satisfying the above estimate, then it must be unique
and independent of ε. We need therefore only find an approximation on the cone Cε
for a fixed ε > 0. Let us also fix c > 0.

To apply Lemma 4.2, we must estimate the difference JT+S
o ( f , π)− JT

o ( f , π). Notice
that we can require ‖T‖ to be larger than any constant that is independent of f .
Throughout this proof this is what we will mean by choosing T sufficiently large.
Take T, S as in Lemma 4.2, with T sufficiently large. For the remainder of the proof
we will assume without mention that (T, S) are well-situated, so that T is sufficiently
large and lies in Cε, and that S lies in Cε(1). By a fixed constant we mean one that is
independent of T, S, o, and f .

Equation (1.3) states that

JT+S
o ( f , π)− JT

o ( f , π) =
∑

P⊆Q�G

∫
NP(Q)\NP(A)

∫
AP(R)0

e−2ρP(HP(a))φo(na, f P,K,T2 )

× ΓQ
P

(
HP(a),T − T2

)
ΓQ

(
HP(a)− T, S

)
da dn.

Since the outer sum is finite, we need consider only the term corresponding to a
fixed choice of P ⊆ Q � G. Since the function f P,K,T2 is Schwartz-Bruhat and is
independent of T and S, we can reduce the problem to constructing a t-finite function
that approximates the integral

∫
NP(Q)\NP(A)

∫
AP(R)0

e−2ρP(HP(a))φo(na, f )

× ΓQ
P

(
HP(a),T − T2

)
ΓQ

(
HP(a)− T, S

)
da dn,

(4.1)

for a Schwartz-Bruhat function f on V (A).
Recall that the set RP,Q(T, S) defined in the previous section is the support in aP of

the characteristic function sending X to

ΓQ
P (X,T)ΓQ(X − T, S).

Therefore the integral over a in (4.1) can be seen as an integral over the set of a such
that HP(a) lies in RP,Q

(
T− (T2)Q

P , S
)

. We spent a lot of effort in the previous section
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producing a decomposition of RP,Q(T, S); let us now make use of it. Consider a closed
region R = Ri

(
T − (T2)Q

P , S
)

in the decomposition

RP,Q

(
T − (T2)Q

P , S
)
=
⋃
i∈I

Ri

(
T − (T2)Q

P , S
)

of RP,Q

(
T − (T2)Q

P , S
)

given in the previous section. Since RP,Q

(
T − (T2)Q

P , S
)

is the
disjoint (modulo boundaries) union of these regions, and since there are only finitely
many of the regions, it is sufficient to estimate the integral for HP(a) in this one region
R. Recall that together with the region R we associated a disjoint decomposition of
the set Π of non-zero weights of π with respect to AP:

Π = Π− ∪Π0 ∪Π+;

define the weight spaces

V− =
⊕
λ∈Π−

V λ, V0 =
⊕

λ∈Π0∪{0}

V λ, V+ =
⊕
λ∈Π+

V λ.

Pick a basis of V (Q) so that each basis element is in some V λ. By setting the basis
to be orthonormal, we obtain an inner product v ·w and a norm ‖v‖ on V (Q) and on
V (R)—notice that for v,w ∈ V (Q), v ·w is rational. We also set V (Z) to be the set of
integral linear combinations of the elements of this basis, and similarly with V ( 1

N Z)
for any positive integer N .

Replace the integral over NP(Q) \ NP(A) by one over ωP, a relatively compact
convex fundamental domain of NP(Q) \ NP(A) containing the identity. With this
substitution, we need not worry about NP(Q)-invariance of our expressions.

We must prove that there exists a t-finite approximation of the integral∫
ωP

∫
exp R

e−2ρP(HP(a))φo(na, f ) da dn,

where exp R = {a ∈ AP(R)0 | HP(a) ∈ R}.
Notice that because of Lemma 1.1, we have the following equality:

φo(na, f ) =
∑
γ∈o

f
(
π(na)−1γ

)

=
∑

γ∈(o∩V0(Q))+V+(Q)

f
(
π(na)−1γ

)
+

∑
γ∈o∩V (Q) ′

f
(
π(na)−1γ

)
,

(4.2)

where V (Q) ′ is the set of γ ∈ V (Q) with a nonzero component in V−.
We claim that the second term of the right-hand side of (4.2) is an error term.

More precisely, we claim that there exists a fixed continuous seminorm ‖ · ‖1 on the
space fixed of Schwartz-Bruhat functions on V (A) such that the expression∫

exp R
e−2ρP(HP(a))

∫
ωP

∑
γ∈V (Q) ′

∣∣ f
(
π(na)−1γ

) ∣∣ dn da,(4.3)
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can be bounded by ‖ f ‖1e−c‖T‖ for T sufficiently large.
We prove this as follows. Define a function f on V (A) by

f (v) = sup
n∈ωP

∣∣ f
(
π(n−1)v

) ∣∣ .
Now, for a ∈ AP(R)0 with HP(a) in a+

P , the set a−1ωPa is contained in ωP, and so,
given any function h on NP(A),∫

ωP

h(a−1na) dn ≤ sup
n∈ωN

|h(n)|.(4.4)

(Notice that ωP has volume one.) Therefore, (4.3) is bounded by∫
exp R

e−2ρP(HP(a))

∫
ωP

∑
γ∈V (Q) ′

∣∣∣ f
(
π(a−1na)−1

(
π(a−1)γ

))∣∣∣ da

≤

∫
exp R

e−2ρP(HP(a))
∑

γ∈V (Q) ′

f
(
π(a−1)γ

)
da.

(4.5)

Since ωP is relatively compact, the function f is continuous and rapidly decreas-
ing, that is, f is a finite sum of functions of the form

∏
v fv, with each fv a continuous

function on V (Qv) that is compactly supported if v is finite, and decreases faster than
the inverse of any polynomial if v is infinite. In particular there is an integer

N1( f ) =
∏

p

pnp( f )

determined by the support of f such that the sum in (4.5) can be taken on
V ( 1

N1( f ) Z) ′ = V (Q) ′ ∩V ( 1
N1( f ) Z) instead of V (Q) ′.

By the definition of R we know that for a in exp R and λ ∈ Λ−i , we have

λ
(

HP(a)
)
< −δiB(T).

Since B is positive on C, B is larger on all Cε than some fixed multiple, depending on
ε, of the norm. This implies the existence of a fixed positive constant k depending on
ε such that

λ
(

HP(a)
)
≤ −k‖T‖, for all a ∈ exp R, λ ∈ Π−.(4.6)

There is also a fixed positive constant k ′, also depending on ε, so that

λ
(

HP(a)
)
≥ −k ′‖T‖, for all a ∈ exp R, λ ∈ Π0 ∪Π+.

The inequality (4.6) implies that we can force all the points π(a−1)γ, a ∈ exp R,
γ ∈ V ( 1

N1( f ) Z) ′, to lie outside any fixed compact set, by choosing T sufficiently large.
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Given a vector v ∈ V (A) and a weight λ ∈ Π, write vλ for the component of v
in V λ and vR for the component of v in V (R). Let µ be a weight in Π−. Since f is
rapidly decreasing the previous paragraph implies that we can bound

∣∣ f
(
π(a−1)γ

) ∣∣ ≤ ‖| f ‖|1 ‖π(a−1)γµR‖
−�
∏

λ∈Π\µ

(
1 + ‖π(a−1)γλR‖

n
)−1

= ‖| f ‖|1e�µ(HP(a))‖γµR‖
−�
∏

λ∈Π\µ

(1 + e−nλ(HP(a))‖γλR‖
n)−1

(4.7)

for all γ ∈ V ( 1
N1( f ) Z) ′ with γµ nonzero, by choosing T ∈ Cε sufficiently large, where

� ≥ n are arbitrarily large fixed integers. The norm ‖| · ‖|1 is given by

‖| f ‖|1 = sup
µ∈Π−

v∈V (A),vµR �=0

(
f (v)‖vµR‖

�
∏

λ∈Π\µ

(1 + ‖vλR‖
n)
)
,

and is continuous with respect to the topology on the space of Schwartz-Bruhat func-
tions on V (A).

For λ ∈ Π− and x a non-negative real number we can bound

(1 + e−nλ(HP(a))x)−1 ≤ (1 + x)−1.

For λ ∈ Π0 ∪Π+ and x a non-negative real number we can bound

1 + e−nλ(HP(a))x ≥ min(1, enλ(HP(a)))(1 + x)

≥ e−nk ′‖T‖(1 + x).

Also, since µ lies in Π−,
e�µ(HP(a)) ≤ e−�k‖T‖.

Putting together the above inequalities, we obtain that f
(
π(a−1)γ

)
is bounded by

‖| f ‖|1 exp
(
−(�k− |Π0 ∪Π+|nk ′)‖T‖

)
‖γµR‖

−�
∏

λ∈Π\µ

(1 + ‖γλR‖
n)−1,

where |Π0∪Π+| denotes the cardinality of the set. Since ‖γµR‖ ≥ 1/N1( f ) with N1( f )
a positive integer, and � ≥ n, we have

‖γµR‖
−� = ‖γµR‖

−(�−n) ‖γµR‖
−n ≤ N1( f )�−n

(
N1( f )n + 1

)
1 + ‖γµR‖

n
≤ 2N1( f )�(1 + ‖γµR‖

n)−1,

and so we obtain the bound

2N1( f )�‖| f ‖|1 exp
(
−(�k− |Π0 ∪Π+|nk ′)‖T‖

) ∏
λ∈Π

(1 + ‖γλR‖
n)−1
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of f
(
π(a−1)γ

)
; this bound is independent of the weight µ, and hence is valid for all

γ ∈ V ( 1
N1( f ) Z) ′. Choose n so large that for every λ ∈ Π, the sum

∑
γ∈V λ(Z)

(1 + ‖γR‖
n)−1

converges, and write Cλ for its value. Then for every natural number N and every
λ ∈ Π, the sum ∑

γ∈V λ( 1
N Z)

(1 + ‖γR‖
n)−1

is bounded by CλNn. Choose � ≥ n so that �k− |Π0 ∪Π+|nk ′ ≥ c + 1. Then (4.5) is
bounded by

2N1( f )�‖| f ‖|1e−(c+1)‖T‖

(∫
exp R

e−2ρP(HP(a)) da

) ∑
γ∈V ( 1

N1( f ) Z)

∏
λ∈Π

(1 + ‖γλR‖
n)−1

≤ 2N1( f )�‖| f ‖|1e−(c+1)‖T‖ vol(R)
∏
λ∈Π

∑
γ∈V λ( 1

N1( f ) Z)

(1 + ‖γR‖
n)−1

≤ C1N1( f )�+|Π|n‖| f ‖|1e−(c+1)‖T‖ vol(R),

where
C1 = 2

∏
λ∈Π

Cλ

is a fixed constant. By Lemma 3.4, the extreme points of the region R are linear in
T − (T2)Q

P and S for all sufficiently large T ∈ Cε and all S ∈ Cε(1), so the volume of
R is a polynomial in T and S. Therefore

C1N1( f )�+|Π|n‖| f ‖|1e−(c+1)‖T‖ vol(R) ≤ C ′1N1( f )�+|Π|n‖| f ‖|1e−c‖T‖

for some fixed constant C ′1. This completes our bound of (4.3), since the norm ‖ · ‖1

given by ‖ f ‖1 = C ′1N1( f )�+|Π|n‖| f ‖|1 is a fixed continuous seminorm.
Rewrite the first term of (4.2), with our fixed geometric equivalence class o, as∑

γ0∈o∩V0(Q)

∑
γ+∈V+(Q)

f
(
π(na)−1(γ0 + γ+)

)

=
∑

γ0∈o∩V0(Q)

∑
γ+∈V+(Q)

∫
V+(A)

f
(
π(na)−1(γ0 + v)

)
· ψ(γ+ · v) dv

=
∑

γ0∈o∩V0(Q)

∫
V+(A)

f
(
π(na)−1(γ0 + v)

)
dv

+
∑

γ0∈o∩V0(Q)

∑
γ+∈V+(Q)\{0}

∫
V+(A)

f
(
π(na)−1(γ0 + v)

)
ψ(γ+ · v) dv;

(4.8)
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the first step was Poisson summation on V+(Q). We have chosen here ψ to be the
standard additive character on A given in Tate’s thesis.

The following expression dominates the sum over all geometric equivalence classes
o of the second term of the right-hand side of (4.8):

∑
γ0∈V0(Q)

∑
γ+∈V+(Q)\{0}

∣∣∣∣
∫

V+(A)
f
(
π(na)−1(γ0 + v)

)
ψ(γ+ · v) dv

∣∣∣∣ .(4.9)

We claim that the integral over a and n of (4.9) is another error term. We prove this
as follows.

Define the function

fa,n(γ0, γ+) =

∫
V+(A)

f
(
π(an)−1(γ0 + v)

)
ψ(γ+ · v) dv, γ0 ∈ V0(A), γ+ ∈ V+(A).

For γ0 ∈ V (Q), γ+ ∈ V+ \ {0}, | fa,n(γ0, γ+)| is the summand in (4.9) corresponding
to γ0 and γ+. By (4.4), we have the inequality∫

ωP

| fa,n(γ0, γ+)| dn ≤ sup
n∈ωP

| fa,n(γ0, γ+)|.

Notice that

fa,n(γ0, γ+) =

∫
V+(A)

f
(
π(n−1)π(a−1)(γ0 + v)

)
ψ(γ+ · v) dv

=

∫
V+(A)

f
(
π(n−1)

(
π(a−1)γ0 + π(a−1)v

))
ψ
(
π(a)γ+ · π(a−1)v

)
dv

= e2ρ+(HP(a))

∫
V+(A)

f
(
π(n−1)

(
π(a−1)γ0 + v

))
ψ
(
π(a)γ+ · v

)
dv

= e2ρ+(HP(a)) f1,n

(
π(a−1)γ0, π(a)γ+

)
,

where e2ρ+(HP(a)) is the Jacobian of the change of variables

v 	→ π(a)v, v ∈ V+(A)

on V+(A), for a ∈ AP(R). Now, the function f1,n is Schwartz-Bruhat for each n ∈ ωP

and continuous with respect to n. Since ωP is relatively compact the function fN on
V0(A)×V+(A) defined by

fN (v0, v+) = sup
n∈ωP

| f1,n(v0, v+)|, v0 ∈ V0(A), v+ ∈ V+(A)

is continuous and rapidly decreasing.
The integral over a and n of (4.9) is therefore bounded by∫

exp R
e(2ρ+−2ρP)(HP(a))

∑
γ0∈V0(Q)

∑
γ+∈V+(Q)\{0}

fN

(
π(a−1)γ0, π(a)γ+

)
da,(4.10)
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where, since the integrand is positive and the expression clearly converges, Fubini’s
theorem allowed the free interchange of integrals. Fubini’s theorem will trivially
apply through (4.23) because all integrals will be over compact sets of continuous
functions and its use will not be mentioned. The function fN is rapidly decreasing,
a ∈ exp R is real, so the sums in (4.10) can be taken in V ( 1

N2( f ) Z) instead of V (Q),
for some integer N2( f ) depending only on f .

Pick new fixed positive constants k, k ′ (depending on ε) so that

λ
(

HP(a)
)
≥ k‖T‖, for every a ∈ exp R, λ ∈ Π+,

λ
(

HP(a)
)
≤ k ′‖T‖, for every a ∈ exp R, λ ∈ Π0;

this again is possible because of the inequalities in (3.7). Let a ∈ exp R and γ+ ∈
V+( 1

N2( f ) Z) \ {0}, be arbitrary, and let µ ∈ Π+ be any weight in Π+ such that γµ+ is
non-zero. Then∥∥(π(a)γ+

)
R

∥∥ ≥ ‖π(a)(γµ+ )R‖ = eµ(HP(a))‖(γµ+ )R‖ ≥
1

N2( f )
ek‖T‖.

Since fN is rapidly decreasing, the following inequality holds for arbitrarily large in-
tegers � ≥ n, a ∈ exp R, γ0 ∈ V0( 1

N2( f ) Z), and γ+ ∈ V+( 1
N2( f ) Z) \ {0}, if T ∈ Cε is

sufficiently large:∣∣ fN

(
π(a−1)γ0, π(a)γ+

) ∣∣
≤ ‖| f ‖|2‖π(a)(γ+)µR‖

−�
∏
λ∈Π0

(
1 + ‖π(a−1)(γ0)λR‖

n
)−1

·
∏

λ∈Π+\µ

(
1 + ‖π(a)(γ+)λR‖

n
)−1

≤ 2N2( f )�‖| f ‖|2 exp
(
−‖T‖(�k− |Π0|nk ′)

) ∏
λ∈Π0∪Π+

(
1 + ‖(γ0 + γ+)λR‖

n
)−1

,

where ‖| · ‖|2 is a fixed continuous seminorm. Write � ′ = �k − |Π0|nk ′. We have
bounded the summand in (4.10) independently of the choice of µ, so (4.10) is
bounded by

2N2( f )�‖| f ‖|2e−�
′‖T‖

(∫
exp R

e(2ρ+−2ρP)(HP(a)) da

)

·
∑

γ∈(V0⊕V+)( 1
N2( f ) Z)

∏
λ∈Π0∪Π+

(1 + ‖γλR‖
n)−1

= 2N2( f )�‖| f ‖|2e−�
′‖T‖

(∫
exp R

e2ρ+−2ρP)(HP(a)) da

)

·
∏

λ∈Π0∪Π+

∑
γλ∈V λ( 1

N2( f ) Z)

(1 + ‖γλR‖
n)−1.

https://doi.org/10.4153/CJM-2001-006-1 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2001-006-1


A Truncated Integral of the Poisson Summation Formula 153

Choose n so large that the sum ∑
γλ∈V λ(Z)

(1 + ‖γλR‖
n)−1

converges for every λ ∈ Π0 ∪Π+, so that (4.10) is bounded above by

C2N2( f )�+|Π0∪Π+|n‖| f ‖|2e−�
′‖T‖

(∫
exp R

e(2ρ+−2ρP)(HP(a)) da

)
,(4.11)

for some fixed constant C2. Since the extreme points of R are linear in T− (T2)Q
P and

S, the expression in parentheses in (4.11) is bounded by the exponential of some fixed
multiple of ‖T‖. By choosing � sufficiently large we obtain that (4.10) is bounded by
C ′2N2( f )�+|Π0∪Π+|n‖| f ‖|2e−c‖T‖ for all sufficiently large T, where C ′2 is some fixed con-
stant. The seminorm ‖ · ‖2 given by ‖ f ‖2 = C ′2N2( f )�+|Π0∪Π+|n‖| f ‖|2 is continuous,
so that this term, too, is an error term.

We can now deal with the integral of the first summand of (4.8),∫
exp R

e−2ρP(HP(a))

∫
ωP

∑
γ∈o∩V0(Q)

∫
V+(A)

f
(
π(na)−1(γ + v)

)
dv dn da.(4.12)

We are trying to prove that this integral has a t-finite approximation.
Given a subset S of Π0, write s(S) for the set of weights in Π that vanish on all

(ker S) ∩ R = ker
(∑
λ∈S

(sgnλ)λ
)
∩ R;

by (3.7) we have s(S) ⊆ Π0.
Given v ∈ V , write supp v for the set of those weights λ such that v has a non-zero

component in the weight space V λ. Given a subsetΠ ′ ofΠ0, write

W0(Π ′) =
⊕
λ∈Π ′

V λ, W+(Π ′) =
⊕

λ∈Π+
0\Π

′

V λ,

W ′
0 (Π ′) =

{
v ∈W0(Π ′) | s

(
supp(v) ∩Π−0

)
= Π ′

}
.

Notice that W ′
0 (Π ′) is empty if s(Π ′) �= Π ′. By Lemma 1.1, we know that

o ∩
(

W ′
0(Π ′)(Q) + W+(Π ′)(Q)

)
=
(

o ∩W ′
0 (Π ′)(Q)

)
+ W+(Π ′) ′(Q).

We can write∑
γ∈o∩V0(Q)

F(γ) =
∑
Π ′⊆Π0

s(Π ′)=Π ′

∑
γ∈o∩W ′

0 (Π ′)(Q)

∑
γ+∈W+(Π ′)(Q)

F(γ + γ+),

for any function F on V0(Q); a vector γ ∈ σ ∩ V0(Q) appears in the summand
corresponding to Π ′ = s(supp γ ∩Π−0 ).
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There are only finitely many choices for Π ′. Make one and write W0 = W0(Π ′),
W+ =W+(Π ′), and W ′

0 =W ′
0 (Π ′). Consider the summand in (4.12) corresponding

to Π ′. It is

(4.13)∫
exp R

e−2ρP(HP(a))

∫
ωP

∑
γ∈o∩W ′

0 (Q)

∑
γ+∈W+(Q)

∫
V+(A)

f
(
π(na)−1(γ + γ+ + v)

)
dv dn da

=

∫
exp R

e−2ρP(HP(a))

∫
ωP

∑
γ∈o∩W ′

0 (Q)

∑
γ+∈W+(Q)∫

W+(A)⊕V+(A)
f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da.

We will next break up the sum over γ+ in (4.13).
Given a subset S ofΠ+

0 , write b(S) for the set of weights in Π+
0 that vanish on all

ker(Π ′ ∪ S) ∩ R = ker
( ∑
λ∈Π ′∪S

(sgnλ)λ
)
∩ R.

Given a subsetΠ ′′ ofΠ+
0 , write

U0(Π ′′) =
⊕

λ∈Π ′ ′\Π ′

V λ, U+(Π ′′) = V+ ⊕
⊕

λ∈Π+
0\Π

′ ′

V λ,

U ′0(Π ′′) = {v ∈ U0(Π ′ ′) | b(supp v) = Π ′′}.

We can write ∑
γ+∈W+(Q)

F(γ+) =
∑
Π ′ ′⊂Π+

0

b(Π ′ ′)=Π ′ ′

∑
γ+∈U ′0 (Π ′ ′)(Q)

F(γ+),

for any function F on W+(Q); a vector γ+ ∈W+(Q) appears in the summand corre-
sponding to Π ′′ = b(supp γ+).

There are only finitely many choices for Π ′′. Make one and write U0 = U0(Π ′′),
U+ = U+(Π ′ ′), and U ′0 = U ′0(Π ′ ′). The summand of (4.13) corresponding to it is

(4.14)

∫
exp R

e−2ρP(H(a))

∫
ωP

∑
γ∈o∩W ′

0 (Q)

∑
γ+∈U ′0 (Q)∫

W+(A)⊕V+(A)
f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da.

Let Π1 ⊆ Π0 be the set of weights in Π that vanish on all ker(Π ′ ∪Π ′′) ∩ R. This
latter polytope equals

ker
( ∑
λ∈supp(γ+γ+)

(sgnλ)λ
)
∩ R.(4.15)
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for any γ ∈W ′
0 , γ+ ∈ U ′0. Then

kerΠ1 ∩ R = ker(Π ′ ∪Π ′′) ∩ R,

soΠ1 also equals the set of weights inΠ0 that vanish on kerΠ1 ∩R. Recall that in the
previous section we defined a number δ ′ and a decomposition

Ri

(
δ ′,T − (T2)Q

P , S
)
=
⋃
j∈ J

Ri, j

(
δ ′,T − (T2)Q

P , S
)

of part of the region R = Ri

(
T − (T2)Q

P , S
)

, that depended onΠ1 so that the regions

RX = Ri(T, S)X defined in Lemma 3.5 behaved well for X in any given Ri, j(δ ′,T, S).
We will soon use this decomposition.

First, we break up the integral over a as follows. Let AP(R)0 ⊂ AP(R)0 be a com-
plement to the subgroup exp(kerΠ1) so that the natural projection p : AP(R)0 	→
aP = aP/ kerΠ1 is an isomorphism, and normalize Haar measures on these two
subgroups so that their product is da. We do this independently of f , T, S. Write
a = a0a, a0 ∈ exp(kerΠ1), a ∈ AP(R)0, for the canonical decomposition and write
exp R = {a | HP(a) ∈ R}. Then the integral (4.14) becomes

(4.16)

∫
exp R

e−2ρP(HP(a))

∫
exp RHP (a)

e−2ρP(HP(a0))

∫
ωP

∑
γ∈o∩W ′

0 (Q)

∑
γ+∈U ′0 (Q)∫

W+(A)⊕V+(A)
f
(
π(na0a)−1(γ + v)

)
ψ(γ+ · v) dv dn da0 da.

where exp RHP(a) is the exponential of the set RHP(a) = Ri

(
T − (T2)Q

P , S
)

H(a)
defined

in Lemma 3.5. We will see that the dependence of the innermost integral on a0 is
particularly simple.

We first show that NP preserves both U+(A) and W0⊕W+⊕V+. The two facts are
proven similarly, so we will consider only the second. It is clearly sufficient to prove
that π(n)V λ lies in W0 ⊕W+ ⊕ V+ =

⊕
µ∈Π ′∪Π+

0∪Π+
V µ for every vector vλ ∈ V λ,

λ ∈ Π ′ ∪Π+
0 ∪Π+. A weight µ in supp

(
π(n)vλ

)
is the sum of λ and a non-negative

linear combination of α ∈ ∆P, and so by the inequalities (3.7), must be at least as
large as λ on R. If µ is 0 or sgnµ = 1 we have nothing to show, while if sgnµ = −1,
then for any X ∈ (kerΠ ′) ∩ R, µ(X) must be both at most (since µ ∈ Π−) and at
least (since µ(X) ≥ λ(X)) zero, so that µ lies in Π ′, proving the fact.

We now prove that for a0 ∈ exp(kerΠ1), n ∈ NP(A), and w ∈W0(A)⊕W+(A)⊕
V+(A) =W0(A)⊕U0(A)⊕U+(A),

π(na0n−1)w − w lies in U+(A).(4.17)

We have already shown that π(n−1)w can be written in the form π(n−1)w = w0 +w+,
with w0 ∈W0(A) + U0(A), w+ ∈ U+(A). The action of a0 on W0 ⊕U0 is trivial, so

π(a0n−1)w = π(a0)(w0 + w+) = w0 + π(a0)w+,
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and hence
π(a0n−1)w − π(n−1)w = π(a0)w+ − w+ ∈ U+(A).

Since the action of NP preserves U+(A), we have proven (4.17) which implies that the
change of variables

v 	→ π(na0n−1)v +
(
π(na0n−1)γ − γ

)
is an isomorphism on W+(A)⊕V+(A) that does not change γ+ ·v for any γ+ ∈ U ′0(Q);
its Jacobian is e2ρ ′+(HP(a0)), where 2ρ ′+ is the sum of all weights in Π+ \ Π ′, including
multiplicities. The integral (4.16) therefore equals

∫
exp R

e−2ρP(HP(a))

(∫
RHP (a)

e(2ρ ′+−2ρP)(Y )dY

) ∫
ωP

∑
γ∈o∩W ′

0 (Q)∑
γ+∈U ′

0 (Q)

∫
W+(A)⊕V+(A)

f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da.

The region R = Ri

(
T − (T2)Q

P , S
)

breaks up as

R =
⋃
j∈ Ji

Ri, j

(
δ ′,T − (T2)Q

P , S
)
∪
(

R \ Ri

(
δ ′,T − (T2)Q

P , S
))
,

where the sets on the right are disjoint modulo boundary; this gives a similar decom-
position of exp R. We must estimate the contribution to (4.16) of the integral over a
in each piece of the decomposition of exp R.

We first claim that the last piece in this decomposition gives an error term, that

is, that the integral over a and Y with HP(a) + Y ∈
(

R \ Ri

(
δ ′,T − (T2)Q

P , S
))

of

e−2ρP(HP(a)) · e(2ρ ′+−2ρP)(Y ) times∫
ωP

∑
γ∈o∩W ′

0 (Q)

∑
γ+∈U ′0 (Q)

∣∣∣∣
∫

W+(A)⊕V+(A)
f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv

∣∣∣∣ dn(4.18)

can be bounded by ‖ f ‖3e−c‖T‖ for some fixed continuous seminorm ‖ ‖3. As with
(4.3) and (4.9), we can bound (4.18) by an expression of the form

e2ρ ′P(HP(a))
∑

γ∈W ′
0 ( 1

N3( f ) Z)

∑
γ+∈U ′0 ( 1

N3( f ) Z)

fN

(
π(a)−1γ, π(a)γ+

)
,

with fN a continuous, rapidly decreasing function on W0(A)×U0(A), and N3( f ) an
integer determined by the support of f . Also, there exists a fixed constant k ′ ′ such
that

e(2ρ ′+−2ρP)(HP(a))

∫
RP(a)

e(2ρ ′+−2ρP)Y dY
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is bounded by ek ′ ′‖T‖ for any a ∈ exp R, for all sufficiently large T ∈ Cε (recall that
RHP(a) is a slice in R = Ri

(
T − (T2)Q

P , S
)

).

Points X in R \ Ri

(
δ ′,T − (T2)Q

P , S
)

satisfy

∑
λ∈B

(sgnλ)λ(X) ≥ δ ′B
(

T − (T2)Q
P

)
,(4.19)

with B ⊂ Π1 a previously selected basis of spanΠ1. Since Π0 is finite and T is
sufficiently large, there exists a new fixed (and hence independent of Π1) constant k,
depending on ε, so that for each such X, some µ ∈ Π1 satisfies (sgnµ)µ(X) ≥ k‖T‖.

Now, let X ∈ R\Ri

(
δ ′,T−(T2)Q

P , S
)

, µ as in the previous paragraph, and γ be any
vector in W ′

0 (Q), γ+ in U ′0(Q). Sinceµ lies inΠ1, it vanishes on (4.15). The boundary
hyperplanes of R that contain (4.15) are all of the form (3.7) ′ or (3.8) ′; let λ1, . . . , λk

be corresponding functionals (so that each λi lies inΠ∪∆P ∪∆Q ∪ ∆̂Q ∪ ∆̂
Q
P ). The

theory of the polar (see [5, Theorem 6.4]) implies that

∑
λ∈supp(γ+γ+)

(sgnλ)λ(4.20)

is a positive linear composition of (sgnλi)λi , and that (sgnµ)µ is a non-negative
linear combination of (sgnλi)λi . All the constants involved in these linear combi-
nations can be chosen independently of T and S, since all the functionals lie in the
finite set Π ∪∆P ∪∆Q ∪ ∆̂Q ∪ ∆̂

Q
P . Therefore, (sgnµ)µ is at most a fixed multiple

of (4.20) and so there exists a new fixed constant k ′, depending on ε, such that some
λ ′ ∈ supp(γ + γ+) satisfies

(sgnλ ′)λ ′(X) ≥ k ′‖T‖.

At this point, we continue as with (4.10) to prove our claimed bound of (4.18).
Therefore we need only estimate the contribution to (4.16) of the integral over a of
the regions

exp
(

Ri, j

(
δ ′,T − (T2)Q

P , S
) )
=
{

a | HP(a) ∈ Ri, j

(
δ ′,T − (T2)Q

P , S
)}

(4.21)

for each j ∈ Ji .
Fix j ∈ Ji , and write exp R j(T) for the set (4.21), where we include the T to

remind ourselves of the dependence on T. The contribution of exp R j(T) is

(4.22)

∫
exp R j (T)

e−2ρP(HP(a))

(∫
RHP (a)

e(2ρ ′+−2ρP)(Y ) dY

) ∫
ωP

∑
γ∈o∩W ′

0 (Q)∑
γ+∈U ′

0 (Q)

∫
W+(A)⊕V+(A)

f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da,
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Corollary 3.7 says that the function Lemma 3.5 says that for a ∈ exp R j(T), the

extreme points of RHP(a) are linear in HP(a), T − (T2)Q
P , and S. Lemma 4.2 then

implies that the integral

X 	→

∫
RX

e(2ρ ′+−2ρP)(Y ) dY, X ∈ Ri, j

(
δ ′,T − (T2)Q

P , S
)
,

is a fixed t-finite function of X, T − (T2)Q
P , and S, for all well-situated (T, S).

We can therefore write (4.22) as

(4.23)

∫
exp R(T)

e−2ρP(H)p(a))v
(

HP(a),T, S
) ∫

ωP

∑
γ∈o∩W ′

0 (Q)∑
γ+∈U ′0 (Q)

∫
W+(A)⊕V+(A)

f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da,

for a fixed t-finite function v on aP × a × a. This is still the integral of a continuous
function on a compact set and so converges absolutely. At this point, we are almost
done.

Write exp R for the set {a | HP(a) ∈ Ri, j}, where Ri, j is as at the end of Section 3.
The sum over all geometric equivalence classes of the absolute value of

(4.24)

∫
exp(Ri, j\R(T))

e−2ρP(HP(a))v
(

HP(a),T, S
) ∫

ωP

∑
γ∈o∩W ′

0 (Q)∑
γ+∈U ′

0 (Q)

∫
W+(A)⊕V+(A)

f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da

converges absolutely and can be shown to be an error term, since every point X in
R \ R(T) satisfies (4.19), so that the argument following (4.19) again applies.

However, the sum of (4.23) and (4.24) is the (absolutely convergent) integral

(4.25)

∫
exp Ri, j

e−2ρP(HP(a))v
(

HP(a),T, S
) ∫

ωP

∑
γ∈o∩W ′

0 (Q)∑
γ+∈U ′0 (Q)

∫
W+(A)⊕V+(A)

f
(
π(na)−1(γ + v)

)
ψ(γ+ · v) dv dn da,

which is a t-finite function in T and S, since its dependence on them arises only
through the function v(·,T, S). The seminorm ‖·‖ needed in the statement of the the-
orem can be chosen to be the sum of all the seminorms that appeared when bounding
each error term.

The sum of (4.25) over all geometric equivalence classes converges, and is again
t-finite, as the function v does not depend on o. This completes the proof of the
Theorem.
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Remark The proof of theorem implies (just as in [8]) that the integral∫
G(Q)\G(A)

∑
γ∈V (Q)

f
(
π(g−1)γ

)

converges if and only if the linear functional

∑
λ∈Π

max(mλλ, 0)−
∑
α∈Σ

max(mαα, 0)

is negative on a \ {0}, where mλ and mα denote the multiplicity of the weight in the
representations π and Ad, respectively. The sufficiency of this condition for conver-
gence of the integral is due to Weil [13]. Its necessity was apparently also known, and
is due to Igusa.

Fix one π-dependent cone C. The above theorem shows that on this cone, the
functions JT

o ( f , π) approximate t-finite functions. As in [8], the proof of the theorem
allows us to explicitly produce the non-constant terms of each of the t-finite functions
Po,C, so all we need to completely determine the functions Po,C is the constant term
with respect to any point in a. Let T0 be the unique point in a such that

H(w−1
s ) + s−1T0 = T0

for every element s of the Weyl group of (G,A), where ws is any representative of s
in G(Q); the existence of T0 is the statement of Lemma 1.1 of [2]. Write Po,C(T) as
a finite linear combination of functions eλ(T−T0)(T − T0)n, λ ∈ a∗, n a nonnegative
integer, and set Jo,C to be the constant term, that is the term where both λ and n
equal zero. Then the basic form of the truncated Poisson summation formula for the
representation π of G on V and the function f on V (A) is the following theorem,
proven exactly as in [8].

Theorem 4.3 ∑
o∈o

Jo,C( f , π) =
∑
õ∈Õ

Jõ,C( f̂ , π̃).

Remark Notice that because the weights of π̃ are the negatives of the weights of π,
that the cones C determined by π and π̃ are the same.

The definition of Jo,C( f , π) depended on a number of choices. The methods of
[8] (based on those in [2]) show that the distributions Jo,C are independent of ω and
T1, and that if s is an element of the Weyl group of (G,A) and J ′ denotes the constant
term of the truncated integral with respect to the non-standard minimal parabolic
subgroup w−1

s P0ws, then

Jo,C( f , π) = J ′o,s−1C( f , π).

If the representation π is the Adjoint representation, then this formula does depend
on our choice of K, but for other representations it need not.
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