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CURVES WITH CONTINUOUS CURVATURES IN
EUCLIDEAN SPACES

VlTALY USHAKOV

A class of curves of minimal smoothness for which one can build the Frenet frame,
Prenet's formulae and osculating planes is described.

1. SMOOTHNESS

To construct the classical Frenet frame and Prenet equations for a curve 7 c En,
one needs the curve to be Cn smooth. Indeed, given 7 in natural (arc-length)
parametrisation r(s) (throughout the paper s denotes the natural parameter of a
curve), the Frenet frame {ei(s)}" and the curvature functions {fci(s)}?~ satisfy the
Frenet equations

(1)

ei = kie2

e.2 = - fc iei +

'i+l

en-i = -kn-2en-2

en = -kn-ien-i

with e\ — r (see for example, [2, pp.61-63]). Hence {ej(s)}" and (fcj(s)}" can be
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394 V. Ushakov [2]

evaluated from r(s) by the formulae:

e1=r

ki = \\ei\\ e2 = -7-e.x
fci
I

k2 - \\e2 + kiei\\ e3= —(e2 + kiei)

(2) A3 = j|e3 -h A:2e2|| e4 = — (e3 + k2e2)

1
™n — 2 = ||6»—2 "4" kn—3&n—3 11 Cn—1 = T (^n—2 "I" "-n—3^n —3)

^ - 2

^n-i = | |en-i + fcn_2en_2|| en = (en_i + fcn_2en_2).

Naturally, we assume that the curve is essentially n-dimensional, that is, all the cur-
vatures are positive. Therefore, the radius vector r(s) has to be differentiated n times
and it seems reasonable to require the curve to be Cn smooth. In such a case we have

Ki fc O , . . . , Kt t O , . . . , Kr,_i fc O ,

ei e Cn-\ . . . , e< e Cn~\ ..., en_x € C\ en G C°,

but in fact en G C1, if we notice that en can be evaluated as the direction of the
orthogonal complement of span {ei , . . . , en_i} which is C1.

On the other hand, given n — 1 positive continuous functions {fc^s)}^ , one can
recover a curve (unique up to motions) in En with the curvatures fcj(s) and the natural
parameter s. It can be done by employment of the theorem of existence and uniqueness
of the solution of a system of linear ordinary differential equations to the Prenet system
(1). Since the functions {A^}""1 are continuous, given an arbitrary initial orthonormal
frame {ej(0)}" one can recover the moving orthonormal frame {ei(s)}" and it is C1

smooth. The final radius vector of the curve r(s) — j * e\{t)dt + r(0) is C2 smooth
and is defined up to a choice of the initial point r(0) and the initial orthonormal frame
(e i (0)}" . Thus,

(4) {fci(s)}""1 e C°, (ei(s)}" e C1, r (s)GC2.

Comparing (3) and (4) it is easy to see that if k, are only continuous, the curve is
only C2 smooth and not higher. In fact, for a curve satisfying (1) we have

r e C3 <=> fci G C \ A;2,...,fcn_i G C°.
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Indeed, r = e\, r — ei — fcie2, r" — fcie2 + fcie2. Similarly,

i Cn~2, k2 G C n " 3 , . . . , *„_! G C°—as in (3).

Therefore, given continuous curvatures we can recover only a C2 smooth curve.
But given a C2 curve we can obtain neither the set of curvatures, nor the Frenet frame:
we can only reach e\, e2 and fci. Thereby the following natural question arises: to
describe the exact class of curves for which the Frenet theory is satisfied (that is, the
class of curves with continuous curvatures). At the moment we can only conclude that
the standard analytic property of smoothness of radius vector is not flexible enough. A
curve must be C2, need not be C3 but nevertheless has to satisfy some other conditions
of goodness—evidently more geometric than smoothness of the radius vector.

This "paradox in differentiability" was noted by Hartman and Wintner in [1] for
curves in E3. They tried to clear up the situation in [1, pp.770-773] and later in [3].
In the first work the theorem of existence and uniqueness of the curve 7 € E3 with
prescribed continuous curvature k\ and continuous torsion fc2 was stated (Theorem VI)
but the actual class of curves was not enunciated. The second work, on the contrary,
begins with the definition of the class. However, this definition is 3-dimensional in
principle and is directed rather at the treatment of rectilinear sections of a curve: a
curve r(s) € E3 is called a Frenet curve if r(s) € C2 (and consequently e\ = f € C 1 ,
hi — \\ei\\ = \\r\\ € C° are well-defined but e2 is not since k\ is allowed to be vanishing)
and there exists a unit vector es(s) such that e$ J. e\, e^ £ C1, e$ is linearly dependant
on the cross product e% x e\.

In our opinion the following approach is more promising. Considering the Frenet
system (1) we can observe that the object subjected to differentiation is not the radius
vector r(s) itself but only the vectors of the Frenet frame {ei}". For instance, r(s)

can be only C2 smooth, hence e\ e C1, k\ 6 C° . But it can occur that the nondif-
ferentiability of e.\ — k\ • e2 is inherent in the length of the vector rather than in its
direction. That is, the function k\ is only continuous while the vector e2 € C 1 .

Therefore, the first thing we should take care of is the differentiability of the direc-
tion rather than the length. Denoting the direction of a vector a by dir (a) = a/ ||a||,
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(5)

the set of proper analytic conditions for r is going to be

ei = r e C1 <=$> r € C2

e2 = dir(e!) € C1

e3 = dir(e2 + fciei) G C1

ei = dir(ei_i + fci_2ei_2) S C1

en_i = dir(en_2 + fcn_3en_3) e C1

and en e C1 because en — (span{ei,. ..,en_i}) . These analytic conditions are
weaker than r £ Cn. They still look not very aesthetic but we can endow them with
quite distinct geometric sense by introducing the following definition.

DEFINITION 1: For a curve r(s) and the point r(so);
the osculating 2-plane n?, is the plane given by r(so) -t-span{ei,e2};
the osculating 3-plane TT3 is the plane given by r(so) + span{ei,e2)e3}; et cetera
the osculating (n — l)-plane 7rn_i is the plane given by r(so) + span{ei,.. . e n - i } .
For the sake of completeness let us proclaim the tangent line r(so) + span{ei} to be
the osculating l-plane. Hence we have the nested osculating planes ni C TT2 C • • • C
7rn_! C En (the flag).

Below (Part 2) we shall demonstrate the consistency of Definition 1 with the tra-
ditional one and for now we are going to complete a geometric interpretation of the
system (5). The definitions of vectors ej in (5) look nicer than in (2), but we would
still like to understand the origin of the strange items like fciei in the sum e2 + fciei.
It turns out that they are assigned to remove the projection of e2 onto the osculating
plane TT2 and leave only the projection onto (n2)

x • In fact, the Frenet equation

ei = -ki-id-i +kie.«ei+i

is just the decomposition of e.{ in the sum of the orthogonal projections on Wi and
(TTJ)-1-. Thus, for example,

Moreover, we can replace here the vector e2 by an arbitrary vector from TT2(S): the
derivative of any such a vector (rather, a vector field a(s) = a1(s)ei(s)+a2(s)e2(s)) has
the projection on (TT2)-

L which is collinear to e3. In other words, e3 gives the direction
of infinitesimal change (rotation) of the osculating plane TT2 ; e4 is the direction of
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infinitesimal displacement of the osculating plane TT3 , et cetera. And if by TTJ is meant
the set of derivatives of all possible vector fields from TTJ , the conditions (5) become

= dir(proj(ir2).L(7r2))

(6) I

en_i = dir(proj ( i r n 2 ) ±(7rn_2)) .

Now a geometric interpretation of the conditions (5) can be presented:

ei(s) € C1 <==> 3! tangent (osculating 1-plane) and it is C 1 smooth;

e2(s) G C 1 <«=> 3! osculating 2-plane and it is C 1 smooth;

(7) ^ ( s ) G C 1 <=> 3! osculating 3-plane and it is C 1 smooth;

en_i(s) 6 C 1 <=> 3! osculating (n - l)-plane and it is C 1 smooth.

REMARK. Further relaxation of smoothness conditions, say to e< € Co>1 (the Lipschitz
condition of order 1) instead of e* 6 C1 appears impossible since in this case the
direction of the vector ej+i is not well-defined.

Finally we can state two equivalent theorems: an analytic Theorem 1 and a geo-
metric Theorem 2.

THEOREM 1. A curve 7 C En possesses continuous curvatures if and only if its
radius vector r(s) satisfies the system (5) with the set {ei}" defined by (2).

THEOREM 2 . A curve 7 C En possesses continuous curvatures if and only if at
every point the flag of osculating planes n\ C ir2 C • • • C 7rn_i C E" exists and is
unique and this flag is C1 smooth.

Therefore, the class of curves, defined by the conditions (2) + (5) seems quite rich
in content and deserves the name of the class of Frenet curves.

Note, such a definition is quite consistent with the definition by Wintner [3] cited
earlier. Moreover, in our terminology that long definition becomes perfectly transpar-
ent: a curve is called a Frenet curve if it possesses a C1 smooth Frenet frame {e^!-
Therefore, Wintner's definition is different from ours only by dropping the condition of
uniqueness of the frame (rather, there is freedom for e2 or e^, while the tangent vector
d is well defined)—that should be expected when we want to consider the curves with
rectilinear sections.
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2. OSCULATING PLANES

Traditionally, the osculating A;-plane of a curve r(s) at the point r(so) is denned
as the plane through r(so) spanned by r'(s0), . . . , r^(s0). We have dropped the
condition of multiple differentiability of r(s) but still can define what is required. And
even in two ways.

DEFINITION 2: The osculating k-plane of r(s) at r(so) is the A;-plane TT̂  which
is closest to the curve r(s) among all fc-planes passing through r(s0). The closeness
between a curve and a plane is measured in terms of the order of osculation—the order
of smallness of the distance from r(s) to the plane: dist(r(so + As),7Tfc). For the
osculating A;-plane the order of osculation is k + 1, that is, dist(r, Wk) ~ (As)fc+1.

DEFINITION 3: The osculating k-plane of r(s) at r(s0) is the limit position of
A;-planes passing through k + 1 distinct points r(si), ... , r(sk+i) as Sj —> so.

We restrict ourselves to the demonstration of equivalence of Definition 1 and Def-
inition 2 for curves from the class. However, one can show the equivalence of them to
Definition 3 (see [2, pp.32-34]).

THEOREM 3 . For a curve r(s) C En possessing continuous curvatures, the plane
TTfc-' »"(so)+span{ei(so), • • • ,efc(s0)} (with {ei} given by (2)) is the closest to the curve
at r(so) among all k -planes through r(so). The order of osculation of nk and r(s) at
r(so) is k + 1 and for any other k-plane the order is smaller.

PROOF: Without loss of generality we assume s0 = 0, r(0) = 0. Let us decompose
the curve r(s) by the basis {ei(0)}":

(8)

We intend to show

r(s) = a'(s)e,(0).

(9)

a1 = s + o(s)

a2 = i*!(0)*

a3 = i

1
TV.
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It is not difficult to see that this system implies the conclusion of Theorem 3.

If r(s) were Cn the system (9) could be rewritten as follows

| ( ^ ) W ( 0 ) - ( r ( i ) ( 0 ) , e j ( 0 ) ) = 0 (i < j)

[ (a»")O)(0) = (rtf>(0)>ei(0)) = fci(O) • . . . • *,-_!«)) ,

where j runs through the values 1 to n. The same condition but with fixed i instead
of j has the form

(rW( 0 ) , e i (0 ) )=0 (j>i)

where i runs 1 t o n . The last system, as can be easily seen, is implied by

r « = (d)**"1) = (fcie2)(i-2) = (Aiei + A2e2 + fc1fc2e3)
(i-3)

= Biei + B2e2 H h Bi_iej_i + kik2 ... fcj_iei

(here Aj, Bi are some functions depending on kj and their derivatives).

Since r(s) is not C" we have to change somehow the techniques of proof of the
formulae (9). Prom r € C2 we can still extract

r(0) = 0 <^> a^O) = 0
r(0) = ci(0) ^ ^ ai(0) = 6\

r(0) = fci (0)e2 (0) ^ a< (0) = *i (0)62 ,

which gives

a1 =s + o(s2)

(10) < ^ - ^ ( O ^ + o^ 2 )

a i = o(s2) for z > 2 .

The next condition e2(s) G C 1 allows us to evaluate the coefficients of s3 for the
system (9). We intend to show that

a* = o(s3) for i > 3 .

Indeed, from e2(s) = r(s)/ki(s) e C1 we have
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The coefficients of e3(0) give

WO) = lim
a3(s) _ lim ——.

) s fcj(,UJ »->o s

Using (10) we have the first equation of (11). In the same way by considering coefficients
of ej(0), i > 3 we have the rest of the system (11). Combining (10) and (11) one has

a1 = s + o{s2)

(12)
3 =

D

a* = 0(s
3) for i > 3 .

In the next step we shall use the condition e3(s) €E C1 in order to have

(13)
a4 - iIT1

a* = o(sA) for i > 4 .

4 + o(s4)

(2)So, e3(s) = (l/k2)((r/ki)' + kir) € C1. Evaluating the derivative of e3 at 0 gives

-fc2(0)e2(0) + fc3(0)e4(0) ^ e3(O)

ffl sa m
The coefficients of e4(0):

l/a4V

*i(o) r «4(

Using a4(s) — o(s3) it is clearly seen that the second and the fourth limits vanish. The
third limit vanishes too:

lim - I — (0) — lim - lim -
(12)

J
.. 1 Llim - hmo [

*!(0)
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It remains to consider the first limit. As a4(s) = o(s3) let a4(s) = ( l /4! )Cs 4 + o(s4).

Then the first limit is

MO) = T T T T lim - lim -
A;2(0) »-»ost-+o t [kiis + t) h(s)

fci(0)fc2(0)"

So, C = fci(0)A;2(0)^3(0) as was claimed in (13). The same reasoning for the coefficients

of ej (i > 4) gives the rest of the system (13).

Similarly, the condition 64(5) € C 1 provides the coefficients of s5 in (9), et cetera. D
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