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Abstract

We re-examine the equation of state for the nucleonic and hyperonic inner core of neutron stars that satisfies the 2M�
observations as well as the recent determinations of stellar radii below 13 km, while fulfilling the saturation properties of
nuclear matter and finite nuclei together with the constraints on the high-density nuclear pressure coming from heavy-ion
collisions. The recent nucleonic FSU2R and hyperonic FSU2H models are updated in order to improve the behaviour of
pure neutron matter at subsaturation densities. The corresponding nuclear matter properties at saturation, the symmetry
energy, and its slope turn out to be compatible with recent experimental and theoretical determinations. We obtain the
mass, radius, and composition of neutron stars for the two updated models and study the impact on these properties of the
uncertainties in the hyperon–nucleon couplings estimated from hypernuclear data. We find that the onset of appearance
of each hyperon strongly depends on the hyperon–nuclear uncertainties, whereas the maximum masses for neutron stars
differ by at most 0.1M�, although a larger deviation should be expected tied to the lack of knowledge of the hyperon
potentials at the high densities present in the centre of 2M� stars. For easier use, we provide tables with the results from
the FSU2R and FSU2H models for the equation of state and the neutron star mass–radius relation.
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1 INTRODUCTION

The equation of state (EoS) of matter inside neutron stars
has received a lot of attention over the last decades (Lattimer
& Prakash 2004, 2007; Oertel et al. 2017). Besides black
holes, neutron stars (usually observed as pulsars) are the most
compact known objects in the universe. Their bulk features,
such as mass and radius, strongly depend on the properties
of matter in their interior and, hence, on the EoS.

With regards to mass determinations, the most precise mea-
surements of masses are clustered around the Hulse–Taylor
pulsar of 1.4M� (Hulse & Taylor 1975). However, accurate
values of approximately 2 M� have been determined very re-
cently. This is the case of the PSR J1614−2230 of M = 1.97
± 0.04M� (Demorest et al. 2010) and the PSR J0348+0432
of M = 2.01 ± 0.04M� (Antoniadis et al. 2013).

As for radii, precise determinations do not yet exist due
to the difficulties in modelling the X-ray spectra emitted by
the atmosphere of a neutron star (Verbiest et al. 2008; Ozel,
Baym, & Guver 2010; Suleimanov et al. 2011; Lattimer &
Lim 2013; Steiner, Lattimer, & Brown 2013; Bogdanov 2013;

Guver & Ozel 2013; Guillot et al. 2013; Lattimer & Steiner
2014a; Poutanen et al. 2014; Heinke et al. 2014; Guillot &
Rutledge 2014; Ozel et al. 2016; Ozel & Psaltis 2015; Ozel &
Freire 2016; Lattimer & Prakash 2016). Nevertheless, most
of these analysis seem to favour small radii below 13 km
(Fortin et al. 2015). High-precision X-ray space missions,
such as the ongoing NICER (Neutron star Interior Compo-
sition ExploreR) (Arzoumanian et al. 2014), will shed some
light by offering simultaneous measurements of masses and
radii (Watts et al. 2016), whereas neutron-star radii are ex-
pected to be measured with a precision of 1 km by means of
gravitational-wave signals coming from neutron-star mergers
(Bauswein & Janka 2012; Lackey & Wade 2015).

In view of these findings and future observations, it is op-
portune to analyse whether theoretical models for the EoS
of dense matter can satisfy both the 2M� maximum mass
constraint and radii below 13 km. Moreover, these models
should fulfil the saturation properties1 of nuclear matter and

1 Saturation properties refer to the physical characteristics of infinite sym-
metric nuclear matter at the density ρ0, where the energy per particle, E/A,
presents a minimum.
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finite nuclei (or atomic nuclei). On the one hand, in order to
obtain small neutron star radii, a softening of the pressure of
neutron matter, and hence of the nuclear symmetry energy,
around 1–2 times saturation density n0 (n0 ≈ 0.16 fm−3) is re-
quired (Lattimer & Prakash 2007; Tsang et al. 2012; Ozel &
Freire 2016). On the other hand, the total pressure should be
stiff enough in order to sustain 2M� neutron stars. Very few
models can reconcile simultaneously both constraints (small
radius and large masses) and, at the same time, produce a pre-
cise description of finite nuclei (Jiang, Li, & Fattoyev 2015;
Horowitz & Piekarewicz 2001a, 2001b; Chen & Piekarewicz
2015a; Sharma et al. 2015).

Furthermore, as density increases inside neutron stars,
the transition from nuclear to hyperonic matter would be
favoured energetically (Ambartsumyan & Saakyan 1960).
Thus, the EoS softens as new degrees of freedom, hyperons,
appear (Glendenning 1982) leading to smaller neutron stars
masses, below the 2M� observations. This is known as the
‘hyperon puzzle’, whose solution requires a new mechanism
to stiffen the EoS: stiffer hyperon–nucleon and/or hyperon–
hyperon interactions, repulsive three-body forces with hyper-
ons, new hadronic degrees of freedom that push the onset of
appearance of hyperons to higher densities or the phase tran-
sition to quark matter below the hyperon onset [see ref. Chat-
terjee & Vidana (2016) and references herein].

In a recent paper (Tolos, Centelles, & Ramos 2017), we
have obtained the EoS for the nucleonic and hyperonic inner
core of neutron stars by reconciling the 2M� mass observa-
tions with the recent analyses of radii below 13 km for neutron
stars. Moreover, we have fulfilled the saturation properties
of nuclear matter and finite nuclei (Tsang et al. 2012; Chen
& Piekarewicz 2014) as well as the recent constraints ex-
tracted from nuclear collective flow (Danielewicz, Lacey, &
Lynch 2002) and kaon production (Fuchs et al. 2001; Lynch
et al. 2009) in heavy-ion collisions (HICs). The study was
performed in the relativistic mean-field (RMF) theory for de-
scribing both the nucleon and hyperon interactions and the
EoS of the neutron star core. Two models were formulated,
denoted as FSU2R (with nucleons) and FSU2H (with nucle-
ons and hyperons), based on the nucleonic FSU2 model of
Chen & Piekarewicz (2014).

In the present paper, we update the parameters of our two
models in order to improve the behaviour of the EoS of pure
neutron matter (PNM) at subsaturation densities by avoiding
possible instabilities in the low-density region. We determine
the properties at saturation of the modified interactions and
we compare our results for the symmetry energy and the slope
of the symmetry energy to recent experimental and theoretical
determinations, while providing predictions for the neutron
skin thickness of the 208Pb and 48Ca nuclei. Finally, we rein-
vestigate the mass–radius relationships for the two models,
and estimate the impact on the neutron star masses, radii,
and composition of the uncertainties in the hyperon–nucleon
couplings.

The paper is organised as follows. In Section 2, we present
the RMF model for the determination of the EoS in beta-

equilibrated matter. In Section 3, we show the newly cal-
ibrated nucleonic FSU2R and hyperonic FSU2H models.
Then, in Section 4, we display the results for the mass–radius
relationship for neutron stars and in Section 5, we estimate
the impact on the stellar properties of the uncertainties in
the hyperon–nucleon couplings. We finally summarise our
results in Section 6. Tables with numerical data of the EoSs
are provided in the Appendix.

2 THEORETICAL FRAMEWORK

In the covariant field theory of hadronic matter, the baryons
are treated as Dirac particles that interact through the ex-
change of mesons (Serot & Walecka 1986). The formalism
has been in wide use over the last four decades for describing
the properties of the nuclear EoS and of finite nuclei in a rela-
tivistic quantum framework. A contemporary formulation of
the Lagrangian density of the theory (Serot & Walecka 1986,
1997; Glendenning 2000; Chen & Piekarewicz 2014) may
be written in terms of the contributions from the baryons (b),
leptons (l=e, μ), and mesons (m = σ , ω, ρ, and φ) as

L =
∑

b

Lb + Lm +
∑

l

Ll ,

Lb = �̄b(iγμ∂μ − qbγμAμ − mb

+ gσbσ − gωbγμωμ − gφbγμφμ − gρbγμ
�Ib �ρ

μ)�b,

Ll = ψ̄l

(
iγμ∂μ − qlγμAμ − ml

)
ψl ,

Lm = 1

2
∂μσ∂μσ − 1

2
m2

σ σ 2 − κ

3!
(gσNσ )3 − λ

4!
(gσNσ )4

− 1

4
�μν�μν + 1

2
m2

ωωμωμ + ζ

4!
(gωNωμωμ)4

− 1

4
�Rμν �Rμν + 1

2
m2

ρ �ρμ�ρ
μ + �ωg2

ρN �ρμ�ρ
μg2

ωNωμωμ

− 1

4
PμνPμν + 1

2
m2

φφμφμ − 1

4
FμνFμν, (1)

where �b and ψ l stand for the baryonic and leptonic Dirac
fields, respectively. The mesonic and electromagnetic field
strength tensors are �μν = ∂μων − ∂νωμ, �Rμν = ∂μ�ρν −
∂ν �ρμ, Pμν = ∂μφν − ∂νφμ, and Fμν = ∂μAν − ∂νAμ. The
isospin operator is represented by the vector �Ib. The strong
interaction coupling of a meson to a certain baryon is denoted
by g (with N indicating nucleon) and the electromagnetic
couplings by q, while the masses of the baryons, mesons,
and leptons are denoted by m.

The coupling constants of the above Lagrangian encode
in an approximate way the complicated nuclear many-body
dynamics. The gσN and gωN couplings of the isoscalar σ and
ω mesons to the nucleon determine the energy per particle
and density of the nuclear matter saturation point, and, thus,
are instrumental for the ground-state properties of finite nu-
clei. The gρN coupling of the isovector ρ meson to the nu-
cleon is key for the nuclear symmetry energy. Essentially,
the symmetry energy measures the energy cost involved in
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changing all the protons into neutrons in nuclear matter
(Li et al. 2014). Therefore, the gρN coupling impacts on
the properties of heavy neutron-rich nuclei and of neutron
stars. The Lagrangian density (1), moreover, incorporates
self-interactions of the meson fields. The σ -meson self-
interactions, with the κ and λ couplings, were introduced
by Boguta & Bodmer (1977) and allowed for the first quan-
titatively successful descriptions of nuclear matter and finite
nuclei within the relativistic theory. These couplings soften
the EoS at moderate densities and allow one to obtain a re-
alistic compressibility of nuclear matter (Boguta & Bodmer
1977; Boguta & Stoecker 1983) in agreement with the values
extracted from experiments on nuclear giant resonances and
HICs.2 The quartic self-coupling ζ of the vector ω meson
was introduced by Bodmer (1991). The ζ coupling must be
non-negative to prevent abnormal solutions of the vector field
equation of motion (Bodmer 1991; Mueller & Serot 1996). It
then implies an attractive non-linear interaction that softens
the EoS for high densities (Bodmer 1991), thereby directly
affecting the structure and maximum mass of neutron stars
(Mueller & Serot 1996). Finally, a mixed interaction between
the ω and ρ mesons, with the coupling �ω, modulates the den-
sity dependence of the nuclear symmetry energy—which is
related to the pressure of neutron matter—and influences the
neutron radius of heavy nuclei and the radii of neutron stars
(Horowitz & Piekarewicz 2001a, 2001b).

The Dirac equations for the different baryons and leptons
are obtained from the Lagrangian density (1) as

(iγμ ∂μ − qb γ0 A0 − m∗
b

−gωb γ0 ω0 − gφb γ0 φ0 − gρb I3b γ0 ρ0
3 )�b = 0,(

iγμ ∂μ − ql γ0 A0 − ml

)
ψl = 0, (2)

where the quantities

m∗
b = mb − gσbσ (3)

denote the effective masses of the baryons. Let us mention
that only the time-like component of the vector fields and the
third component of isospin have been written in Equation (2)
due to the assumption of rotational invariance and charge con-
servation. The field equations of motion of the mesons follow
from the respective Euler–Lagrange equations, see for exam-
ple, Serot & Walecka (1986). Altogether, the theory leads to
a set of coupled non-linear field equations that involve strong
couplings. The exact solution of these equations is extremely
complicated if one attempts to quantise both the baryon fields
and the meson fields. Physically, the baryons are the con-
stituents of the nuclear medium, whereas the mesons are the
carriers of the interaction between baryons. Thus, in order to
be able to solve the equations of the theory, it is meaningful to
replace the meson field operators by their expectation values,
which then act as classical fields in which the baryons move.
This approach is known as the RMF theory (Serot & Walecka

2 Note that it has been suggested that the nuclear compressibility could be
also inferred from gravitational wave observations of pulsar glitch recov-
eries (Bennett, van Eysden, & Melatos 2010).

1986). Denoting the meson mean fields in uniform matter as
σ̄ = 〈σ 〉, ω̄ = 〈ω0〉, ρ̄ = 〈ρ0

3 〉, and φ̄ = 〈φ0〉, the mesonic
equations of motion in the mean-field approximation for the
uniform medium are

m2
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2
g3

σN σ̄ 2 + λ

3!
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σN σ̄ 3 =
∑
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m2
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b
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ρN g2
ωN ω̄2ρ̄ =

∑
b

gρbI3bnb,

m2
φφ̄ =

∑
b

gφbnb , (4)

where I3b is the third component of the isospin of a given
baryon, and we use the convention that for protons I3p =
+1/2. The quantities

ns
b = 〈�̄b�b〉,

nb = 〈�̄bγ
0�b〉, (5)

are, respectively, the scalar and vector densities for the b
baryon. In terms of the baryonic and leptonic Fermi momenta,
kFb and kFl, and of the respective Fermi energies

EFb =
√

k2
Fb + m∗2

b ,

EFl =
√

k2
Fl + m2

l , (6)

the scalar and vector densities for the baryons and the vector
densities for the leptons are expressed as

ns
b = m∗

b

2π 2

[
EFbkFb − m∗2

b ln
kFb + EFb

m∗
b

]
,

nb = k3
Fb

3π 2
,

nl = k3
Fl

3π 2
. (7)

With the above ingredients, one can compute the energy den-
sity and the pressure of the system. The energy density is
given by

ε =
∑

b
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where the energy densities of baryons and leptons take the
expressions

εb = 1

8π 2

[
kFbE 3

Fb + k3
FbEFb − m∗4

b ln
kFb + EFb

m∗
b

]
,

εl = 1

8π 2
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kFlE

3
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FlEFl − m4
l ln
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]
. (9)
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Table 1. Parameters of the models FSU2R and FSU2H of this work. The mass of the nucleon is mN = 939 MeV.

mσ mω mρ

Model (MeV) (MeV) (MeV) g2
σN g2

ωN g2
ρN κ λ ζ �ω

FSU2R 497.479 782.500 763.000 107.5751 182.3949 206.4260 3.0911 − 0.001680 0.024 0.045
FSU2H 497.479 782.500 763.000 102.7200 169.5315 197.2692 4.0014 − 0.013298 0.008 0.045

We note that in obtaining Equation (8) for the energy density,
the equations of motion (4) were used to rewrite the contribu-
tion to ε of

∑
b(gωbω̄nb + gρbρ̄I3bnb + gφbφ̄nb). Finally, the

pressure can be computed using the thermodynamic relation

P =
∑

i

μini − ε, (10)

where the baryonic and leptonic chemical potentials are given
by

μb = EFb + gωb ω̄ + gρb I3b ρ̄ + gφb φ̄ ,

μl = EFl. (11)

The cores of neutron stars harbour globally neutral matter
that is in β-equilibrium. Therefore, the chemical potentials
and the number densities of the different particles in a neutron
star core are related by the conditions:

μi = biμn − qiμe ,

0 =
∑
b,l

qi ni ,

n =
∑

b

ni , (12)

where bi and qi denote, respectively, the baryon number and
the charge of the particle i. These relations, the Dirac equa-
tions (2) for the baryons and leptons, and the field equa-
tions (4) for the mesonic fields σ , ω, ρ, and φ, are to be
solved self-consistently for a given total baryon density n.
Once the chemical potential and the density of each species
have been obtained at the given n, one can determine the en-
ergy density and pressure of the neutron star matter for each
density.

3 MODELS FOR THE EQUATION OF STATE

From the Lagrangian (1), in Tolos et al. (2017), we formu-
lated the models FSU2R (with nucleons) and FSU2H (with
nucleons and hyperons), with a motivation for accommodat-
ing massive enough stars and the new astrophysical mea-
surements of small stellar radii within a self-consistent mi-
croscopic theory of the EoS for the core of neutron stars.
Note that this type of approach is different from—but com-
plementary to—the methods where the astrophysical and nu-
clear observables are mapped onto the EoS through piecewise
parameterisations of the EoS (Raithel, Ozel, & Psaltis 2016;
Lattimer & Prakash 2016; Ozel & Freire 2016). To build
our models, we started from the nucleonic FSU2 model of

Chen & Piekarewicz (2014) that reproduces heavy neutron
star masses but was not constrained to radii. The condition of
small stellar radii imposed a soft nuclear symmetry energy in
the theory. We showed that the resulting FSU2R and FSU2H
models, besides the mentioned astrophysical constraints, can
successfully describe the properties of finite nuclei and con-
form to the constraints on the nuclear EoS from kaon produc-
tion and collective flow in HICs (Fuchs et al. 2001; Lynch
et al. 2009; Danielewicz et al. 2002).

In the present work, we start by introducing a modification
of the parameters of our models FSU2R and FSU2H of Tolos
et al. (2017) in order to refine the behaviour of the EoS of
PNM in the region of subsaturation densities. We report the
new version of the parameters in Table 1 (it should be men-
tioned that the form of the equations of motion remains the
same irrespective of the specific values of the coupling con-
stants). We have changed the value of the quartic isovector–
vector coupling �ω of FSU2R and FSU2H from 0.05 in Tolos
et al. (2017) to 0.045. This has been done because it results
in a symmetry energy that is a little stiffer than before and
avoids a previous instability in the EoS of PNM for low sub-
saturation densities. As �ω has been changed, we have re-
fitted accordingly the value of the coupling g2

ρN between the
ρ-meson and the nucleons to obtain the same good repro-
duction of binding energies and charge radii of finite nuclei
as in Tolos et al. (2017). The values of the other parameters
of FSU2R and FSU2H are the same of Tolos et al. (2017).
Owing to the fact the �ω and g2

ρN couplings only contribute
in neutron-rich matter, the EoS of symmetric nuclear matter
(SNM), composed of the same number of protons and neu-
trons, is identical to that of our models FSU2R and FSU2H
in Tolos et al. (2017).

We collect in Table 2 a few characteristic isoscalar and
isovector properties at the nuclear matter saturation density
n0 for the present version of our models. In the work (Fortin
et al. 2015), the authors derived the constraint 1.7 � P(n0) �
2.8 MeV fm−3 for the pressure of neutron star matter at satura-
tion density. They deduced this constraint from the results of
the microscopic calculations of PNM performed by Hebeler
et al. (2013) using chiral two-nucleon and three-nucleon in-
teractions, which are in good agreement with the results by
Gandolfi, Carlson, & Reddy (2012) from Quantum Monte
Carlo calculations with the Argonne v18 nucleon–nucleon
potential plus three-nucleon forces. A narrower range 2.3
� P(n0) � 2.6 MeV fm−3 was estimated more recently by
Hagen et al. (2015) from ab initio calculations of nuclear
systems with chiral interactions. While our models FSU2R
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Table 2. Properties at saturation of the models FSU2R and FSU2H of this work. We show the
saturation density (n0), energy per particle (E/A), compressibility (K), and effective nucleon
mass (m∗

N/mN ) in symmetric nuclear matter, as well as the symmetry energy (Esym), slope
of the symmetry energy (L), curvature of the symmetry energy (Ksym), and pressure of pure
neutron matter (PPNM) at n0.

n0 E/A K Esym(n0) L Ksym PPNM(n0)
Model (fm−3) (MeV) (MeV) m∗

N/mN (MeV) (MeV) (MeV) (MeV fm−3)

FSU2R 0.1505 − 16.28 238.0 0.593 30.7 46.9 55.7 2.44
FSU2H 0.1505 − 16.28 238.0 0.593 30.5 44.5 86.7 2.30

and FSU2H of Tolos et al. (2017), with PNM pressures at
saturation of 2.27 and 2.06 MeV fm−3, fulfil the constraint of
Fortin et al. (2015), they are somewhat below the constraint
of Hagen et al. (2015). Now, with the new parameterisation
of our models, we are able to obtain PNM pressures at satu-
ration density of 2.44 MeV fm−3 in FSU2R and of 2.30 MeV
fm−3 in FSU2H (see Table 2) that are consistent with both the
predictions from chiral forces derived by Fortin et al. (2015)
and Hagen et al. (2015).

The EoS of PNM of the present FSU2R and FSU2H mod-
els differs from the results we showed in Tolos et al. (2017)
almost only for densities in the low-density region n � n0,
where the pressure of PNM is a little higher now. However,
above saturation density, the pressures of our current param-
eters and those of Tolos et al. (2017) are very similar. Conse-
quently, compared with Tolos et al. (2017), one may antici-
pate that the predictions for masses and radii of neutron stars
will not be drastically affected.

The slope parameter L of the symmetry energy, i.e., L =
3n0

(∂Esym(n)

∂n

)
n0

, has become a standard reference in the

literature for characterising the stiffness of the change of
the nuclear symmetry energy Esym(n) with density. In our
original version of the FSU2R and FSU2H models shown
in Tolos et al. (2017), the value of the symmetry energy at
saturation density was Esym(n0) = 30.2 MeV in both models,
while the slope parameter was L = 44.3 MeV in FSU2R and
L = 41 MeV in FSU2H. In the updated version of FSU2R and
FSU2H of the present work, these properties become Esym(n0)
= 30.7 MeV and L = 46.9 MeV in FSU2R and Esym(n0) =
30.5 MeV and L = 44.5 MeV in FSU2H (see Table 2). These
values suggest a relatively soft nuclear symmetry energy. We
have plotted in Figure 1 the ranges for Esym(n0) and L that
have been estimated in several recent works through the anal-
ysis of a variety of nuclear data from terrestrial experiments,
astrophysical observations, and theoretical calculations (Li
& Han 2013; Lattimer & Lim 2013; Roca-Maza et al. 2015;
Hagen et al. 2015; Oertel et al. 2017; Birkhan et al. 2017). It
can be seen that the predictions of FSU2R and FSU2H have
an overlap with the majority of these ranges. We would like to
remark that this is an a posteriori result, because the predicted
values of Esym(n0) and L are the consequence (Tolos et al.
2017) of having adjusted the FSU2R and FSU2H parameter
sets to reproduce neutron star radii of about 13 km, without

20 24 28 32 36
E sym

(n
0
) [MeV]

20

40

60

80

100

L
 [

M
eV

]

Oertel et al 2017
Roca-Maza et al 2015
Li-Han 2013
Lattimer-Lim 2013
Hagen et al 2015
Birkhan et al 2017
FSU2R
FSU2H

Figure 1. Slope of the symmetry energy (L) versus symmetry energy
[Esym(n0)] at the nuclear matter saturation density for the models FSU2R
and FSU2H discussed in text. The shaded regions depict the determinations
from Li & Han (2013), Lattimer & Lim (2013), Roca-Maza et al. (2015),
Hagen et al. (2015), Oertel et al. (2017), and Birkhan et al. (2017).

sacrificing maximum masses of 2M� nor the description of
binding energies and charge radii of atomic nuclei. Hence,
we interpret the reasonable agreement of our results with the
multiple constraints in Figure 1 as hinting at the plausibility
of the existence of neutron stars with relatively small radii.

The neutron matter EoS is also strongly related with the
neutron distribution in atomic nuclei. Models with softer
symmetry energies produce a thinner neutron skin �rnp (dif-
ference between the rms radii of the neutron and proton
density distributions) in nuclei (Alex Brown 2000; Horowitz
& Piekarewicz 2001a). Unfortunately, neutron densities and
neutron radii are poorly known to date because the distribu-
tion of neutrons in a nucleus is hard to measure. Our present
FSU2R and FSU2H models predict a neutron skin thickness
of 0.15 fm in the neutron-rich nucleus 208Pb. This predic-
tion is compatible with the range 0.13 � �rnp � 0.19 fm
for 208Pb extracted in Roca-Maza et al. (2015) from mea-
surements of the electric dipole polarisability of nuclei, the
value �rnp = 0.15 ± 0.03 fm determined from coherent pion
photoproduction in 208Pb at the MAMI facility (Tarbert et al.
2014), and the value �rnp = 0.302 ± 0.177 fm from par-
ity violating electron scattering on 208Pb performed at JLab
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(Abrahamyan et al. 2012; Horowitz et al. 2012).3 In the case
of the lighter nucleus 48Ca, we find a neutron radius of 3.55
fm with FSU2R and of 3.57 fm with FSU2H, and a neutron
skin of 0.166 fm with both models. The prediction is in good
accord with the ranges 3.47–3.60 fm for the neutron radius
and 0.12–0.15 fm for the neutron skin of 48Ca obtained in
Hagen et al. (2015) through ab initio calculations of the neu-
tron distribution of 48Ca using nuclear interactions derived
from chiral effective field theory; it also is in accord with
the neutron skin of 0.14–0.20 fm for 48Ca found from the
new measurement of the electric dipole polarisability in 48Ca
(Birkhan et al. 2017). Altogether, it appears that the proper-
ties of the symmetry energy of the proposed models for the
EoS, which are motivated by reproducing small neutron star
radii (see next section), are compatible within uncertainties
with different empirical and theoretical extractions of these
properties.

4 STELLAR PROPERTIES

Having access to the pressure and energy density of matter,
we can compute the properties of neutron stars by solving
the Tolman–Oppenheimer–Volkoff (TOV) equations (Op-
penheimer & Volkoff 1939). For static and spherically sym-
metric stars, the TOV equations read as

dP

dr
= − G

r2
(ε + P)

(
m + 4πr3P

) (
1 − 2Gm

r

)−1

,

dm

dr
= 4πr2ε, (13)

where r is the radial coordinate, m is the mass enclosed by
a radius r, and G is the gravitational constant. For a given
central density, the integration of these equations provides
the corresponding mass and radius of the star. By repeating
the calculation for different central densities, the mass–radius
(M–R) relation of neutron stars can be obtained.

Indeed, to solve the TOV equations for a neutron star, we
need the EoS of matter over a wide range of densities from
the centre to the surface of the star. The structure of a neutron
star is such that the heavy liquid core is surrounded by a thin
solid crust (Shapiro & Teukolsky 1983; Haensel, Potekhin,
& Yakovlev 2006). The transition from the core to the crust
occurs when the density of matter becomes lower than ap-
proximately 1.5 × 1014 g cm−3. Below this density, mat-
ter ceases to exist in a homogeneous liquid phase because
it is favourable that the protons concentrate with neutrons
in nuclear clusters, which arrange themselves in a crystal
lattice in order to minimise the Coulomb repulsion among
them (Baym, Bethe, & Pethick 1971b; Baym, Pethick, &

3 We note that while experimental data are always provided with the associ-
ated error bars, theoretical models like ours, after the values of the coupling
constants have been specified, make ‘exact’ predictions with no error bars.
In the future, it will be worth estimating error bars on our theoretical results,
following recent initiatives to assess statistical errors and error propagation
in nuclear functionals (Dobaczewski, Nazarewicz, & Reinhard 2014; Chen
& Piekarewicz 2014).

Sutherland 1971a; Shapiro & Teukolsky 1983; Haensel et al.
2006). In the inner layers of the crust, the nuclear clusters
are beyond the neutron drip point and the lattice is perme-
ated by a gas of free neutrons in addition to the electron gas,
whereas in the outer crust the nuclear clusters are neutron-
rich nuclei below the neutron drip point, embedded in the
electron gas. We have solved the TOV equations using the
FSU2R and FSU2H models for the EoS of the uniform mat-
ter of the liquid core of the star for densities above 0.09 fm−3

(≈1.5 × 1014 g cm−3), under the conditions of β-equilibrium
and global charge neutrality expressed in Equation (12) of
Section 2. At the densities of the crust, in the absence of cal-
culations with our models of the complex structures that can
populate this region of the star, we have used the EoS for
the crust of neutron stars that has recently been derived from
calculations based on the Brueckner theory in Sharma et al.
(2015).

The FSU2R model applies to nucleonic cores of neutron
stars, i.e., when the whole stellar core is assumed to consist
of neutrons, protons, electrons, and muons (‘npeμ’ matter).
In the dense inner region of a neutron star core, however, the
chemical potential may become so high that matter will be
able to undergo a transition to other states of the low-lying
octet of baryons, with hyperons appearing in the composition
(‘npYeμ’ matter). Thus, we have devised the FSU2H model
to allow for the presence of hyperons in the star interior (To-
los et al. 2017). In consequence, in the case of the FSU2H
EoS, besides the nucleon and meson couplings shown in
Table 1, we have considered the complete octet of baryons in
the Lagrangian density (1). We have fixed the corresponding
hyperon couplings from SU(3) flavour symmetry and from
information on hyperon optical potentials in hypernuclei. We
leave for the next section the discussion of the determination
of the hyperon couplings and the analysis of the influence of
the uncertainties associated with these couplings. Here, we
focus on the results for the masses and sizes of neutron stars
from the FSU2R nucleonic EoS and from the FSU2H hyper-
onic EoS with our baseline values for the hyperon couplings
(given in Section 5).

We display the results for the relation between mass and
radius of neutron stars in Figure 2. A few data on the maxi-
mum mass configuration and the 1.5M� configuration from
FSU2R and FSU2H are presented in Table 3. For complete-
ness, in Figure 2, besides the curves of FSU2R and FSU2H,
we also plot the M–R relations of two popular EoSs widely
used in astrophysical calculations. They correspond to the
Shen et al. EoS based on the relativistic TM1 nuclear mean
field model (Shen et al. 1998) and to the Lattimer–Swesty EoS
based on a non-relativistic Skyrme nuclear force (in its Ska
version) (Lattimer & Swesty 1991). Also shown is the result
of the recent EoS from the Brueckner theory with the Argonne
v18 potential plus three-body forces computed with the Ur-
bana model (Sharma et al. 2015). These additional EoSs are
all non-hyperonic. We have included in the same Figure 2 a
few recent astrophysical determinations of neutron star M–R
limits.
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Figure 2. Mass versus radius for neutron stars from the models FSU2R and
FSU2H of this work and from some models from the literature [Shen: (Shen
et al. 1998), L&S: (Lattimer & Swesty 1991), Brueckner: (Sharma et al.
2015)]. The thin horizontal bands indicate the heaviest observed masses
M = 1.97 ± 0.04M� (Demorest et al. 2010) and M = 2.01 ± 0.04M�
(Antoniadis et al. 2013). The vertical blue band at the back depicts the M–R
region constrained in Hebeler et al. (2013) from chiral nuclear interactions up
to n = 1.1n0 and the conditions of Mmax > 1.97M� and causality. The vertical
red band at the front shows the M–R region derived from five quiescent low-
mass X-ray binaries and five photospheric radius expansion X-ray bursters
after a Bayesian analysis (Lattimer & Steiner 2014b). The vertical striped
yellow band is the M–R constraint derived from the cooling tails of type-I
X-ray bursts in three low-mass X-ray binaries and a Bayesian analysis in
Nättilä et al. (2016) (model A of the paper).

The M–R curve from each EoS exhibits a maximum mass,
beyond which the star would become unstable against col-
lapse into a black hole. The heaviest known masses of neu-
tron stars are M = 1.97 ± 0.04M� in the PSR J1614–2230
pulsar (Demorest et al. 2010) and M = 2.01 ± 0.04M� in the
PSR J0348+0432 pulsar (Antoniadis et al. 2013). We depict
them by the horizontal bands in Figure 2. Both the nucle-
onic FSU2R EoS and the hyperonic FSU2H EoS are able to
provide maximum masses fulfilling the ≈2M� observational
limit, as well as the other EoSs shown in the same figure. We
note that FSU2R reaches the maximum mass with a fairly
compact stellar radius of 11.6 km (see Table 3). For canoni-
cal neutron stars with masses of 1.4–1.5M�, FSU2R predicts
a radius of 12.8 km. The recent astrophysical determinations
of neutron star radii from quiescent low-mass X-ray bina-
ries in globular clusters and X-ray bursters seem to point in
this direction (Guillot et al. 2013; Guillot & Rutledge 2014;
Guver & Ozel 2013; Heinke et al. 2014; Lattimer & Steiner
2014a, 2014b; Ozel et al. 2016). Although these determina-
tions are indirect and depend on stellar atmosphere models,
they overall converge in favouring small neutron star radii in

Table 3. Properties of the maximum mass and 1.5M� con-
figurations for nucleonic (npeμ) neutron stars calculated
with the FSU2R EoS and for hyperonic (npYeμ) neutron
stars calculated with the FSU2H EoS. From top to bot-
tom, mass, radius, compactness parameter GM/Rc2, surface
gravitational red shift zsurf = (1 − 2GM/Rc2)−1/2 − 1, and
the values of the number density, pressure, and mass-energy
density at the centre of the star.

Mmax configuration 1.5M� configuration

FSU2R FSU2H FSU2R FSU2H
(nuc) (hyp) (nuc) (hyp)

M/M� 2.05 2.02 1.50 1.50
R (km) 11.6 12.1 12.8 13.2
GM/Rc2 0.26 0.25 0.17 0.17
zsurf 0.45 0.40 0.24 0.23
nc/n0 6.3 5.8 2.7 2.3
Pc (1015 g cm−3) 0.62 0.46 0.11 0.09
εc (1015 g cm−3) 2.08 1.80 0.75 0.63

the range of about 9–13 km (Lattimer & Prakash 2016; Ozel
& Freire 2016). An accurate radius measurement by new ob-
servatories such as NICER (Arzoumanian et al. 2014), which
has begun operating aboard the International Space Station
in 2017 June, would represent a major step forward to cor-
roborate or modify these expectations.

The compromise between having large maximum masses
and small radii for canonical neutron stars is a challenging
constraint that rules out a large number of theoretical EoSs
(Lattimer & Prakash 2016; Ozel & Freire 2016; Oertel et al.
2017). This follows from the fact that the pressure of the
high-density EoS must be hard enough to sustain massive
stars, whereas the pressure at 1–2 times the nuclear satura-
tion density n0 must be, in contrast, effectively soft in order
to produce small radii for canonical mass stars. Given that the
pressure of neutron star matter in the vicinity of n0 is basi-
cally governed by the nuclear symmetry energy, the challenge
is particularly acute in relativistic field theoretical models
because the relativistic models usually have stiff symmetry
energies. As we have demonstrated with FSU2R, it is possi-
ble to obtain parameterisations of the considered relativistic
Lagrangian that meet both large stellar masses and—on con-
dition of a soft symmetry energy—radii smaller than ∼13 km
for M � 1.4M�, and that still provide an excellent reproduc-
tion of the binding energies and charge radii of finite nuclei
(Tolos et al. 2017). There are some other parameterisations
in the frame of the relativistic field theory that support these
findings, such as the recent RMF012 and RMF016 models
of Chen & Piekarewicz (2015b, 2015a). Indeed, the accu-
rately calibrated RMF016 model produces neutron stars of
2M� and gives radii of 13 km for stars of 1.4M� (Chen &
Piekarewicz 2015b, 2015a), in keeping with the predictions
of our FSU2R EoS.

When we allow for the appearance of hyperons in the neu-
tron star core with the FSU2R model, the maximum mass
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of the star experiences a reduction of the order of 15%, due
to the expected softening of the EoS, and then, with a maxi-
mum mass of 1.77M�, it falls short of the 2M� limit. In an
effort to shed some light on the question whether with exotic
degrees of freedom in the core, the star can satisfy the tar-
gets of 2M� maximum mass and small radius at canonical
mass, we have developed the hyperonic model FSU2H. In
FSU2H, we essentially have stiffened further the nucleonic
pressure above twice the saturation density, i.e., around the
onset of appearance of hyperons. This comes at the price of
a certain overpressure in SNM for densities n � 2n0 when
we compare it with the constraints deduced from the mod-
elling of collective flow in HICs (Danielewicz et al. 2002), cf.
Figure 1 of Tolos et al. (2017). Yet, the pressure of FSU2H
in PNM, shown also in Figure 1 of Tolos et al. (2017), fits
within the projected region from the collective flow studies.
Given that the β-equilibrated neutron-star matter is highly
asymmetric, we consider this model as sufficiently realistic
for describing neutron stars. The determination of narrower
constraints on the EoS of PNM at several times n0 from HIC
experiments (Russotto et al. 2016) in the future should be of
great help in this regard.

It can be observed in Figure 2 that the FSU2H model with
hyperons produces a comparable M–R relation to FSU2R
and satisfies, as mentioned, the observational limit of 2M�.
With respect to FSU2R, in FSU2H, the size of the radii has
increased by 0.2–0.5 km for neutron stars heavier than 1M�,
expectedly, from the stiffer pressure of the nucleonic sec-
tor above twice the saturation density. The onset of hyper-
ons occurs at a baryon density of 0.33 fm−3, or 2.2n0. The
maximum mass of 2.02M� calculated with FSU2H is char-
acterised by a radius of 12.1 km (see Table 3). For 1.5M�
stars, the hyperonic FSU2H EoS predicts radii of 13.2 km,
which, although on the upper edge, are still compatible with
the recent astrophysical indications of neutron star radii of
about 9–13 km (Lattimer & Prakash 2016; Ozel & Freire
2016). The numerical results for the EoS and M–R rela-
tion of the FSU2R and FSU2H models are tabulated in the
Appendix.

In closing this section, we ought to mention that the results
for stellar radii of our EoSs have been possible while obtain-
ing, within the same models, a realistic reproduction of the
properties of atomic nuclei and of several other constraints.
It seems unlikely that one may be able to account for sig-
nificantly smaller neutron star radii in the theory considered
here without abandoning the physical region of parameters.
Hence, a discovery of even smaller stellar radii could provide
evidence in favour of a phase transition to other degrees of
freedom in neutron star interiors (Dexheimer, Negreiros, &
Schramm 2015).

5 IMPACT OF UNCERTAINTIES IN THE
HYPERON COUPLINGS

We next discuss the determination of the values of the hy-
peron couplings in our FSU2H EoS and estimate the influ-

ence that the uncertainties in these couplings may have on
the predictions for neutron star masses and radii.

We recall that the potential felt by a hyperon i in j-particle
matter is given by

U ( j)
i (nj ) = −gσ i σ̄

( j) + gωi ω̄
( j) + gρi I3i ρ̄

( j) + gφi φ̄
( j), (14)

in our model, where σ̄ ( j), ω̄( j), ρ̄ ( j), and φ̄( j) are the meson
field values in j-particle matter while I3i denotes the third
component of the isospin operator. Flavour SU(3) symmetry,
the vector dominance model, and ideal mixing for the phys-
ical ω and φ mesons, permit relating the couplings between
the hyperons and the vector mesons to the nucleon couplings
gωN and gρN (Schaffner & Mishustin 1996; Banik, Hempel,
& Bandyopadhyay 2014; Miyatsu, Yamamuro, & Nakazato
2013; Weissenborn, Chatterjee, & Schaffner-Bielich 2012;
Colucci & Sedrakian 2013; Tolos et al. 2017), according to
the ratios

gω� : gω� : gω� : gωN = 2

3
:

2

3
:

1

3
: 1,

gρ� : gρ� : gρ� : gρN = 0 : 1 : 1 : 1,

gφ� : gφ� : gφ� : gωN = −
√

2

3
: −

√
2

3
: −2

√
2

3
: 1, (15)

and noting that gφN = 0. We reduce by 20% the coupling of
the � hyperon to the φ meson in order to obtain a �� bond
energy in � matter at a density n� 	 n0/5 of �B��(n0/5)
= 0.67 MeV, thereby reproducing the value extracted from
the 6

��He double � hypernucleus, also known as the Nagara
event (Takahashi et al. 2001; Ahn et al. 2013).

The coupling of each hyperon to the scalar σ meson field
is left as a free parameter to be adjusted to reproduce the hy-
peron potential in SNM, derived from hypernuclear data. It
is well known that a Woods–Saxon type potential of depth
U (N )

� (n0) ∼ −28 MeV reproduces the bulk of � hypernuclei
binding energies (Millener, Dover, & Gal 1988). As for the
� hyperon, a moderate repulsive potential could be extracted
from analyses of (π−, K+) reactions off nuclei (Noumi et al.
2002) done in Harada & Hirabayashi (2006) and Kohno et al.
(2006). Fits to �− atomic data (Friedman & Gal 2007) also
point towards a transition from an attractive �-nucleus po-
tential at the surface to a repulsive one inside the nucleus,
the size of the repulsion not being well determined. The po-
tential felt by a � hyperon in SNM is also quite uncertain.
Old emulsion data indicate sizable attractive values of around
U (N )

� (n0) = −24 ± 4 MeV (Dover & Gal 1983), while the
analyses of the (K−, K+) reaction on a 12C target suggest a
milder attraction (Fukuda et al. 1998; Khaustov et al. 2000).
Taking these experimental uncertainties into account, we al-
low the hyperon potentials in SNM to take the following range
of values:

U (N )
� (n0 ) = −28 MeV,

U (N )
� (n0 ) = 0 to 30 MeV,

U (N )
� (n0 ) = −18 to 0 MeV. (16)
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Figure 3. Hyperon single-particle potentials of our RMF models, as func-
tions of the nuclear density, in the case of isospin SNM (left panel) and
PNM (right panel). The bands result from varying the hyperon-σ couplings
within the values given in Equation (17) to account for the experimental
uncertainties of the hyperon potentials derived from hypernuclear data.

Note that we only consider uncertainties for the � and � po-
tentials, given the consensus on the � potential at saturation.
The range of values for the hyperon potentials in SNM give
rise to the following range for the hyperon-σ couplings:

gσ�/gσN = 0.611,

gσ�/gσN = 0.467 − 0.541,

gσ�/gσN = 0.271 − 0.316, (17)

where the lower values correspond to the most repulsive sit-
uation [U (N )

� (n0) = 30 MeV, U (N )
� (n0) = 0 MeV] and the

upper ones to the most attractive one (U (N )
� (n0) = 0 MeV,

U (N )
� (n0) = −18 MeV). In our baseline FSU2H model used

in the calculations of Section 4, we have adopted the values
U (N )

� (n0) = −28 MeV, U (N )
� (n0) = 30 MeV, and U (N )

� (n0) =
−18 MeV, which lead to the couplings gσ� = 0.611gσN, gσ�

= 0.467gσN, and gσ� = 0.316gσN.
The hyperon potentials are shown, as functions of the nu-

clear density, in Figure 3. The left panel shows the potentials
for isospin SNM, while the right panel corresponds to PNM,
which is closer to the conditions of beta stable neutron star
matter, where differences between the potentials for the dif-
ferent members of the same isospin multiplet can be seen.
In order not to overcrowd the figure, we have omitted the
potentials of the positively charged hyperons, as they do not
appear in the beta stable neutron star matter configurations
appropriate for the present study. The coloured bands enclose
the dispersion of results obtained employing the hyperon-σ
coupling ranges displayed in Equation (17). The range of cou-
plings has been determined from the uncertainties of the hy-
pernuclear data and, strictly speaking, corresponds to normal
nuclear matter density, n0. However, the coupling constants
are density independent in our model and we can then obtain
a range of values for the potential at any density. Specially

10 11 12 13 14 15
R [km]
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M
/M

FSU2H

Figure 4. Mass versus radius for neutron stars from the FSU2H model. The
band results from varying the hyperon-σ couplings within the values given
in Equation (17) to account for the experimental uncertainties of the hyperon
potentials derived from hypernuclear data.

important are the potentials around 2n0 and beyond, which
is the region of densities where hyperons are present in the
models explored here (Tolos et al. 2017). As can be seen
from the figure, the range of values for the hyperon poten-
tials at 2n0 in PNM are the following: U (N )

� (2n0) = 4 MeV,
U (N )

�− (2n0) = 84 to 130 MeV, U (N )
�0 (2n0) = 47 to 93 MeV,

U (N )
�− (2n0) = 14 to 42 MeV, and U (N )

�0 (2n0) = −22 to
5 MeV. We note that this range of values will strongly af-
fect the composition of the neutron star, as we will show at
the end of this section.

In Figure 4, we show the M–R relation for neutron stars
obtained with the FSU2H model. The band collects the re-
sults obtained varying the hyperon couplings to the σ meson
within the ranges in Equation (17), which produce maximum
masses that differ by at most 0.1M�. This is a small effect, as
it is obvious that the hyperon potentials at nuclear densities
of around 6n0 in the centre of 2M� stars (see Table 3) suffer
a much larger uncertainty than the one we extrapolated from
the normal nuclear densities characteristic of hypernuclear
data. Indeed, the uncertainties tied to our lack of knowledge
of the hyperon–nucleon and hyperon–hyperon interactions
around the hyperon onset density of ∼2n0 and beyond have
often been exploited to build up RMF models that produce
hyperonic neutron stars with maximum masses larger than
2M� (Weissenborn et al. 2012; Bednarek et al. 2012; van
Dalen, Colucci, & Sedrakian 2014; Oertel et al. 2015; Fortin
et al. 2017). As can be seen in the extensive analyses of vari-
ous models in Fortin et al. (2015), the maximum masses turn
out to be within a 0.3M� band. It is therefore clear that deter-
mining the hyperon interactions at higher densities, as could
be done from the analysis of HIC experiments (Morita, Furu-
moto, & Ohnishi 2015), would help constraining the models
in the appropriate regimes found in neutron stars.

Let us finish this section by showing, in Figure 5, the par-
ticle fractions as functions of the baryonic density, for the
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Figure 5. Particle fractions as functions of the baryonic density for the nu-
cleonic FSU2R model (upper panel) and the hyperonic FSU2H model (lower
panel). The bands in the lower panel result from varying the hyperon-σ cou-
plings within the values given in Equation (17) to account for the experimen-
tal uncertainties of the hyperon potentials derived from hypernuclear data.
The coloured lines guide the eye to help distinguishing each case properly
in the regions of overlapping bands.

FSU2H model (lower panel), where the coloured bands are
obtained for the range of hyperon-σ couplings employed in
this work. For completeness, we also show the particle frac-
tions for the nucleonic FSU2R model in the upper panel,
where we can see that the absence of negatively charged
hyperons maintains a constant population of electrons and
muons, and hence of protons and neutrons, already from
slightly above 2n0. As for the FSU2H model, we note that
all the particle fractions are affected by the hypernuclear data
uncertainties, even if these are encoded only in the � and �

couplings to the σ meson. Upon inspecting the range of den-
sities where hyperons may be present, we see that, although
one can generally conclude that hyperons appear around 2n0,
the order of appearance of each species is not determined,
owing to the uncertainties derived from hypernuclear data.
The first hyperon to appear can be either a � or a �−, the
latter case only in the less repulsive situation allowed by data,
namely when U (N )

� (n0) 	 0 MeV. In fact, when the � feels
its most repulsive potential value, it can even appear after
the �− hyperon. This happens when the � potential value
is on the most attractive side of the allowed region, namely
U (N )

� (n0) = −18 MeV. However, if one decreases the amount
of attraction, as data permits, the �− onset density is rapidly
pushed towards larger values, even beyond the maximum
density of 6n0 represented in the figure, which stands as a
representative central density of hyperonic stars. Summaris-
ing, although hyperons are present in the interior of neutron

stars modelled by the FSU2H interaction, the lack of precise
knowledge on the hyperon–nuclear interactions prevents one
from establishing the specific hyperonic composition in the
interior of the star.

6 SUMMARY

We have reinvestigated our previous results on the EoS for
the nucleonic and hyperonic inner core of neutron stars (Tolos
et al. 2017), that fullfil the 2 M� observations (Demorest et al.
2010; Antoniadis et al. 2013) and the recent determinations
of radii below 13-km region (Guillot et al. 2013; Lattimer
& Steiner 2014a; Heinke et al. 2014; Guillot & Rutledge
2014; Ozel et al. 2016; Lattimer & Prakash 2016), as well as
the saturation properties of nuclear matter and finite nuclei
(Tsang et al. 2012; Chen & Piekarewicz 2014) and the con-
straints extracted from HICs (Danielewicz et al. 2002; Fuchs
et al. 2001; Lynch et al. 2009). The two models formulated in
Tolos et al. (2017), the FSU2R (with nucleons) and FSU2H
(with nucleons and hyperons) models, have been updated by
improving the behaviour of PNM at subsaturation densities.
Above saturation density, the updated models and those of
Tolos et al. (2017) are very similar.

Using these updated interactions, we have obtained values
for the PNM pressure at saturation density of 2.44 MeV fm−3

in FSU2R and of 2.30 MeV fm−3 in FSU2H, that are consis-
tent with the estimates from chiral forces (Fortin et al. 2015;
Hagen et al. 2015). The symmetry energy and its slope at
saturation become Esym(n0) = 30.7 MeV and L = 46.9 MeV
in FSU2R and Esym(n0) = 30.5 MeV and L = 44.5 MeV
in FSU2H, thus being in good agreement with several re-
cent estimates based on terrestrial experiments, different
astrophysical observations, and theoretical calculations (Li
& Han 2013; Lattimer & Lim 2013; Roca-Maza et al. 2015;
Hagen et al. 2015; Oertel et al. 2017; Birkhan et al. 2017).
Furthermore, the reviewed FSU2R and FSU2H models pre-
dict a neutron skin thickness of 0.15 fm in 208Pb and of 0.166
fm in 48Ca, which turn out to be compatible with previous ex-
perimental and theoretical determinations (Roca-Maza et al.
2015; Tarbert et al. 2014; Abrahamyan et al. 2012; Horowitz
et al. 2012; Hagen et al. 2015; Birkhan et al. 2017).

With regards to the mass and radius of neutron stars, radii
below 13 km can be achieved because of the softening of the
symmetry energy around saturation density whereas, at the
same time, 2M� stars can be obtained as the pressure of
the high-density EoS is hard enough. These results are not
drastically changed when using the updated FSU2R and
FSU2H interactions as compared to the previous versions
in ref. Tolos et al. (2017), because of the similar EoSs pro-
duced above saturation density. The numerical tabulations of
the EoS and of the M–R relation from the models FSU2R
(npeμ matter) and FSU2H (npYeμ matter) as a function of
the number density n/n0 are shown in Tables A1 and A2 for
completeness.

However, the mass and composition of neutron stars might
be strongly affected due to the uncertainties of the hyperon–
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nucleon couplings. The values of the hyperon couplings are
determined from SU(3) flavour symmetry and from the avail-
able experimental information on hypernuclei, in particular,
by fitting to the optical potential of hyperons extracted from
the data. The coupling of each hyperon to the σ meson field
is left as a free parameter to be adjusted to reproduce the hy-
peron potential in SNM within the experimental uncertain-
ties. As a result, we have found that the onset of appearance
of the different hyperons strongly depends on the hyperon–
nuclear uncertainties, whereas the maximum masses differ
by at most 0.1M�, thus being less sensitive to the changes
on the hyperon–nucleon couplings. This latter conclusion has
to be taken with care, though, since the hyperon potentials
at densities in the centre of 2M� stars suffer much larger
uncertainties than the ones we have extrapolated from hy-
pernuclear data at saturation. Hence, a greater dispersion
of values for the maximum mass might be expected. The
progress in the characterisation of hyperon–nucleon inter-
actions in dense matter derived from chiral effective forces
(Haidenbauer et al. 2017), on the theoretical front, and from
studies of HICs (Morita et al. 2015), on the experimen-
tal front, should contribute greatly to narrow down these
uncertainties.
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APPENDIX

For ease of use, in this appendix, we provide in tabular form the
results for the EoS and the M–R relation calculated with the FSU2R
and FSU2H models discussed in the text.
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Table A1. Numerical data of the EoS for the core of neutron stars and of the M–R relation from the models FSU2R (npeμ matter) and
FSU2H (npYeμ matter), as a function of the number density n/n0 (with n0 = 0.1505 fm−3, cf. Table 2). The pressure P and mass–energy
density ε are in MeV fm−3, while the neutron star radius R and mass M are in km and M� units, respectively.

FSU2R model (nucleonic) FSU2H model (hyperonic)

n/n0 P ε R M P ε R M

0.9 1.3737 128.98 28.701 0.10 1.2675 128.98 36.393 0.09
1.0 2.1255 143.50 17.229 0.15 2.0182 143.49 18.143 0.14
1.1 3.0982 158.11 14.256 0.21 3.0319 158.08 14.317 0.20
1.2 4.3089 172.82 13.129 0.27 4.3426 172.79 13.015 0.27
1.3 5.7741 187.63 12.660 0.35 5.9878 187.61 12.541 0.36
1.4 7.5095 202.58 12.482 0.43 8.0082 202.58 12.400 0.46
1.5 9.5289 217.65 12.428 0.52 10.445 217.70 12.416 0.57
1.6 11.844 232.87 12.440 0.61 13.340 233.00 12.509 0.68
1.7 14.462 248.24 12.498 0.70 16.725 248.50 12.638 0.81
1.8 17.389 263.78 12.553 0.79 20.626 264.21 12.764 0.93
1.9 20.626 279.49 12.618 0.88 25.058 280.16 12.885 1.06
2.0 24.171 295.37 12.680 0.97 30.022 296.35 13.004 1.18
2.1 28.019 311.44 12.739 1.06 35.510 312.80 13.099 1.30
2.2 32.162 327.70 12.774 1.14 41.504 329.52 13.175 1.41
2.3 36.592 344.16 12.813 1.22 46.755 346.51 13.233 1.49
2.4 41.297 360.81 12.829 1.29 51.366 363.71 13.255 1.56
2.5 46.266 377.67 12.844 1.36 55.951 381.10 13.274 1.61
2.6 51.487 394.73 12.851 1.42 60.285 398.67 13.282 1.66
2.7 56.947 411.99 12.854 1.48 64.452 416.40 13.284 1.69
2.8 62.634 429.47 12.843 1.53 68.763 434.29 13.272 1.73
2.9 68.536 447.14 12.830 1.58 73.242 452.33 13.269 1.76
3.0 74.642 465.03 12.816 1.63 77.898 470.53 13.239 1.78
3.1 80.941 483.12 12.792 1.67 82.732 488.89 13.224 1.81
3.2 87.421 501.42 12.763 1.71 87.745 507.41 13.194 1.83
3.3 94.075 519.92 12.734 1.74 92.934 526.09 13.161 1.85
3.4 100.89 538.63 12.702 1.77 98.299 544.93 13.134 1.87
3.5 107.87 557.54 12.669 1.80 103.84 563.93 13.093 1.89
3.6 114.99 576.66 12.633 1.83 109.55 583.09 13.058 1.90
3.7 122.25 595.97 12.603 1.85 115.42 602.41 13.016 1.92
3.8 129.64 615.48 12.566 1.87 121.46 621.89 12.982 1.93
3.9 137.16 635.18 12.521 1.89 127.66 641.53 12.935 1.94
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Table A2. Continuation of Table A1.

FSU2R model (nucleonic) FSU2H model (hyperonic)

n/n0 P ε R M P ε R M

4.0 144.80 655.08 12.479 1.91 134.02 661.33 12.886 1.95
4.1 152.56 675.18 12.442 1.93 140.53 681.30 12.842 1.96
4.2 160.44 695.46 12.400 1.94 147.19 701.42 12.804 1.97
4.3 168.41 715.93 12.359 1.96 154.00 721.71 12.756 1.98
4.4 176.49 736.59 12.323 1.97 160.96 742.15 12.703 1.99
4.5 184.67 757.44 12.280 1.98 168.06 762.76 12.662 1.99
4.6 192.95 778.46 12.235 1.99 175.30 783.52 12.613 2.00
4.7 201.32 799.67 12.196 2.00 182.67 804.45 12.571 2.00
4.8 209.77 821.06 12.155 2.01 190.18 825.53 12.523 2.01
4.9 218.31 842.62 12.124 2.01 197.81 846.77 12.476 2.01
5.0 226.94 864.36 12.074 2.02 205.58 868.16 12.427 2.01
5.1 235.64 886.27 12.035 2.02 213.47 889.72 12.383 2.02
5.2 244.43 908.36 11.996 2.03 221.48 911.42 12.339 2.02
5.3 253.28 930.61 11.963 2.03 229.62 933.29 12.293 2.02
5.4 262.22 953.03 11.921 2.04 237.87 955.31 12.252 2.02
5.5 271.22 975.62 11.886 2.04 246.24 977.48 12.208 2.02
5.6 280.30 998.37 11.852 2.04 254.72 999.81 12.166 2.02
5.7 289.44 1021.3 11.808 2.04 263.31 1022.3 12.120 2.02
5.8 298.65 1044.4 11.775 2.04 272.01 1044.9 12.078 2.02
5.9 307.93 1067.6 11.743 2.05 280.82 1067.7 12.038 2.02
6.0 317.26 1091.0 11.704 2.05 289.74 1090.6 11.997 2.02
6.1 326.67 1114.5 11.670 2.05 298.76 1113.7 11.952 2.02
6.2 336.13 1138.2 11.639 2.05 307.88 1136.9 11.920 2.02
6.3 345.65 1162.1 11.604 2.05 317.10 1160.3 11.872 2.02
6.4 355.23 1186.1 11.573 2.05 326.42 1183.8 11.833 2.02
6.5 364.87 1210.3 11.538 2.05 335.83 1207.5 11.793 2.02
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