
A MIXED PROBLEM FOR NORMAL HYPERBOLIC 
LINEAR PARTIAL DIFFERENTIAL EQUATIONS 

OF SECOND ORDER 
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In the theory of hyperbolic differential equations a mixed boundary value 
problem involves two types of auxiliary conditions which may be described 
as initial and boundary conditions respectively. The problem of Cauchy, in 
which only initial conditions are present, has been studied in great detail, 
starting with the early work of Riemann and Volterra, and the well-known 
monograph of Hadamard (4). A modern treatment of great generality has been 
given by Leray (7). In contrast mixed problems have received comparatively 
little attention, and the nature of the boundary conditions to be imposed on 
equations of order higher than the second is known only for equations in two 
independent variables (8). For second order normal hyperbolic equations 
both linear and non-linear, the problem has been studied, using the method 
of analytic approximation, by Schauder and Krzyzanski (5) who assigned 
as boundary condition that the unknown function should take given values 
on a timelike boundary surface. The monograph of Ladyshenskaya (6) 
treats certain cases of the problem where the normal derivative is given, for 
instance when the coefficients are independent of the time variable. 

In this paper a different boundary condition is considered; this condition 
involves the derivative of the dependent variable in a given direction, which 
is defined on the boundary but is not tangential to the boundary. There are 
restrictions in the large on this direction, made necessary by the properties of 
certain families of characteristic surfaces. However, the condition includes as a 
special case the problem of the normal derivative, which arises in the theory of 
supersonic flow. 

As in (5) the analytic case is treated first, by means of dominant power 
series. The nature of the boundary conditions is taken into account by a 
certain order of choice among the dominating series. For the non-analytic case 
a suitable modification of the estimates of (5) is arranged, while the construction 
of the solution is as before. 

1. The mixed problem. We study the linear normal hyperbolic partial 
differential equation 

<^> LW = a *?*? + »*ft?+ «* - / . 
Received February 27, 1956. 
The author is indebted to Professor J. Leray for an interesting and valuable discussion of 

this problem. He also acknowledges with thanks the helpful advice and criticism of Professor 
A. Robinson. 

141 

https://doi.org/10.4153/CJM-1957-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-018-3


1.42 G. F. D. DUFF 

with one dependent variable u and N independent variables xl(i = 1, . . . , N). 
Summation over repeated indices is understood in (1.1). The coefficients 
aik, b\ c, and / are functions of the x\ differentiate k times throughout the 
domain of xl space to be considered. The normal hyperbolic character of (1.1) 
is expressed by the signature of the quadratic form 

(1.2) attÉi&t, 

which signature is (N — 1,1) with one negative term. 
With the Riemann metric 

(1.3) ds2 = a^dx^x1' 

based on the associate covariant tensor aik, we have a classification of direc­
tions vl as spacelike, null, or timelike, according as 

v2 = dikvW = aikvtvk 

is positive, zero or negative. Also surfaces S: ^(x*) = 0 shall be spacelike, 
null or timelike according as 

(L4) a *â?â? 
is negative, zero, or positive. The normal n1 is defined by 

(1.5) » = o - ? . 

Let 5:<^>(x0 = 0 be an initial spacelike surface and let T:\p{xi) = 0 be a 
timelike surface intersecting S in a rim C of TV — 2 dimensions. We shall 
suppose that 5 is bounded by C and that T is bounded "toward the past" by 
C, in a suitable orientation of "time." Let G be the characteristic surface, 
passing through the rim C, which lies in the region enclosed by S and T, that 
is, which bounds the domain of dependence D s on S according to the theory of 
the Cauchy problem. We note that G is composed of characteristic strips 
tangent to the rim C. 

On 5 we assign values of u and du/dn) these are the usual Cauchy data, 
and they determine u in D s. On T we assign a boundary condition "of the 
second kind" as follows. Let v be a vector field defined on T and subject to 
restrictions stated below. Then, if the directional derivative of u in the direc­
tion of v is denoted by du/dv, we set 

(1.6) Tv=VTx"=f{x)' 

where fix1) is a datum function given on T. 
On the rim C this datum function f{xi) and its derivatives transverse to 

C in T shall be subject to certain conditions of compatibility with respect 
to the given differential equation and Cauchy data. These conditions were 
imposed to ensure that the derivatives of u up to a certain order shall be 
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continuous across G. The value for u on C shall be that assigned by the Cauchy 
data, and the first compatibility condition is that / shall be equal to the value 
of du/dv on C derived from the Cauchy data. The second compatibility con­
dition brings in the differential equation since it postulates that df/dt equal 
d2u/dvdt, the latter being calculated on C from the Cauchy data and the 
differential equation. Here t denotes a suitable timelike variable. Likewise 
the &th condition of compatibility determines the (k — l)st derivative of / 
as equal to the corresponding derivative of u, calculated from the Cauchy 
data and the differential equation, by successive differentiation with respect 
to / and substitution of values already found. 

If the first k compatibility conditions hold, it is evident that u and its first k 
derivatives are continuous across G at the rim C. Now the method of con­
struction of the solutions leads to their being continuous across G, at every 
point of G. To show that the transverse derivatives of u up to order k are 
also continuous across G, we note that through each point of G there passes 
a bicharacteristic ray issuing from the rim C. If a solution u is continuous 
and has continuous tangential derivatives on G, then its first transverse 
derivative un is continuous along the entire bicharacteristic if it is so at one 
point. The conditions necessary for this conclusion will be satisfied in our 
construction, and we infer that un is continuous across G. In succession the 
higher transverse derivatives, up to and including order k, are proved 
continuous across G. 

The initial and boundary conditions determine u in a larger region. Con­
struct the retrograde characteristic cone Cp with vertex P . If Cp, T, and S 
together bound a region, then P lies in this domain of dependence on 5 and T. 
Since the Cauchy initial value problem can be regarded as solved, we subtract 
its solution from the dependent variable and so find a reduced boundary 
value problem which may be stated as follows. We must find a solution of 
(1.1), with / = 0, which vanishes on Go, satisfies (1.6) on T, and is defined in 
the region V intermediate to 5 and T. The compatibility condition is now 
that fix1) = 0 on C, while the corresponding condition of order k is that 
the derivative of /(x*) of order k — 1 in a direction within T but transverse 
to C should vanish. We note that the rim C, being a subspace of S, is spacelike, 
and that all directions tangent to G are either spacelike or null. Indeed G, 
being an integral surface of a first order partial differential equation, is com­
posed of the bicharacteristic curves passing through C which determine 
characteristic strips tangent to C. 

Now let Ctbe a family of spacelike (TV —2)-dimensional surfaces filling T, 
and such that Co = C. We may construct characteristic surfaces Gt containing 
Ct and these will fill up the region V. The condition which we impose on the 
vector field v is that v should not be tangent to the local Gt at any point of T. 

That some restriction of the vector field relative to characteristic surfaces 
is necessary can be seen from the equation of the vibrating string; 

UXT — Mft-
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If we require u(x, 0) = ut(x, 0) = 0 for t = 0, x > 0, and 

*(t)uT + 0(t)ut = / ( / ) , x = Q, t>0, 
then 

u(x,t)= i * — £ ï l — d t>X, 

and the denominator of the integrand vanishes if a(r) = /3(r); t h a t is, if the 
vector field takes the direction of the forward characterist ic entering the 
region through T. This condition holds for all such equat ions in two variables ; 
it is easily seen t ha t the directional derivat ive along any forward characterist ic 
is determined by the Cauchy problem with d a t a taken a t the ins tant t where 
the characterist ic curve meets T. 

If N > 2, the si tuation is more involved. For the analogous condition, 
namely t h a t v should not touch Gt, we may ask: wha t conditions on v enable 
us to construct a family of spacelike varieties Ct on T such t h a t v will never 
be tangent to the Gt constructed on Cf as base? Such a field will be called 
admissible. 

T o answer the question we recall t ha t the Gt, being integral surfaces of a 
first order part ial differential equation, are constructed as envelopes of portions 
of the characteristic conoids with vertex on Ct. T h e portion concerned is t h a t 
pa r t Cpi of the forward half-cone lying in the interior of our region. 

Let us consider the tangent space a t a typical point P of T: yp = X = XN~l 

= 0. In the surface T the tangent plane to Ct will t ake the form (with P as 
origin) 

t - E Ça** = 0, a = 1, . . . , N - 2, 

where £ ca
2 < 1 since Ct is spacelike. T h e tangent plane to the cone Cp

t in 
the full space, which also meets T t angent to Ct, will have the equation 

/ — L C*Xa — V ( l — E £«2) X = 0. 

We mus t determine those regions of space such t h a t there exist values of the 
ca which render the function 

/ = t — E CctXa — V ( l — E Ca
2) X 

consistently of a given sign. 
There will later appear the restriction t h a t the vector v should not touch 

T, and we shall, for convenience, make this assumption here. T h e region of 
space to be considered may now be taken as the side x > 0 of T. T w o cases 
arise, according as 

fo[v] = vt - vx, 

the initial value o f / w i t h the components of v subst i tu ted for the coordinates, 
is positive or negative. These correspond to v lying initially " l a t e r " than G 
or "earlier," and will be referred to as the positive and negative cases 
respectively. 
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Taking first the case of negative values, we shall minimize / with respect 
to the ca. Since 

df_ _ , £a 
dc~a

 Xa "*" V(l ~ EÔ X 

and 
d"f ôapx , ca cp x  

dCadCfi " V(l'-'fca2) + (1_- Hrjf2 ' 

we find, first, that an extremum is present for 

V(x2 + E «̂) ' 
and secondly, that this is a minimum value. The actual minimum is therefore 

/min = t - VO2•+ T,xl) 

which will be negative if 

/ < V(*2 + E*«2). 

That is, points on the forward cone Cp
u or within it, are excluded. 

The positive case is a little different, since no true maximum of / exists. 
As we have x > 0 the third term of/ is negative, and it follows that if 

/ l = t - L CaXa 

takes positive values for some ca, then so does / for sufficiently small positive 
x. Now the sum in / will take its greatest value when E cj is allowed its 
greatest value. Thus we may take E cj = 1 and so find the extrema of 

Hence 

-fi = -xa- 2\ca = 0, 
dCa 

and so, with E c<*2 = E tfa
2/4\2 = 1, we find 

Ca = voS) 
and the maximum of/i is 

/lmax = * - E « ^ = * + VŒ>a)-

Thus we get positive values for/i , and since E c«2 = 1> also for/, provided 

/> - V(E^). 
The bounding surface so defined is cylindrical in the x direction, and touches 
the cone Cp i along its intersection with the surface T. 

If the condition of not touching holds at a point P , then by continuity it 
holds in a neighbourhood of P. Over a compact portion of T we can find 
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uniform moduli of continuity, provided that the limiting cases mentioned 
above do not arise. A neighbourhood of uniform size can thus be defined, 
and the construction extended to the whole of the compact region by repeated 
application of the existence theorem. 

This result may be summarized as follows: 

LEMMA I. A vector field v not tangent to Go or to T is admissible if 

(a) being initially positive, it satisfies 

vt > — VŒ v*2) on T\ 

(b) being initially negative, it satisfies 

vt < V(vx
2 + £ vj) on T. 

We remark that the normal vector field, with one non-vanishing component 
vx > 0, falls under case (b). 

2. The analytic case. Let all coefficients in the differential equation, 
and the surfaces S and T, be analytic. Then characteristic surfaces such as 
the Gt are also analytic provided that the rims Ct are analytic. This can be 
arranged and will be assumed. 

Before reducing the differential equation to a standard form (4, p. 76) we 
shall simplify the boundary condition 

(2.D f-/. 
Here/vanishes to order k + 1 on C0 according to the compatibility conditions. 
We note that the vector field u is not parallel to Go on T and thus we can 
construct a Ck function U\ which vanishes on Go and also satisfies (2.1) on T. 
Subtracting this function from u, we obtain for the new dependent variable a 
differential equation of the form 

(2.2) L(u)=f1 

while the new boundary conditions are (cf. §6), 

(2.3) M = 0, on Go, 
with 

(2.4) - | = 0, on T. 

We now change the independent variables so as to give T the equation 
x — xN~l = 0 while the analytic family of characteristic surfaces Gt have 
equation 

Gt: t — xN = const. 

This forces the coefficient aNN to vanish identically in the new system. Since 
the rim Ct is spacelike, and so never tangent to a bicharacteristic direction, 
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we can choose the remaining variables x1, . . . , xN~2 so that the bicharacteris-
tics on Gt are 

(2.5) XP = const., p = 1, . . . , TV - 2. 

This results in the vanishing of the coefficients aNp. Following Hadamard 
(4), we divide by aN,N~A which cannot now vanish since L(u) is not parabolic; 
and we replace u by 

[/< u exp J bNdx 

which causes the term in L{u) containing du/dt to disappear. Then the 
differential equation becomes 

(2.6) | | = L l W + ^ 

where the operator Li(u) contains no differentiations with respect to t. With 
this form of the equation Hadamard and others studied the indeterminacy 
of Cauchy's problem for characteristic surfaces. 

The boundary conditions to go with (2.6) are now 

(2.7) u = 0 for t = 0 

and 

(2.8) - = v - ? = b u > x = o. 

In order to express this latter condition more conveniently, we note that by 
hypothesis the component vN does not vanish —this is our condition on the 
vector v. Dividing by vN and transposing some terms, we have 

(2.9) 5 = E ^ | 7 + te, * = 0. 
at £Ti OX 

We now expand u in a series of powers of t, and determine the coefficients 
in succession. Let 

(2.10) u= £ « , / , / ,= £ / / , 

and also let 
oo 

Then the un satisfy 

(2.11) n-^ = Loi(^-i) +fn-i + • • • , 

where the terms omitted contain the uk(k = 0, 1, . . . , n — 2). We have taken 
nQ = 0 to satisfy (2.7). Substituting these expansions into (2.8), we get the 
conditions 
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(2.12) nun = £ 0*o - f ï 1 + faun-i + . . . , a- = 0. 

Here ^ 0 and ho are initial terms in the expansions of the @k and h in powers of 
t, while the terms omitted in (2.12) again contain uk (k = 0, 1, . . . , n — 2). 
Thus the un are uniquely determined by integration of (2.11) for successive 
values of n, in the form 

(2.13) nun{x) = nttnifi) + f [Loi(Vi) + fn-i + . . .] ri*', 
*/o 

and the functions so found are analytic in x as well as in the remaining variables. 
The techniques of dominating series will now be applied to show that the 

series solution thus found is convergent in a certain domain. We note that 
the operations in (2.13) are such as to preserve any dominant relation; thus 
if we dominate the coefficients in (2.6) and (2.9) the new solution will dominate 
that already found. Now the two auxiliary conditions will be dominated in 
the following way. We shall seek a solution with positive coefficients of the 
dominating differential equation. This solution will automatically dominate 
the condition (2.7). We will also show that if the left side of (2.9) is computed 
(in the dominant case) it will dominate the right side, and therefore will 
dominate the actual condition (2.9). This requires a certain order of choice 
among the various dominating constants which will appear. The proof will 
also show that the series has a radius of convergence independent of the 
function j \ in (2.6), and hence independent of the data prescribed for the 
original problem. 

We choose as origin a point of Co and set 

y = x1 + . . . + xN~2, 

and let p, a be sufficiently small positive numbers. Then the dominant boundary 
condition can be written 

(2-14) £ - (l - ^ - J- YL Gi-r-ï + Hu 
ox dt \ a/\ p/ 

where Gt(i = 1, . . . , N — 1) and H are positive constants. Letting 

(2.15) . = - . iog(i _ i ) = , + i!- + . . . , 

we can write this 

(2.16) "d7 -H)~'[ÇG-1?+** 0. 

Denote Yii Gtby G. 
In proving the convergence theorem we will actually assume that the left 

side of (2.16) dominates the right side. Since the series in (2.15) has positive 
coefficients, this will imply that the left side of (2.14) dominates the right 
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side, and hence tha t the boundary condition (2.9) will be dominated as 
required. 

T h e dominat ing differential equation takes the form 

(2.17) 
~2 

a u 
dxdt - (' - ;)"' (' - •-¥)' 

?:-4..-£h+'LB,§+Cu-t-F 
dx1 dxk 

where the Aik, Bu C and F are constants . Here only F depends 011/2 in (2.6) 
and we have therefore to find a radius of convergence independent of F. 
Let us assume tha t U is a function of r, x, and y only. Then (2.17) becomes, 
with use of (2.15), 

(2.18) 
~2 
d U 

dxdr 
L = (1 __ *_±jA 
h \ p ) 

d"u . d"u d~U 
dx dxdy dy 

dx dy 

where the ^4's are chosen anew if necessary. Since we can always increase 
them, we shall require t ha t 

(2.19) A = An + A12 + A22 > G. 

If we further assume tha t U is a function of the combination 

w = r + a{x + y) 

alone, where a > 0, then we can find an ordinary differential equation for 
U(w) which dominates (2.18) and therefore still more dominates (2.6). T o 
do this we replace x + y in the denominator of (2.18) by x + y + r/a = w/cc. 
Collecting terms in the ordinary differential equation to which (2.18) now leads, 
we find 

(2.21) 1 w_ 
ap 

- aAJ 
a a 

Here primes denote differentiation with respect to w. We now choose a so 
small t ha t 

(2.22) 1 - aA > i 

According to (2.18) we would set B in (2.21) equal to B\ + B2. Since we 
can increase B freely without destroying the dominance over (2.6), we shall 
s t ipulate t ha t 

B>H\--^- + -1-. 
1 — atr ap 

(2.23) 

Defining r = ap(l — aA) we can write (2.21) in the form 
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If in this equation U(0) and U'(0) are positive, then all coefficients of the 
series solution are positive. 

Indeed, if we set 
CO 

(2.25) U = £ anw", 

the recursion formula for the a„ is seen to be 

(n + 2 ) (» + 1)0» (» + l ) 
j 1 

B 
aA. O-n+l + c 

t(l aA) 

+ 

an 

K 
a{\ — aA)' 

where the last term on the right is present only if n = 0. Assuming now tha t 
an and d\ are non-negative, we find 

B 
(2.26) (n + 2)an+2 > 

r 1 A 0>n+l-

This relation is used below. 
Now consider the boundary condition (2.16). The formulae (2.9) and (2.12) 

show tha t the initial values for the un will be dominated if the left side of 
(2.16) dominates the right side. Still more will this hold if y in (2.16) is replaced 
by x + y + r/a — w/a. Wi th this modification we get for U(w) the condition 

(2.27) 

which will hold if 

(2.28) 

U'{w) » ( l - ^ ) _ 1 [« \ ap/ 
GU' + HU] 

1 - — - aG) U'{W) »HU(W). 
ap 

T o verify tha t (2.28) implies (2.27) we recall t ha t U is a series with positive 
coefficients; thus if we add to each side the series aGU' and then mult iply 
on right and left by the series for (1 — w/ap)~l we will not destroy the 
dominat ing relation. 

T o demonst ra te (2.28) we calculate the coefficient of wn on the left; it is 

(1 — aG)(n + 1) an+i — —nan 

ap 
which by (2.26), with n + 1 changed into n, is not less than 

(1 - aG) 
n — 1 

+ 
B 

r 1 — aA 

From (2.23) we find t ha t this in turn exceeds 

n - 1 , II . 1 - aA 

1 i 
\an — — nan J ap 

(1 - aG) + ap{\ — aA) 1 — aA 1 

> 

+ " 
1 

o:/o\l 
H + lL[l—°£-lt + 

aG ap(l — a A ) / 

aG 
ap{\ — a A) A 

ap. 
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Since G < A the middle term in the bracket is positive and thus the coeffi­
cient exceeds H which is the coefficient of wn on the right of (2.28). This 
proves that (2.28) and (2.27) hold in general and hence that (2.16) and so 
(2.9) are dominated in the required way when x = 0. 

For dominating power series we therefore choose a solution U(w) having 
positive values for £7(0) and £/'(0). The radius of convergence of this series 
is equal to r = ap(l — aA), from the theory of linear differential equations, 
and this is independent of F. 

Repeating this work at other points of Co we can show that the unique 
analytic solution thus found exists in a neighbourhood / < 5i, of Co. Here 
di is independent of the datum functions of the Cauchy problem as well as 
the mixed boundary condition. If we select any compact portion of T such that 
the above hypotheses are uniformly satisfied when any one of the characteristic 
surfaces Gt is chosen in place of Go then we can find a ôi which will serve for 
them all. 

Combining the local solution just constructed with the solution of Cauchy's 
problem for the analytic case, we see that the resulting composite solution is 
analytic except possibly on C0. If the datum function f(xl) originally given 
satisfies the compatibility conditions of §1 up to the order k inclusive, then, 
by well-known properties of the discontinuities across characteristic surfaces 
of derivatives of u, it follows that u and its derivatives up to order k inclusive 
are continuous across C0. We state this result as a lemma: 

LEMMA II. Let the compatibility conditions up to order k inclusive be satisfied 
in the analytic case; then there exists a unique solution analytic for 0 < t < di 
except on Go, where the derivatives of order up to k inclusive are continuous. 

The domain of definition of this local solution will be extended in §4. We 
note that for the purposes of this local analytic solution it is sufficient to have 
(2.9) and thus v may be tangent to T. 

3. Estimates of solutions. To extend the result to non-analytic equations 
and data, we give estimates of the square integrals of the solution and its 
derivatives up to a certain order. These are found by a modification of the 
method used by Krzyzanski and Schauder (5), which in turn is based on the 
work of Friedrichs and Lewy (3). For brevity we shall indicate only the 
alterations necessary for our purposes. In this section we take the geometric 
background to be Euclidean. It is also convenient to suppose that T is 
cylindrical in the sense that 6* spans T and the rim C0 = S P\ T is closed. 

Since the Cauchy problem is regarded as solved, we can take as initial 
spacelike surface any spacelike surface which spans T, meeting T in the rim 
Co. We shall construct a family of surfaces St spanning T, with So C\ T = Co, 
and such that the given vector v is never tangent to the St. The direction 
field v is again assumed admissible ; thus there exists a family G t of characteristic 
surfaces, with Go O T = Co, such that v is not tangent to the Gt. Let us extend 
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v to a field defined throughout a region of space containing the G t; it this 
region is sufficiently small we can, even in the analyt ic case, determine v 
analytically so t h a t it is never t angent to Gt in the region. Denot ing the 
minimum angle of v to Gt by #0, we construct spacelike surfaces St as follows: 
St shall contain Ct = TC\Gt\ and St shall be inclined to Gt a t an angle 
between f0o and §0O a t every point. These surfaces 5* may be chosen to be 
analyt ic in the analyt ic case. Now we see t h a t v is never tangent to the St. 

We now set up a coordinate system on the family of surfaces St with equation 
/ = const. We choose the coordinate network xl, . . . , x ^ - 1 on St in such a way 
tha t the parametr ic lines of / cross T a t every point from inside to outside 
with increasing t. This can be achieved by a change of scale in a suitable 
" rad ia l " coordinate in St, and does not alter the spacelike character of S(. 
Since v is never tangent to Su wTe could take as Nth coordinate, in place of /, 
a suitable parameter £iV along the integral curves of v. T h e transformation 
oi coordinates so defined is clearly non-singular; and will be used below in 
certain surface integrals taken over T. By measuring arc along the v curves 
s tar t ing on T we ensure t ha t T has in these coordinates the equation 

T: t' = 0. 

However, this requires tha t v should not be tangent to T, which we therefore 
assume for the rest of this section. This condition has been ant icipated in the 
form of the s t a t ement of Lemma I. 

Let Vt be the region bounded by S, J\ and St; and let ni, n2, n* denote the 
outward Euclidean normals on the surface of S, T, and St respectively. II 
cos(nx1) denotes the cosine of n with the parametr ic line of x\ then we 
have 
(3.1) cos(wi/) < 0, cos(;W) > 0, cos(n-J) > 0. 

We now multiply the differential equation (1.1) by du/dt and integrate 
over Vt. After some partial integrat ions we find 

(3.2) f 2 2-, a T~ï "nT c o s \nx ) 
. i.k=i dx dt 

E ik du du . A , c 

where c^ is a quadra t ic expression in u and its first derivat ives, involving also 
the coefficients in (1.1) and their first derivatives. 

A separate choice of variables is now made in each of the three surface 
integrals on the left in (3.2). T h e coordinates x1, . . . , xN~~] are not changed 
but the last coordinate is taken to be 

(3.3) vs" = g,(x\ . . . , x v - \ 0 , * = 1 , 2 , 3 . 
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where the gs are the functions giving the equations of 5 , T and St0 when 
equated to zero. Thus 

gl = t, g2 = £, gZ = t - /()• 

After some calculation, which we omit, it is possible to verify as in (5) t ha t 
the integrand on the left in (3.2) becomes 

. J du\ ^ a du du 
cos(nst) 

where 

/ N x* ik dg, dgs 
i,k=i dx dx 

is the characteristic quadrat ic form. Since 5 and StQ are spacelike and T 
timelike, we see tha t 

<gù < 0, a(g2) > 0, a(gi) < 0, 

in view of the convention of sign in (1.2). Not ing tha t the quadrat ic form 

is positive definite, and cos (n^t) is positive, we see tha t for 5 = 3, t ha t is for 
the integral over St0, the integrand is negative definite. We shall now drop the 
subscript 0 on the t in St. 

Since cos(n2t) is positive, the term 

Z ik du du { , 

is also negative definite. We transpose to the right side of (3.2) the other 
term in the integral over T and also the whole of the integral over 5 , and find, 
after changing the sign throughout , 

cos (n-st) (IS J f \( du \ . v-> tk du du 

(3.4) +£ |>Bf? c o s ( w ^ 5 

The left hand side of this equation is now positive definite in all of the deriva­
tives appearing, and in part icular the integral over T on the left is non-
negative. T h u s we can drop this term provided < is subst i tuted for the 
equali ty sign, and the inequality so obtained is in the right direction for our 
purposes. 

Indeed, there is a positive constant c such tha t the left side of (3.4) exceeds 

^ 2 

dS. y* Ç ( du Y 
'£i J s\ dx1 ) 
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Now we find an upper bound for the right hand side by conventional methods, 
and so obtain an estimate 

(3.5) £J".,(£)«<*Us(£)''" 
+J>^Jlg(i7)+4^X(fFH 

for some constant K independent of u. The expression $ may contain u itself 
and so we have estimated integrals of the type 

x udV 

by writing 

u = Uo + X utdt' 

| udV<2 i uidV+2 i ( ( utdt')dV 

<2t J uldS + 2t2 I u]dV. 
J s J vt 

These terms are incorporated on the right in (3.5). Integrating from / = 0 
to t = to in (3.5), we get 

<«> X. lM'dv<KiL/dv+ X.[s(£")"+»'>* 

provided that /0 is sufficiently small. Replacing the first term on the right in 
(3.5) by means of (3.6), we finally get a similar estimate for the surface integral 
on the left in (3.5). 

Similar estimates for the higher derivatives of u are needed ; as they can be 
found by modifying the calculations of (5, §3) in the manner indicated above, 
the details will be omitted. We quote the result as follows: Let Dhu denote a 
typical partial derivative of order h, and let p be a positive integer. Let the 
coefficients aik, bk, c, and/of (1.0) have bounded derivatives up to and including 
the order N + 1 ; and let these derivatives of order up to N + p — 1 be 
square integrable over the domain. Then there holds the estimate 

N+p r* V N+p /» 

(3.7) £ (Dhu)2dV < K\ Y. (DnffdS 

+ £ ' \Dhj%)dS+Z (DhufdS 

and a similar estimate holds for 
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(3.8) £ {DhufdSl. 
h=0 «/ St 

In these formulae the summation £ over /̂  is to be taken over all derivatives 
of the order indicated. However, in the integral over T the summation ]T' 
over h shall include only derivatives tangential to T and so only one differen­
tiation with respect to %N = rjN2 will appear. Again, by integrating (3.8) 
over /, we find the sharp form 

N+P /» 

(3.9) £ {DhufdV<tK{ j 

of the est imate for the volume integrals. This is to be used in connection with 
quasi-linear equations, which we shall mention in §5. 

4. E x t e n s i o n of t h e d o m a i n . The following lemmas of Schauder and 
Krzyzanski (5, §6) will be used here and in the next section. Let Rk denote 
the class of functions v(xl) having absolutely continuous derivatives of order 
<& — 1 in the sense of Tonelli; and quadratical ly integrable derivatives of 
order <&; all on a given closed domain such as the region Vt. Such a function 
is absolutely continuous in the above sense when it is absolutely continuous 
on almost every parametr ic line of the chosen coordinates. 

Wi th the norm 

(4.1) | M I* = É ( (Dhv)2dV, 

the class Rk becomes a linear space Rk. We have 

LEMMA I I I . Polynomials p(xl) are dense in Rk. Provided that v £ CT on a 
compact subset V\ of V, an approximating sequence pjix1) can be found such 
that the derivatives of order < r of the pj converge uniformly to the derivatives of v. 

LEMMA IV. Let k > N + 1, and let vn £ Rk be a sequence with uniformly 
bounded norms \\vn\\k < K. Then there exists a subsequence vnj uniformly con­
vergent to a limit v G Rk-

The uniform convergence is established by Lemma I of (9) while the fact 
t ha t v belongs to Rk follows (1) from the theory of strong convergence in L2. 

We now extend the domain of definition of the solution of Lemma I I . Let 
0 < 5 < ôi and let us divide the larger domain V into p slices Vj of width 8: 

Vj:(j - 1)5 <t <jô, j = 1,2, . . . ,p. 

Let Sj be the surface t = jb and Cj = Sj C\ T. In each of these domains we 
shall construct solutions which will subsequently be pieced together. The 
solution in the large so found will be class Rk, provided t ha t the compatibil i ty 
conditions of order <& hold initially, and tha t k > N + 2. 

Let U\ be the local solution defined in V\. We cannot apply Lemma 11 
to V2 by taking values of U\ and dui/dt on S2 as Cauchy da ta since these may 
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not be analytic in the large. However, as is remarked in (5, §7), U\ and dui/dt 
have derivatives of all orders on Si except on GQ C\ Si; and satisfy 
the compatibil i ty conditions of all orders on C\. We therefore approximate 
them by polynomial sequences <£is and xfru such t h a t (a) the derivatives of 
orders <& and k — 1 respectively converge uniformly on Si while (b) on C\ 
the derivatives of orders <& + N(p — 2) converge. These approximations 
are possible, by Lemma III. 

T o each pair </>is, \f/u there corresponds a solution u2s of the Cauchy problem 
with da t a on Si. We define these solutions throughout V2 by selecting analyt ic 
boundary values Xs which satisfy the compatibil i ty conditions relative to 
u2s, on Ci, up to the order k + N(p — 2). Thus the derivatives of Xs of order 
<& + N(p — 2) converge to the corresponding derivatives o f / on C\. Now 
Lemma II shows t ha t u2s is defined and of class Rk+N(P_2) in V2. 

T o extend these solutions to F 3 and beyond, we approximate u2, and 
du2s/dt on S2 by sequences </>3sr. and ^3iS.r of polynomials. By Lemma III these 
approximations can be made uniform for derivatives of order <& + N{p — 2). 
Again we define solutions UzST in F3 , with Cauchy d a t a 0 3 , r and ^3,sr, and 
boundary da t a X3*r» where X3sr is a polynomial satisfying the appropr ia te 
compatibil i ty conditions of order <& + N(p — 2). By Lemma II, the solu­
tions u-isr exist in V's and are of class Rk+Nip^2) there. Also, by (3.7), 

(4.2) \\uzsr\\k+Nip-2) < i i , 

where /v is independent of r and s. By Lemma IV, there exists for each s 
a subsequence u$sr convergent to a limit Uzs of class Rk+N^.ps) in IV, thus w3s. 
also satisfies the differential equation and the est imate (4.2). We now approxi­
mate to values of u-is and dn%Jdt on S 3 in order to define Cauchy d a t a for a 
sequence of solutions U\HT of class Rk+N{p_:i) in F4 . T h e approximations to the 
boundary condition are again of class Ck+N(P^} and there exists a sequence of 
solutions U4S of class Ck+N(P-±) in F 4 which satisfy a uniform est imate of the 
type (4.2). 

Proceeding in this way we define a sequence of solutions ujs of class 
Rk+N(p-j) in Vj, all satisfying an est imate of the type (4.2). We now piece 
together the solutions ujs, for fixed s, to give solutions us defined in 
V2 + Vu + . . . + Vp, which are of class Rk. By Lemma IV there exists a 
subsequence uniformly convergent to a limit u of class Rk in V2 + F 3 + . . . + Vn. 
Assuming t ha t k > N + 2, this function u has continuous first and second 
derivatives, and satisfies the differential equation and the boundary condition. 
Also, by the manner of its construction, this solution merges with the original 
solution in V\ to yield a solution U of class Rk in V = V\ + V2 + . . . + Fp . 
This completes the proof t ha t the solution can be extended to a domain of 
arbi t rary extent . 

5. T h e n o n - a n a l y t i c case . In the differential equation (1.1) let all 
coefficients and / be of class Rk-i (where k > N + 2) in V\ and let the da ta 
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of the mixed problem be of class Ck+N. Let W (in Schauder 's notation) be a 
domain which contains S and is contained in the region of dependence on 5 
alone. We suppose t ha t the differential equation is of class Ck+N in W. Finally, 
the conditions of compatibil i ty up to order k inclusive shall be satisfied. 
We s ta te the result in this case as follows. 

T H E O R E M . There exists a solution u of the given mixed problem, which is of 
class R}: in V, of class Rk+N and Ck in W, and which satisfies an estimate of the 
form (3.7). 

The proof involves approximation to the coefficients of the differential 
equation by polynomials. From Lemmas I I I and IV we see tha t the approxi­
mat ing coefficients as

ik, bl
Sj cs a n d / » (s = 1, 2, . . .), together with derivatives 

up to order k — 1 inclusive, can be chosen to converge to their respective 
limits (a) in F, in mean and (b) in W, uniformly. As in the preceding extension 
of the domain of §4, the da t a can be approximated by polynomials which 
retain the k compatibil i ty conditions. According to §4, there exists a solution 
us of the approximate problem, with 

\\u,\U <K. 
From Lemma I I I we infer the existence of a uniformly convergent subsequence 
tending to a limit u Ç Rk. Since k > N + 2, u is C2 and satisfies the differential 
equation and the boundary conditions. In fact u is of class Rk+N in W as 
follows from the theory of the Cauchy problem (9). T h a t the solution is 
unique follows from the est imate (3.7). 

A boundary condition of the third kind (in potential theory) can be reduced 
to t ha t treated here. If 

— + hu = / , 
dv 

where h and / are functions of position on T, then the reduction in (2) will 
apply. 

With boundary value problems for hyperbolic equations there is an evident 
analogy with potential theory, and Hadamard (4, p. 248 ff) discusses these 
problems in tha t light. However, the case of a plane boundary treated by him 
is essentially easier than the general case since in effect it can be solved by 
the method of images. T h e result found in this paper has a greater generality 
than one would expect by this analogy, since the case of the oblique derivative, 
which in potential theory requires special methods, is included. 

In conclusion we note t ha t Schauder has also treated the quasi-linear and 
non-linear mixed problems with the values of u assigned on T, (5, 10). His 
methods extend without difficulty to the boundary condition studied here. 
Indeed, in the quasi-linear case, the linear solution is used to define a functional 
transformation, and then with the help of the sharp est imate (3.9) it is shown 
tha t a fixed point of the transformation, and hence a solution, exists for 
sufficiently small domains. The non-linear problem is reduced by differentiation 
to a quasi-linear integro-differential system which can be solved under the 

https://doi.org/10.4153/CJM-1957-018-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1957-018-3


158 G. F. D. DUFF 

same conditions as the quasi-linear hyperbolic equation. Schauder's proof of 
the integrability conditions for this system, which establish the existence of 
the solution for the non-linear equation, requires no modification in the present 
case. 

6. Removal of the compatibility conditions. The preceding result has 
been stated under conditions similar to those in (5) with the boundary condi­
tion of the first kind. In both of these theorems the compatibility conditions 
of order up to k are somewhat inappropriate in view of the theory of discon­
tinuities of derivatives of solutions of hyperbolic equations. To remove this 
limitation, we shall need to strengthen the differentiability conditions. 

Consider, therefore, the first boundary condition when g + 1 (0 < q < k) 
compatibility conditions hold. We shall actually treat the case q — 0 since the 
continuity across Go of the derivatives up to order q is easily established later 
in the appropriate cases. Thus, taking the Cauchy data to vanish and con­
sidering the homogeneous differential equation, we assume only that f(xl) 
vanishes to the first order on Co. Let the differential equation and data be of 
class C2Jc, and let us reduce this problem to that treated in (5) by setting 

U = U\ + V. 

We shall arrange that L(v) be Ck everywhere and that u shall satisfy a boundary 
condition on T which is compatible of order k. 

More precisely, we set v = 0 in the Cauchy domain between 5 and G, 
and require that L(v) should vanish to the order k as G is approached from 
above. The function v itself shall be continuous, shall vanish on G and shall 
satisfy on T the boundary condition 

v= 1Lun, 
where the/w are the coefficients of f in a Taylor series expansion in powers of /. 
For u\ we now have 

« i = / = / - E / » ' n o n 7 \ 
w = l 

Since we have assumed L(u) = 0 in the reduced form of the boundary value 
problem, the first compatibility conditions for u\ will be the vanishing of the 
appropriate derivatives of / . Thus the problem for U\ is of the above type, 
since we have in effect taken u = 0 in the region W of the theorem. This 
shows that the problem is in this case reduced to finding v. 

For this purpose we note that all functions and coefficients can be expanded 
in a Taylor series of powers of / (where t = 0 is the equation of G) up to terms 
of order tk and with a remainder of this order in t. The coefficients of terms 
containing tr are derivatives of order r, and so are C2k~r. Hence all such coeffi­
cients are Ck. Following Hadamard (4, pp. 78-79), we construct the first k 
terms of the series in powers of /, of the problem 
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L(w) = 0, 

with w = 0 on G and w = f on T. 
By the manner of its construction, the function 

A-

satisfies 
k 

v = YfJ' on F, 

and 
L(v) = tk+1r 

where r i s a C* remainder term, in the region between G and T. Thus L(v) 
has continuous derivatives up to order k across G and the reduction is estab­
lished. 

If the first q + 1 compatibility conditions hold, then it is easy to show 
that u is Cq across G, q < k, by considering the discontinuities of successive 
derivatives across G and noting that since they vanish on C they must vanish 
along all ^characteristics issuing from C. We may now state the existence 
theorem of (5) with this modification. 

Let the differential equation and boundary datum function fbe C2k, k > TV + 2, 
and let the first q + 1 compatibility conditions hold. Then there exists a unique 
solution of L(u) = 0 in V with given Cauchy data and with u = / on T. The 
solution is of class Rk in V except that if q < k — N it is of class Cq across G. 

The domain of this solution is, however, restricted to the domain wherein v 
has been defined and so does not include any multiple points of the characteris­
tic surface G. 

A similar reduction for the boundary condition of the second kind, con­
sidered in this paper, is possible. Here, however, it is not necessary that any 
compatibility condition should hold. We calculate v as the first k terms of the 
analytic series expansion in §2, and proceed as above. The result may be 
stated as follows when q compatibility conditions hold. 

Let the differential equation be C21c and the boundary datum function be C2k~l, 
k > N + 2. Let the first q compatibility conditions hold on C. Then there exists 
a unique solution of L(u) = 0 in V with given Cauchy data and with 

du j. 

dv ~ - ; 

on T. The solution is of class Rk in V, except that if q < k — N it is of class Cq 

across G. 

Again the domain is limited by multiple points or self-intersections of the 
characteristic surface G. 
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