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Ekman layers over a rough surface are studied using direct numerical simulation. The
roughness takes the form of periodic two-dimensional bumps whose non-dimensional
amplitude is fixed at a small value (h+ = 15) and whose mean slope is gentle. The neutral
Ekman layer is subjected to a stabilizing cooling flux for approximately one inertial period
(2π/f ) to impose the stratification. The Ekman boundary layer is in a transitionally rough
regime and, without stratification, the effect of roughness is found to be mild in contrast
to the stratified case. Roughness, whose effect increases with the slope of the bumps,
changes the boundary layer qualitatively from the very stable (Mahrt, Theor. Comput.
Fluid Dyn., vol. 11, issue 3–4, 1998, pp. 263–279) regime, which has a strong thermal
inversion and a pronounced low-level jet, in the flat case to the stable regime, which
has a weaker thermal inversion and stronger surface-layer turbulence, in the rough cases.
The flat case exhibits initial collapse of turbulence which eventually recovers, albeit with
inertial oscillations in turbulent kinetic energy. The roughness elements interrupt the
initial collapse of turbulence. In the quasi-steady state, the thickness of the turbulent
stress profiles and of the near-surface region with subcritical gradient Richardson number
increase in the rough cases. Analysis of the turbulent kinetic energy (TKE) budget shows
that, in the surface layer, roughness counteracts the stability-induced reduction of TKE
production. The flow component, coherent with the surface undulations, is extracted by a
triple decomposition, and leads to a dispersive component of near-surface turbulent fluxes.
The significance of the dispersive component increases in the stratified cases.

Key words: stratified flows, atmospheric flows

1. Introduction

The atmospheric boundary layer (ABL) is the lowest part of the Earth’s atmosphere
in which we live and breathe. It has been studied numerically by many researchers since
the pioneering work of Deardorff (1972) concerning an unstable ABL. The ABL is an
important example in nature of a wall-bounded turbulent flow. From the evolution of
weather and climate patterns to the dispersion of contaminants, the dynamics of the ABL
are critical to human activity. One key aspect of the behaviour of the ABL concerns
its behaviour at night. During the day, solar radiation warms the surface of the Earth
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and, under typical sunny conditions, the air’s potential temperature decreases with height.
At night, however, this effect is reversed and surface cooling leads to the formation of a
stably stratified inversion layer which can suppress turbulent motions. Similar suppression
of ABL turbulence is seen in winter-time conditions and polar regions. The conditions
under which surface cooling can completely or intermittently relaminarize the flow remain
the subject of current research.

The meteorology of the stable boundary layer includes states of continuous turbulence
and intermittent turbulence (e.g. Businger 1973). Mahrt (1998) categorized two
prototypical states: the weakly stable boundary layer and the very stable boundary layer.
The very stable boundary layer is characterized by weak winds and clear skies that lead
to strong net radiative cooling at the surface. The weakly stable boundary layer, which has
weaker net radiative cooling, is described by Monin–Obukhov similarity theory (Monin
1970), in which turbulence, although reduced in strength, occurs continuously in time.
On the contrary, the very stable boundary layer is characterized by global intermittency
where turbulence is reduced for periods which are long compared with the time scale of
individual eddies (Mahrt 1989). Internal gravity waves are also present in the very stable
boundary layer.

The turbulent boundary layer over a rough surface has been reviewed by Raupach,
Antonia & Rajagopalan (1991) and Jiménez (2004), among others. One measure of
roughness elements is their height as quantified by a roughness Reynolds number, h+ =
h/δν , the ratio of the height of the elements to the viscous scale, δν . With increasing h+, the
boundary layer changes from a smooth to a transitionally rough to a fully rough boundary
layer. The fully rough boundary layer has enhanced momentum transport and drag. For
a given h+, the shape and spatial distribution of the roughness elements are important
as reviewed by Flack & Schultz (2010) among others. In the present work we consider
a periodic array of sinusoidal bumps with moderate slope (figure 1). The analogous
problem of unstratified flow over a wavy bottom has received attention in experiments
(Zilker, Cook & Hanratty 1977; Gong, Taylor & Dornbrack 1996) and, more recently,
in numerical studies using DNS or wall-resolved large-eddy simulation (LES) (e.g.
De Angelis, Lombardi & Banerjee 1997; Sullivan, McWilliams & Moeng 2000; Napoli,
Armenio & De Marchis 2008; Yang & Shen 2010). Turbulent flow over rough surfaces
has a component in the time-averaged field which is coherent with the surface structure
and gives rise to a dispersive component of the turbulent fluxes. The coherent velocity
can be extracted using a triple decomposition, and the so-called dispersive component
is a significant contributor to turbulent fluxes in the near-surface layer (Finnigan 2000;
Sullivan et al. 2000; Poggi, Katul & Anderson 2004; Li & Bou-Zeid 2019).

There is not much systematic study of the competing effects of stable stratification
and roughness in canonical problems. Ohya, Neff & Meroney (1997) and Ohya (2001)
performed laboratory experiments of stratified boundary layers that develop in a wind
tunnel over smooth and rough surfaces, respectively. The bottom wall in the rough case
had a two-dimensional roughness imposed by a chain of oval rings and had a colder
temperature than the bulk flow with �θ varying between 27.4 K and 44.1 K. Vertical
profiles showed reduction of turbulence levels with increasing stability in both rough
and smooth cases. Sullivan & McWilliams (2002) conducted DNS of a turbulent Couette
flow over waves (including the stationary-wave case) under moderate stable and unstable
stratification. Their results show a decrease (increase) of turbulence levels under stable
(unstable) stratification.

Turbulence in the boundary layer can collapse in the presence of sufficiently strong
stability. Banta et al. (2007) found long periods of suppressed turbulence during nights
with a strongly stable ABL. The near-surface layer appears to decouple from the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

59
0 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.590


DNS of stratified Ekman layer over a periodic rough surface 902 A25-3

(b)(a)

λ
λ

Lx

Lz

Ly

h
h

l
l

FIGURE 1. Schematic of the computational domain and surface roughness: (a) 2Bump and
(b) 4Bump. Here Lx , Ly and Lz are the domain size in the streamwise, spanwise and vertical
directions, respectively. The wavelength of the harmonic function that generates the bump is
λ = Lx/Nb, where Nb is the number of bumps. The half-length of the bump is l = λ/4.

upper regions of the ABL during these episodes of suppressed turbulence. The bulk
Richardson number (Rib, defined later by (2.11)) is a critical parameter; large values of
Rib are indicative of strong stability. During periods with Rib > 2 in the cooperative
atmosphere–surface exchange study in 1999 (CASES-99) observational campaign, the
coupling between the near-surface layer and the outer layer was found to be weak (Poulos
et al. 2002). Two layers of turbulent kinetic energy (TKE), one above and the other below
a local minimum of TKE, were identified by Banta et al. (2007) and Cuxart & Jiménez
(2007). Such a two-layer configuration of TKE was also found in a recent DNS of the
stratified Ekman boundary layer by Gohari & Sarkar (2018).

The so-called Ekman boundary layer (EBL) is a simplified example of the ABL,
whereby a boundary layer in a rotating reference frame develops under unidirectional
horizontal flow in geostrophic balance (Coriolis acceleration is equal and opposite to
the pressure gradient, both being orthogonal to the flow). The stable EBL is a canonical
problem for studying the stabilization of the ABL. Direct numerical simulation studies of
the stable EBL have imposed buoyancy with a constant temperature boundary condition
(Ansorge & Mellado 2014; Deusebio et al. 2014; Shah & Bou-Zeid 2014) or with a
constant cooling flux (Gohari & Sarkar 2017, 2018); these studies were performed with
a smooth-bottom boundary. The boundary-layer response to stability in these studies
spanned various regimes of turbulence, depending on the relative strength of the stability:
initial decrease of turbulence and even collapse of turbulence to a laminar state; recovery
to continuous turbulence; recovery to global intermittency where turbulent near-surface
patches co-exist with laminar flow; and, finally, episodes of complete turbulence collapse
followed by recovery to spatially intermittent turbulence.

Stratified turbulent channel flow, a canonical problem to investigate buoyancy effects
in wall-bounded flows, has received much attention (Garg et al. 2000; Armenio &
Sarkar 2002; Nieuwstadt 2005; Flores & Riley 2011; García-Villalba & del Álamo 2011;
He & Basu 2015). Armenio & Sarkar (2002) show initial collapse of turbulence in a
stratified channel flow followed by resurgence of turbulence. They find an outer layer
with suppressed turbulence and wavy motion where the gradient Richardson number (Rig
defined by (2.8)) is larger than 0.2, and an inner layer with active turbulence where Rig

decreases from 0.2 to a small value at the wall. García-Villalba & del Álamo (2011), in their
large-domain simulations, find global intermittency with laminar patches interspersed
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within turbulence when the stratification is strong. The surface cooling flux can be used
to define the Obukhov length (L, defined later by (2.6)), and its value (L+, defined later
by (2.7)) relative to the viscous scale is an important measure of the strength of buoyancy.
Flores & Riley (2011) propose a criterion for turbulence collapse based on L+ decreasing
to 100 during the initial transient. This occurred in their stratified channel with initial
L+ = 683.

Coleman, Ferziger & Spalart (1990), Ansorge & Mellado (2014), Shah & Bou-Zeid
(2014), Deusebio et al. (2014) studied the stratified Ekman layer using DNS with a constant
temperature imposed at the wall. In this problem the surface buoyancy flux decreases with
time although Rib is constant. Intriguing spatial intermittency was observed by Ansorge &
Mellado (2014) in their DNS study of a stably stratified Ekman layer. Similar to Nieuwstadt
(2005) and Flores & Riley (2011), initial turbulent collapse followed by recovery was
observed when the surface temperature of a neutral Ekman layer was suddenly dropped
to impose the prescribed value of stability, Rib. The spatial characteristics of intermittent
turbulence were then analysed in detail during this transient process. In neutrally stratified
Ekman layers, Deusebio et al. (2014) found large-scale roll structures with one dominant
frequency that matched the convective frequency of the low-level jet (LLJ). They also
found that these counter-rotating streamwise vortices influence the near-wall structures by
pushing or lifting fluid close to the wall. Shah & Bou-Zeid (2014), from analysis of the
TKE budget, show that the reduction of turbulence levels in the stratified EBL is primarily
due to the inhibition of shear production rather than the buoyant TKE destruction.
Interestingly, this feature of buoyancy-induced reduction of turbulence production, which
is key to the suppression of turbulence by density stratification is a generic feature of
stratified shear flows and has been found by us in uniform shear flow (Jacobitz, Sarkar
& VanAtta 1997) and later in the shear layer (Brucker & Sarkar 2007) and the stratified
wake (Brucker & Sarkar 2010). The decrease in turbulence production with increasing
stratification is an indirect effect of buoyancy that decreases the correlation coefficient
between streamwise and vertical velocity fluctuations. Gohari & Sarkar (2017) performed
DNS of the Ekman layer with a constant buoyancy flux, and found differences of this
constant-flux stability case with respect to previous cases with constant temperature
stability: the low-level jet is stronger, there are recurring episodes of collapse and rebirth
of turbulence during the transient, and the TKE profile has local peaks at two vertical
locations.

Recently, Gohari & Sarkar (2018) conducted DNS of a smooth-surface EBL that is
subject to a finite-time (approximately, one inertial period) cooling flux. They found that
initial L+

cri = Lu∗/ν � 700 provides a cooling flux that is sufficiently strong to cause
the initial collapse of turbulence independent of Reynolds number, Re∗, where L is the
Obukhov length scale and u∗ is the friction velocity. The turbulence collapse criterion
for stratified Ekman flow is considered based on the normalized Obukhov length scale
(Obukhov 1971), L+, and has similar values as inferred from the observational study of
Banta et al. (2007) and the DNS of Flores & Riley (2011). The final state, for a fixed L+

and a fixed cooling flux, was found to depend on Re∗, because an increase in initial Re∗
(under the constraint of fixed L+) is equivalent to an increase in Rib. In particular, an EBL
with a final stability of Rib ≥ 2 relaminarized.

None of the Ekman layer DNS have considered surface roughness, which is often
a feature of the ABL. This motivates the present research that addresses how the
destabilizing effect of surface roughness competes with the stabilizing effect of surface
cooling in the EBL. The simulation results are related to meteorological characteristics
that are distinctive features of the stable ABL: low-level jets (Smedman, Tjernström
& Högström 1993; Cuxart et al. 2000; Banta et al. 2002), collapse of surface-layer
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DNS of stratified Ekman layer over a periodic rough surface 902 A25-5

turbulence (Banta et al. 2007), local turbulence peaks at locations above the surface layer
(Mahrt 1985; Smedman et al. 1993; Banta et al. 2007) and unsteadiness of turbulence
statistics (Banta 2008; Pichugina et al. 2008; Sun et al. 2012). These characteristics
not only change the atmospheric dispersion of tracers and pollutants, as has been well
documented in the past, but also, as discussed in recent work, strongly influence acoustic
propagation in the nocturnal boundary layer (Talmadge et al. 2008) with this influence
being modified by hilly terrain (Damiens, Millet & Lott 2018).

The work is organized as follows. Section 2 describes the governing equations and the
problem set-up. Section 3 describes the results of the simulations through the evolution
of mean and turbulence statistics. Section 4 describes the flow structures by isosurface
visualizations and elucidates the role of coherent structures by a triple decomposition.
Finally, § 5 contains the discussion and conclusions.

2. Formulation

In the study of the stratified EBL, several important physical parameters arise: the
geostrophic wind U∞, the Coriolis frequency f , the turbulent Ekman layer thickness δ∗
and the friction Reynolds number Re∗. The governing equations for the conservation of
momentum under the Boussinesq approximation and potential temperature in a rotating
reference frame are as follows:

∂ui

∂t
+ ∂(uiuj)

∂xj
= − ∂p

∂xi
+ ν∇2ui + δi3βgθ + f εij3(uj − U∞δj1), (2.1)

∂θ

∂t
+ ∂(θuj)

∂xj
= α∇2θ. (2.2)

Here t is time, xj is the spatial coordinate in the j direction, uj is the velocity component in
that direction, p is the pressure deviation from the mean pressure imposed by geostrophic
and hydrostatic balance, δi3 is the Kronecker delta, εij3 is the alternating unit tensor, ν is
the molecular viscosity, β is the thermal expansion coefficient for air, g is the gravitational
acceleration, f is the Coriolis parameter, α is the thermal diffusivity and θ is the deviation
of potential temperature from its constant reference value.

It can be shown that Reynolds number and Prandtl number, defined as

ReD = U∞D
ν

, D =
√

2ν/f , Pr = ν

α
, (2.3a–c)

are the only non-dimensional parameters controlling the dynamics of a neutral Ekman flow
at steady state, when the statistics have been adequately decorrelated from their initial
condition (Spalart 1988). Although the laminar Ekman layer depth, D, is not a proper
length scale describing the momentum transport in a turbulent Ekman flow, ReD provides
a universal comparison point among different Ekman flow studies. For a turbulent Ekman
flow, it is proper to use the turbulent Ekman layer thickness, δN = u∗/f , where u∗ is the
friction velocity which is defined below and subscript N denotes neutral conditions. The
friction velocity and the friction Reynolds number (Re∗) are computed as

u2
∗ = ν

√(
∂〈u〉
∂z

)2

+
(

∂〈v〉
∂z

)2
∣∣∣∣∣∣
z=0

,

Re∗ = u∗δN

ν
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)
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Hereafter, 〈·〉 denotes the Reynolds average, which is computed as a horizontal x–y
average when the flow statistics are evolving in time, and with an additional time average
over an inertial period when the flow is quasi-steady. It is important to note that u∗ and
δN are functions of the Reynolds number and are not known prior to simulation in Ekman
layer studies. Denoted by superscript +, statistics normalized with the viscous scale (ν/u∗)
are chosen to describe behaviour in the near-surface region. Normalization of statistics,
denoted by superscript −, by the boundary-layer height (Ekman layer thickness δN) is also
used.

2.1. Surface roughness
The roughness takes the form of periodic two-dimensional periodic bumps whose
non-dimensional amplitude is fixed and the steepness is changed among cases. The rough
surface is described by a height function, η(x), which is generated through a harmonic
function, f (x) = −h cos(2πx/λ), with wavelength λ and amplitude h, including only the
positive portions of f (x),

η(x) =
{

f (x) if f (x) = −h cos(2πx/λ) > 0,

0 otherwise.
(2.5)

A schematic of the roughness (figure 1) shows the surface has bumps but, unlike
a surface wave, it has no troughs. This choice is motivated by the example of a
two-dimensional hilly surface. Other types of surface roughness, e.g. a wavy surface that
has been studied in the past, are worth future consideration. The chosen roughness has
not only a small height (h+ = 15) relative to the Ekman layer thickness but also has a
gentle slope (h/λ� 1), so that, in the unstratified cases, its effect is small. In the stratified
cases, as will be shown and explained, the same roughness height has a strong effect
that substantially changes the flow with respect to its smooth-bottom counterpart. The
influence of roughness is found to extend up to the region (Rig > 0.1) where buoyancy
alters the mean flow and turbulent stresses.

2.2. Buoyancy
Buoyancy is imposed by a surface flux, whose strength is quantified by the Obukhov
length,

L = − u3
∗

κ(βgq0)
, (2.6)

where κ is the von-Kármán constant and q0 = −α∂zθ |z=0 is the applied surface cooling
flux. Here L provides an estimate of the height at which the buoyancy flux and turbulent
energy production by mean shear are balanced. Using inner-layer scaling, the normalized
Obukhov length becomes

L+ = Lu∗
ν

= − u4
∗

κν(βgq0)
. (2.7)

The gradient Richardson number, a function of z and t in this flow, is defined by

Rig = N2

S2
, (2.8)

where N2 = gβ∂〈θ〉/∂z is the squared buoyancy frequency and S2 = (∂〈u〉/∂z)2 +
(∂〈v〉/∂z)2 is the squared mean of the vertical shear. Large local values of Rig imply
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suppression of shear production of turbulence, and Rig = 0.25 is a stability boundary for
the stratified shear layer. The non-dimensional inverse Obukhov length scale can also be
interpreted in terms of Rig at the surface,

Rig,s = N2

S2
= βg∂z〈θ0〉

u4∗/ν2
= (κL+)−1, (2.9)

where Pr = 1 has been assumed. An alternative normalization of L is based on outer-layer
coordinates,

L− = L
δN

, (2.10)

where δN = u∗/f is the boundary-layer scale. The neutral EBL has a boundary-layer height
of approximately 0.5δN . Since u∗ is a time-dependent function in the stratified DNS cases,
so are L, L+ and L−.

The bulk Richardson number, an overall stability measure of the flow, is defined as

Rib = βgδN
〈�θ0〉
U2∞

, (2.11)

where �θ0 = θ∞ − θ0 is the difference between the temperature above the boundary
layer and the surface temperature. In the present study the surface temperature (θ0) is a
time-dependent variable during the time interval, T , over which finite-time constant-flux
stability is imposed. The value of Rib is also initially dependent on time but it becomes
constant at the end of the time interval, T .

2.3. Numerical details
The governing equations (2.1) and (2.2) are numerically advanced in time using
a combination of the low-storage third-order Runge–Kutta (RKW3) and mixed
spectral-physical spatial discretization. The equations are written in generalized
coordinates and the grid conforms to the bottom wall as described by Gayen & Sarkar
(2011). Spatial discretization and derivative calculations in the spanwise direction are
performed using Fourier transforms, and the derivatives in the streamwise and vertical
directions are computed using a second-order central difference scheme. The nonlinear
advection terms are dealiased with the 2/3 rule and a sharp-cutoff filter. The kinematic
pressure, p, is computed by solving the Poisson equation that results from imposing zero
velocity divergence at each time step. The boundary conditions for the velocity are no-slip
and impermeability (ui = 0) at the surface, periodicity in the horizontal directions and
stress free (∂ui/∂z = 0) at the upper boundary. The temperature gradient is fixed at the
bottom surface to impose the desired cooling flux. A sponge region with Rayleigh damping
is applied to ui and θ to minimize the spurious reflection of gravity waves in the upper
boundary (z = Lz). The in-house solver, which has been developed for environmental
flows, has been applied to the Ekman boundary layer (Gohari & Sarkar 2018) as well
as complex geometries including stratified oscillating flow over a slope (Gayen & Sarkar
2011) and a triangular ridge (Rapaka, Gayen & Sarkar 2013; Jalali, Rapaka & Sarkar 2014).

A cooling flux, as determined by L+, is imposed in the neutral cases too in order to
simulate the behaviour of a passive scalar. All of the rough and smooth-bottom stratified
cases are initiated with a fully developed velocity field taken from the corresponding
neutral case. The passive-scalar temperature field from the neutral case is reset to a uniform
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Case Re∗ h+ l+ Lx/δN Ly/δN Lz/δN Nx × Ny × Nz �x+, �y+, �z+
min

FlatN 697 — — 4.09 2.05 2.05 321 × 256 × 129 8.46, 5.29, 0.98
FlatS 697 — — 4.09 2.05 2.05 321 × 256 × 129 8.46, 5.29, 0.98
2BumpN 672 15 350 4.11 2.06 2.06 481 × 256 × 129 5.61, 5.26, 0.73
2BumpS 672 15 350 4.11 2.06 2.06 481 × 256 × 129 5.61, 5.26, 0.73
4BumpN 668 15 175 4.16 2.08 2.08 481 × 256 × 129 5.55, 5.20, 0.71
4BumpS 668 15 175 4.16 2.08 2.08 481 × 256 × 129 5.55, 5.20, 0.71

TABLE 1. Physical and numerical parameters of the simulations. Here Nx , Ny and Nz are the
number of grid points in the streamwise, spanwise and vertical directions, respectively. The case
label in column 1 has a subscript N (neutral case) or S (stable case), and starts with the number
of bumps in the rough cases. In the stable cases, a surface buoyancy flux, chosen to obtain a
target L+ ≈ 700, is applied for a finite time of f T ≈ 6 and then the surface temperature is held
constant.

background value so that each stratified case starts with zero temperature variation and
stratification is allowed to build up in response to the applied surface buoyancy flux.

Parameters used in this DNS study are summarized in table 1. A fixed value of buoyancy
flux, corresponding to L+≈ 700, is applied for a time interval of f T = 6 in the stable cases.
Note that the computational domain is enlarged to twice the streamwise domain of Gohari
& Sarkar (2018) in order to better accommodate long streamwise structures. The resolution
is �x+ ≈ 8.5 in the streamwise direction for the flat-bottom case and �y+ ≈ 5.2 in the
spanwise direction, similar to other DNS of wall-bounded flows. For the rough cases, the
resolution in the streamwise direction is increased to �x+ ≈ 5.6. In the vertical direction,
ten grid points span 0 < z+ ≤ 10 with a non-dimensional grid spacing �z+

min ≤ 1.
The roughness height is kept constant at a small value of h+ = 15 which corresponds

to the transitionally rough regime. The roughness takes the form of a periodic array of
two-dimensional, spanwise-uniform elements whose surface elevation is given by (2.5).
The roughness amplitude, h+ = 15, is kept constant, and the wavelength of the roughness
(λ) is changed. Note that λ = Lx/Nb, where Nb is the number of bumps and Lx is the
streamwise domain size. In the simulations Lx is kept fixed and λ is changed by changing
Nb. Doubling Nb decreases the element half-length (l = λ/4) by a factor of 2 and doubles
the slope. The coverage of the bottom by the roughness elements is 50 % of the wall area,
independent of the number of bumps. The slope of each bump, given by h/l, is small
and changes from 0.042 to 0.084 when Nb is doubled from 2 to 4. Another measure is the
maximum slope, hk where k = 2π/λ is the wavenumber, which changes from 0.06 to 0.12.
We find that the flow does not separate at these values of slope. It is worth noting that the
slope utilized here is below the critical slope for separation reported in the literature on a
sinusoidal wavy surface where Gong et al. (1996), Sullivan et al. (2000) quote hk > 0.3 for
flow separation, and Zilker et al. (1977) state that there is incipient separation at 2h/λ =
0.05 and there are large separated regions at 2h/λ = 0.125 and 0.20.

3. Flow evolution

The effect of the small-amplitude bumps on the velocity and temperature profiles in z is
found to be insignificant under neutral conditions in contrast to the substantial effect under
stratified conditions. This primary result is elaborated and explained in this section.
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DNS of stratified Ekman layer over a periodic rough surface 902 A25-9

3.1. Overall velocity and temperature variation

Figure 2 shows the horizontal mean velocity (
√

〈u〉2 + 〈v〉2/U∞) profile of the EBL in
the top row and the normalized potential temperature (u∗N (θ − θ∞)/q0) in the bottom
row for both neutral (left column) and stratified (right column) cases. The statistics are
obtained by averaging over the horizontal x–y plane and an average over one inertial
period ( ft ≈ 2π). The temperature is treated as a passive scalar in the neutral cases. The
velocity in the neutral flat-bottom case compares well with previous results (Shingai &
Kawamura 2004; Ansorge & Mellado 2014; Shah & Bou-Zeid 2014) at comparable Re as
discussed by Gohari & Sarkar (2018). The horizontal wind speed exhibits little difference
among the neutral (figure 2a) flat and rough cases. Since the slope of the bump is gentle
(hk = 0.06 and 0.12), the flow does not separate and the change in wall drag (shear stress
plus form drag) is small. It is worth noting that DNS of a turbulent flow over a sinusoidal
wavy wall with hk = 0.1 in Couette flow (Sullivan et al. 2000) and channel flow (De
Angelis et al. 1997) does not show flow separation. The stratified cases also do not exhibit
flow separation; however, the mean velocity profiles (figure 2b) show a strong influence
of roughness on the features of the LLJ that forms in the boundary layer. Each stratified
case has a super-geostrophic velocity, commonly referred to as the LLJ. The formation of
the LLJ is a distinctive feature of the stable ABL (Beare et al. 2006) associated with the
reduction of turbulent momentum flux by buoyancy. In the roughness layer at the surface,
the bumps counteract the buoyancy-induced reduction of the momentum fluxes. Thus, the
peak of the LLJ moves upward and the LLJ profile broadens. In the stratified 4Bump case
(filled diamonds in figure 2b), the wind-speed profile in the region between the surface
and z− = 0.1 is close to the neutral case (open diamonds) while, in contrast, the 2Bump
and flat cases exhibit a significant deviation from the neutral case. The present DNS
results show a LLJ with a nose at z ≈ 0.1δN , with a maximum super-geostrophic overshoot
of u/u∞ − 1 ≈ 10 %. Direct numerical simulation with stronger stability conducted by
Gohari & Sarkar (2017) showed cases with LLJ at z ≈ 0.05δN and u/u∞ − 1 ≈ 50 %.

Considering typical values of u∗ ≈ 0.3 m s−1 and f = 10−4 s−1 in the DNS-derived scaling
gives a LLJ nose height of 150–300 m in the stable ABL. This estimate of LLJ properties
is consistent with several stable ABL studies: (i) Banta et al. (2007) reported LLJ nose
height at approximately 150–300 m with velocity overshoot of 20–60 %; (ii) Beare et al.
(2006) reported LLJ nose height at approximately 150–180 m with an overshoot of 25 % in
LES studies; (iii) Banta et al. (2002) reported LLJ nose height at approximately 100–200 m
with a velocity overshoot of 10–70 %; (iv) Talmadge et al. (2008) reported observations
of LLJ nose height at approximately 125 m in an ABL with strong ground cooling (see
figure 4 in Talmadge et al. 2008); (v) Wilson, Noble & Coleman (2003) studied sound
propagation in a stable nocturnal boundary layer which had a deep temperature inversion
and LLJ at approximately 160 m, and was observed during CASES-99 (Poulos et al. 2002).
It is worth noting that sloping terrain that leads to drainage flows also contributes to the
LLJ structure (Mahrt 1999).

In the neutral EBL (figure 2a) the effect of the surface roughness on the mean
temperature is relatively small, similar to that on the velocity. However, in the stratified
boundary layer (figure 2b) the bumps have a significant effect on the temperature
distribution. The strong near-surface inversion of the flat case is substantially weakened
in the 4Bump case; the near-surface temperature field is more mixed, and its profile moves
towards that of the neutral case. Thus, in spite of employing the identical value of surface
cooling flux (q0) in the three stratified cases, the surface temperature in the 4Bump case
does not decrease as much as in the other stratified cases.
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FIGURE 2. Mean velocity (
√

〈u〉2 + 〈v〉2/U∞) profiles: (a) neutral and (b) stratified cases.
Potential temperature (u∗N (θ − θ∞)/q0) profiles: (c) neutral cases where θ is treated as a passive
scalar, and (d) stratified cases. The large unfilled circle (right column) marks the time-evolving
boundary-layer thickness (z = δt), defined by (3.7a,b).

The mean velocity is also examined using inner-layer coordinates. A least-squares fit to
the vertical variation of G = (〈u〉2 + 〈v〉2)1/2 is performed to obtain the following profile
in semi-logarithmic coordinates:

G+ = 1
κ

ln z+ + B ≡ 1
κ

ln
z+

z0
+ ≡ 1

κ
ln

z
z0

. (3.1)

Here z0
+ = e−κB. The values of (κ, z0

+) are (0.44, 0.0759), (0.43, 0.0814) and (0.40,
0.1187) in the flat, 2Bump and 4Bump cases, respectively, and the profiles are as shown in
figure 3. Sullivan et al. (2000) in their DNS of Couette flow found that, for a stationary
bottom wall, z0

+ = 0.17 in the flat-bottom case and z0
+ = 0.27 for a wavy-bottom wall

with ak = 0.1. Both cases exhibited κ = 0.41.
Monin–Obukhov (MO) similarity theory, often used to interpret ABL data, is utilized to

assess the mean velocity and temperature profiles obtained here. Simulation data are used
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DNS of stratified Ekman layer over a periodic rough surface 902 A25-11
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FIGURE 3. The mean velocity magnitude plotted in semi-logarithmic coordinates: (a) flat κ =
0.44, B = 5.82, z0 = 0.0759, (b) 2Bump κ = 0.43, B = 5.77, z0 = 0.0814, and (c) 4Bump
κ = 0.40, B = 5.32, z0 = 0.1187.

to compute stability functions (Φm and Φh) associated with MO similarity theory:

Φm = κz

√(
∂〈u〉
∂z

(z)
)2

+
(

∂〈v〉
∂z

(z)
)2

u∗(z)
, Φh = −κz

∂〈θ〉
∂z

(z)

θ∗(z)
. (3.2a,b)

Here u∗(z) and θ∗(z) are the local scales for velocity and temperature fluctuations, as per
local similarity theory (Nieuwstadt 1984):

u∗(z)2 = ν

√(
∂〈u〉
∂z

(z)
)2

+
(

∂〈v〉
∂z

(z)
)2

+
√

〈u′w′〉2 + 〈v′w′〉2, (3.3)

θ∗(z)u∗(z) = α
∂〈θ〉
∂z

(z) + 〈θ ′w′〉, (3.4)

LL(z) = − u∗(z)3

κ(βgq0)
. (3.5)

In the unstratified cases, Φh is computed using passive-scalar statistics (buoyancy term in
the momentum equation is set to zero) and the computed value of LL is to be understood
as a notional value that allows comparison of profiles with the stratified cases.

Figure 4 shows normalized mean gradients (the so-called stability functions) for
unstratified (a,b) and stratified (c,d) Ekman layers. For the unstratified cases, Φm(z) = 1
is expected in the log-law region and, correspondingly, Φm(z) takes values near unity over
an extended region (figure 4a). Very near the bottom and in the roughness sublayer, Φm(z)
increases with increasing z. According to MO theory, Φm and Φh are constant and close
to unity when z/LL � 1; here LL is the local Obukhov length. When z/LL ≥ O(1), the
turbulent length scale becomes limited by the local Obukhov length and Φm(z) increases
with z. As shown in figure 4(c,d), there is a region, 0.02 < z/LL < 0.1, where Φm is
approximately constant but greater than unity, followed by an increase of Φm as a function
of increasing z/LL . The function Φh(z) also increases with increasing z/LL and exhibits
a slope that is larger than that of Φm(z). Thus, the effect of buoyancy on heat transport is
stronger than on momentum transport, i.e. the turbulent Prandtl number becomes larger
than 1 in the stratified region of the boundary layer. The dependence of the stability
functions on z/LL in the present work is similar to that reported in previous studies, e.g.
the LES of Basu & Porté-Agel (2006). It is worth noting that, in the surface layer and
among the stratified cases, the 4Bump case shows behaviour closest to the passive-scalar
counterpart.
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FIGURE 4. Normalized gradients (Φm and Φh defined by (3.2a,b)) of velocity (a,c) and
temperature (b,d). Passive-scalar, unstratified cases are shown in the top row (a,b) and stratified
cases in the bottom row (c,d).

Figure 5 shows the overall influence of the bumps on the flow evolution. The integrated
TKE, obtained by a horizontal x–y average to compute 〈u′

iu
′
i〉 followed by integration in

the vertical, is defined as

E =
∫

e dz = 1
2

∫ Lz

0
〈u′

iu
′
i〉 dz. (3.6)

In all cases, TKE initially decreases during a period of turbulence collapse when the
flow transitions from neutral to stable. For the flat case, turbulence collapses with a time
scale of L/u∗ in agreement with Flores & Riley (2011). The collapse is followed by a
recovery of TKE in each case. The turbulence recovery is consistent with DNS results of
the stable EBL (Ansorge & Mellado 2014; Shah & Bou-Zeid 2014; Gohari & Sarkar 2018).
The value of u∗ decreases by ∼10–15 % during the initial transient before recovering to
approximately its initial value. In an analysis of the CASES-99 data, Banta et al. (2007)
reported a 6 hr collapse time period which corresponds to a non-dimensional time of
ft ≈ 1.98, which is similar to the DNS collapse time scale.

The TKE evolution after collapse exhibits significant differences among cases. In
figure 5(a,c) for the flat and 2Bump cases, TKE exhibits a large-amplitude inertial
oscillation with period, ft ≈ 2π. For the 4Bump case (figure 5e), the periodic modulation
of TKE is not observed, but TKE exhibits a gradual increase (on average) and seems
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FIGURE 5. Overall behaviour of the stratified cases at Re∗ ≈ 700: (a,b) flat cases, (c,d) 2Bump
cases and (e, f ) 4Bump cases. The left column shows integrated TKE (E/(δNu2∗N

)) and the right
column shows the bulk Richardson number (Rib). Points a–f (left column) mark the times of
(a–f ) in figure 7.

to reach a plateau beyond ft ≈ 25. We will discuss reasons for the difference in TKE
evolution later.

We apply the same buoyancy flux for all cases; however, the final Rib (right column of
figure 5) is different among the three cases. The final value of Rib for the flat, 2Bump and
4Bump cases is 0.485, 0.379 and 0.312, respectively. Thus, the modification of the flow by
the roughness elements is sufficiently strong in the 4Bumps case, despite the small bump
height and the gentle slope of the bump, to significantly decrease Rib. The decrease in Rib
suggests that the buoyancy effect in the 4Bump case on turbulence is weaker, as will be
demonstrated by quantification of turbulent fluxes.

The contour of local gradient Richardson number, Rig defined by (2.8), is a measure of
the height-dependent strength of static stability relative to shear instability, and is depicted
in figure 6. There is a region extending up from the wall which is subcritical (Rig < 0.25).
The height at which Rig crosses the critical value of 0.25 increases with the number of
bumps so that the subcritical region of the Rig profile expands significantly. The subcritical
region that starts at the bottom reaches up to z− ≈ 0.2 in the 4Bump case instead of
z− ≈ 0.075 in the flat case. The implication is that roughness changes the stability of the
near-bottom flow to make it more vulnerable to shear instability. Thus, the behaviour of
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FIGURE 6. Contours of gradient Richardson number (Rig) for flat (a), 2Bump (b) and 4Bump
(c) cases. The black dashed line shows Rig = 0.25.

both Rib and Rig(z) suggest that the roughness elements, albeit small, substantially mitigate
the stabilizing effect of buoyancy.

In figure 7 instantaneous vertical vorticity contours for the three stratified cases at
different times ( ft ≈ π in the left column and ft ≈ 4π in the right column) are shown on a
horizontal plane close to the wall (z+ ≈ 16) and near the crest of the bumps. These times
correspond to points (a–f) on the TKE profiles shown in the left column of figure 5 and
also to panels (a–f ) in figure 7. Comparison of the points demarcated as b, d and f on the
time histories in figure 5 show that, at ft ≈ 4π, the integrated TKE is the same for 2Bump
and 4Bump cases and is slightly smaller in the flat case. However, on comparison of
figures 7(b), 7(d) and 7( f ), we find that the near-wall structures are substantially different,
reinforcing the fact that an overall statistical measure of turbulence does not necessarily
reveal the full picture of the flow state. In particular, with an increasing number of bumps,
near-wall turbulence is less patchy and more continuous at ft = 4π, corresponding to a
state of continuous turbulence without global intermittency (Nieuwstadt 1984). This is
true even at the earlier time of ft = π during the initial adjustment of the boundary layer
to buoyancy when the TKE drops.

3.2. Boundary layer thickness
Previous studies have chosen different metrics to quantify the thickness of the stratified
boundary layers, including but not limited to the height of the capping inversion layer
(Melgarejo & Deardorff 1974; André & Mahrt 1982), the height at which the low-level
jet velocity is maximum (Blackadar 1957; Shapiro & Fedorovich 2010; Van de Wiel et al.
2010), and the height at which turbulent stress reduces to some fraction of its surface
value (Zilitinkevich 1972; Businger & Arya 1975; André & Mahrt 1982; Kosović & Curry
2000). Although each of these definitions has a suitable use, the one defined based on
the location where turbulent stress vanishes is chosen here as an average measure of the
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FIGURE 7. Vertical vorticity (normalized with u∗N/z) contour at z+ ≈ 16 in the stratified
cases: (a,b) flat, (c,d) 2Bump and (e, f ) 4Bump. Left column at ft ≈ π and right column at
ft ≈ 4π.

interface between turbulent and non-turbulent layers. We define the height by locating the
position (denoted by zp) where the horizontal Reynolds shear stress is reduced to 5 % of
u2

∗, and then linearly extrapolating to the location at which it would vanish if the stress
profile was linear. Thus, a time-evolving value of the stratified boundary-layer thickness is
defined as

δt = zp

0.95
; at z = zp,

√
〈u′w′〉2 + 〈v′w′〉2/u2

∗ = 0.05. (3.7a,b)

Subsequently, a modified bulk Richardson number, based on the local (in time)
boundary-layer thickness, is defined as

Rib,t = βgδt
〈�θ0〉
U2∞

. (3.8)
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FIGURE 8. Time evolution of bulk quantities is contrasted among the different rough stratified
cases: (a) local (in time) boundary-layer thickness and (b) bulk Richardson number (Rib) for
flat , 2Bump , and 4Bump , and modified bulk Richardson number (Rib,t) for flat,
2Bump , and 4Bump . The roughness element height is also shown in (a).

Figure 8(a) shows the time evolution of δt for the stratified cases. In the flat case, the
EBL thickness decreases sharply during the initial collapse of turbulence. Although small
relative to the initial neutral boundary-layer height, the reach of the roughness bumps
becomes comparable to the reduced value of δt during turbulence collapse. Therefore, the
roughness elements are able to sufficiently perturb the thin, collapsing boundary layer to
partially arrest turbulence collapse. The modified bulk Richardson number (Rib,t) is shown
in figure 8(b). The previously shown Rib, based on the neutral boundary-layer scale (δN),
is also shown for ease of comparison. For the 4Bump case, the non-steady values of Rib,t
are initially higher when the flow goes through turbulence collapse, however, the final
values are similar. Thus, the overall strength of stratification as measured by Rib,t does not
change among cases. It is the wall-normal distribution of temperature and velocity which
is affected by roughness. The invariance of Rib,t among cases implies that δt ∝ 〈�θ0〉−1.
Evidently, the introduction of surface bumps decreases the net amount of surface cooling
(shown by the decrease of Rib) and, concurrently, increases the boundary-layer thickness
to maintain Rib,t. It is worth noting that, in previous DNS of the stable flat-bottom case
with constant temperature boundary condition that imposes Rib, the vertical extent of the
Reynolds shear stress profiles also exhibits a similar trend of δt increasing with decreasing
Rib. For example, it can be inferred from figure 13(c) of Shah & Bou-Zeid (2014), which
shows the Reynolds shear stress for various stability levels, that δt is approximately
inversely proportional to Rib.

3.3. Turbulent fluxes
Roughness enhances turbulent fluxes and, furthermore, the increase is substantially
stronger in the stratified situation relative to its unstratified counterpart. Figure 9(a,b)
shows profiles of the turbulent momentum flux (

√
〈u′w′〉2 + 〈v′w′〉2/u2

∗N), which are
obtained by horizontal x–y averaging and a time average over ft ≈ 2π. In the neutral
EBL (figure 9a) the increase with respect to the flat case is negligible for the 2Bump
case and moderate for the 4Bump case. The increase is substantially more in the stratified
cases (figure 9b), e.g. the peak value in the 4Bump case is twice that in the flat case.
Surface cooling suppresses the turbulent momentum flux as revealed by comparison of
figures 9(a) with 9(b). However, surface roughness is able to counteract the suppression
over a significant portion of the initial neutral boundary layer. The flux profiles in the
stratified rough cases have a larger vertical extent than the stratified flat case, consistent
with the increase of the boundary-layer thickness (δt) induced by the bumps.
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FIGURE 9. The effect of surface bumps on turbulent fluxes: (a,b) turbulent momentum
flux (

√
〈u′w′〉2 + 〈v′w′〉2/u2∗N) profiles and (c,d) buoyancy flux (〈w′θ ′〉)/q0) profiles. Neutral

situation shown in (a,c), and stratified counterpart in (b,d).

Buoyancy flux, 〈w′θ ′〉, in the stratified cases (figure 9d) is considerably suppressed
relative to the corresponding unstratified cases (figure 9c), regardless of the number of
bumps. After its peak, the magnitude of 〈w′θ ′〉 drops sharply with increasing height
relative to the unstratified cases. The drop is less sharp in the presence of roughness. Thus,
between z− of 0.15 and 0.3 in figure 9(d), the value of 〈w′θ ′〉 is substantially larger in the
4Bump case (filled red diamonds) relative to the flat case (filled black squares).

Roughness preferentially enhances vertical fluctuations in the stratified EBL. Figure 10
depicts the effect of roughness on the amplitude of horizontal (uh,rms = √

u2
rms + v2

rms) and
vertical (wrms = √〈w′w′〉) fluctuations. The presence of surface roughness leads to a mild
increase of both uh,rms and wrms above the bumps in the neutral cases (left column). Under
stratification, the surface roughness effect on wrms is dramatic. In the near-surface region
(z− < 0.15) the 4Bump case has substantially larger wrms relative to the flat case, as seen
in figure 10(d). This increase of vertical transport is key to the roughness-induced increase
of TKE, as will be evident later in § 3.4 where the TKE budget is discussed. It is worth
noting that the increase of near surface wrms in the 4Bump stratified case is also manifested
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FIGURE 10. Profiles of velocity fluctuation statistics contrasted between neutral (a,c) and
stratified (b,d) conditions: (a,b) horizontal velocity fluctuations (

√
u2

rms + v2
rms) and (c,d) vertical

velocity fluctuations (wrms). Open circle (right column) profile shows z = δt.

in the finding, illustrated by figure 7( f ), that the 4Bump case has continuous near-surface
turbulence in contrast to the local intermittency (localized turbulence patches distributed
in an almost-quiescent background) of the flat case in figure 7(b). The location of the EBL
boundary (z = δt), based on the turbulent momentum flux, is shown on each profile in
figure 10. The r.m.s. fluctuation profiles have significantly larger vertical spread than δt
which is based on the Reynolds shear stress.

Mahrt (1998), based on observational data, presents idealizations of the stratified
boundary layer that we assess in figure 11 using the present simulation data. The very
stable boundary layer (the right subfigure of figure 1 in Mahrt 1998) is conceptualized
by the author as follows: a wrms profile that has weak near-surface values with the peak
occurring at an elevated location, and a θ profile that exhibits a strong surface inversion
layer. The flat case (figure 11b) shows a strong near-surface inversion and an elevated peak
of wrms (associated with the shear of the LLJ), in good agreement with the idealization
of a very stable boundary layer. On the other hand, the 4Bump stratified case (figure 11a)
has a presentation that is more akin to the so-called weakly stable boundary layer (the left
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FIGURE 11. Comparison of rough and smooth-bottom cases in the context of Mahrt (1998)
classification of the stable ABL. Potential temperature (θ ) and vertical r.m.s. (wrms) profiles:
(a) 4Bump ( ) case and (b) flat ( ) case. Normalization with u∗N and q0.

subfigure of figure 1 in Mahrt 1998) that does not have an elevated peak of wrms and has a
weak surface inversion layer.

3.4. Turbulent kinetic energy budget
The TKE budget is analysed to better understand the mechanisms underlying turbulence
collapse and rebirth. At statistical steady state, the Reynolds-averaged turbulent kinetic
energy budget can be written as

∂e
∂t

= −〈uj〉 ∂e
∂xj

− 1
2

∂〈u′
iu

′
iu

′
j〉

∂xj
− ∂〈u′

ip
′〉

∂xi
+ δi3βg〈u′

iθ
′〉

− 〈u′
iu

′
j〉

∂〈ui〉
∂xj

+ ν
∂2e
∂x2

j
− ν

〈
∂u′

i

∂xj

∂u′
i

∂xj

〉
, (3.9)

where turbulent kinetic energy e = 1
2 〈u′

iu
′
i〉, pressure transport rate PT = −∂〈u′

ip
′〉/∂xi,

turbulent transport TT = − 1
2∂〈u′

iu
′
iu

′
j〉/∂xj, shear production rate P = −〈u′

iu
′
j〉∂〈ui〉/∂xj,

buoyancy flux B = δi3βg〈u′
iθ

′〉, viscous diffusion rate νD = ν∂2e/∂x2
j and viscous

dissipation rate ε = ν〈∂u′
i/∂xj ∂u′

i/∂xj〉. It is worth noting that the buoyancy flux (B) is
negligible in comparison to the other terms in the TKE balance. The smallness of B in the
stratified boundary-layer TKE budget is consistent with other studies of the EBL, e.g. Shah
& Bou-Zeid (2014) and Gohari & Sarkar (2018) who found that B is negligible in the TKE
balance and that the direct impact of stability on the flow is not through TKE destruction
by buoyancy, but rather through the inhibition of shear production. The balance, calculated
as the sum of all the terms on the right-hand side of (3.9), has been obtained as a function
of time. In the 4Bump case the sum is less than 1 % of the dominant term. In the flat and,
to a lesser extent in the 2Bump case, the instantaneous sum is oscillatory owing to the
inertial oscillations in TKE. The amplitude of these oscillations can be as large as 15 %
but the time average over an inertial period is again less than 1 % of the dominant term.
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FIGURE 12. Turbulent kinetic energy budgets for flat (a–c), 2Bump (d–f ) and 4Bump (g–i)
cases at different times: ft = 0 (a,d,g), ft ≈ π (b,e,h) and ft ≈ 3π (c, f,i). Normalization with
u4∗N

/ν.

Turbulent kinetic energy budget terms are shown in figure 12 for flat (a–c), 2Bump
(d–f ) and 4Bump (g–i) cases at ft = 0 (a,d,g), ft ≈ π (b,e,h) during the initial turbulence
collapse, and ft ≈ 3π (c, f,i) after turbulence recovery. At ft = 0, which corresponds to the
neutral EBL, the TKE budget terms are similar among the three cases. The peak of TKE
production (P) is in the buffer layer. After the imposition of constant-flux stability, there is
a drop of P. For the flat case (figure 12b), P becomes negligible at ft ≈ π. The restriction
of TKE production in the surface layer by the imposed stable surface cooling flux leads to
turbulence collapse (Ansorge & Mellado 2014; Shah & Bou-Zeid 2014). In the flat case,
Gohari & Sarkar (2017) showed that turbulence recovery is promoted by pressure transport
(PT) that carries outer-layer fluctuation energy into the lower flank (with subcritical Rig)
of the near-surface LLJ. The pressure transport is important during the recovery in the
flat case (green line in figure 12c), but not so in the cases with roughness (figure 12f,i).
For the 2Bump case in figure 12(e), the magnitude of the shear production is reduced, but
nevertheless, roughness ensures that |P| > 0. The production of mechanical turbulence
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enhances the subsequent recovery of the EBL to a turbulent state. For the 4Bump case
in figure 12(h), the reduction of shear production by buoyancy is even weaker than the
2Bump case. It is evident from figure 12 that the surface roughness aids TKE generation
to keep the flow from turbulence collapse. For the same reason, near-surface turbulence
is continuous in the 4Bump case after recovery rather than being locally intermittent as
in the flat case. The reduction of P by buoyancy is related to the significant damping of
vertical turbulent motions which in turn reduces the momentum fluxes (〈u′w′〉 and 〈v′w′〉),
especially in the flat case, as seen by comparing figure 9(b) with figure 9(a). This reduction
is mitigated in the rough cases because the surface bumps promote vertical transport.

4. Flow structures

4.1. Coherent structures
The roughness elements introduce coherence into the flow vorticity and velocity. Figure 13
shows a λ2 isosurface superposed on the streamwise vorticity (ωx ) contour on a
near-surface horizontal plane. The quantity, λ2, is the intermediate eigenvalue of the
symmetric tensor, SikSkj + ΩikΩkj, where Sij and Ωij are the symmetric and antisymmetric
components of the velocity gradient tensor, ∂ui/∂xj. The unstratified flow (left column)
exhibits coherent packets of hairpin vortices. The near-wall structures are inclined with
a veering angle with respect to the outer geostrophic velocity which points in the
x-direction. The signature of the bumps is seen in the coherent strips of ωx on the displayed
horizontal plane. The snapshots are shown at ft ≈ 6 when the TKE in the stratified cases
is approximately at its minimum. At this time, the coherent structures in the stratified EBL
(right column of figure 13) are suppressed relative to neutral conditions. Nevertheless, the
roughness elements are able to sustain some of the unsteady flow structures as can be seen
by comparing the 4Bump case (figure 13f ) with the flat case (figure 13b).

4.2. Dispersive effects of roughness
The roughness elements introduces a variability in the flow relative to the horizontal
average. This variability leads to a so-called dispersive component of velocity which
brings about fluxes of momentum and heat, and is extracted as follows. First, the field
variables are decomposed into a time-averaged mean and a fluctuating component. Thus,
the velocity on a given horizontal plane (fixed z) is split into

ui(x, y, t) = ūi(x, y) + u′′
i (x, y, t), (4.1)

where ūi is the time-averaged mean and u′′
i is the fluctuation about the time-averaged

mean. The two-dimensional (2-D) periodic roughness in the present problem imposes a
spatial organization on the time-averaged field that can be extracted by applying a further
streamwise spatial average, denoted by 〈〉x , to the time average (ūi). Thus, (4.1) becomes

ui(x, y, t) = 〈ūi〉x( y) + ũi(x, y) + u′′
i (x, y, t)

= 〈ūi〉x( y) + u′
i(x, y, t). (4.2)

This decomposition identifies ũi(x, y) as the spatially coherent part of the time-averaged
flow, e.g. Finnigan (2000), Sullivan et al. (2000), Poggi et al. (2004), Li & Bou-Zeid
(2019). Physically, ũi(x, y) in the present problem is the time-mean velocity associated
with the roughness bumps. Because of the streamwise periodicity and statistical
steadiness, the composite (t and x) average, 〈ūi〉x( y), is taken to be the Reynolds average
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(a) (b)

(c) (d)

(e) ( f )

–5.0 –2.5 0 2.5 5.0

ωx

FIGURE 13. Coherent structures deduced by a λ2 isosurface are superposed on streamwise
vorticity on a horizontal plane at z+ ≈ 16 (at the crest of the bumps) and contrasted between
neutral (a,c,e) and stratified (b,d, f ) cases; (a,c,e) are the neutral flat, 2Bump and 4Bump cases,
respectively, while (b,d, f ) are the corresponding stratified cases. The snapshots are taken at
ft ≈ 6 when the TKE is approximately at its minimum. Vorticity is normalized with u∗N/z.
Isosurface of λ2 = −3.125(u∗N/z)2 is shown.

and the fluctuation, u′
i, is the Reynolds fluctuation. As elaborated in this section, the u′

i field
contains a time-independent part (ũi(x, y)) associated with the 2-D roughness elements
which leads to a dispersive component of the Reynolds stress and an ‘incoherent’ part
(u′′

i (x, y, t)). The triple decomposition (Reynolds & Hussain 1972) splits the velocity into
a time-average, a time-coherent (often a wave-like field at a specific temporal frequency)
component, and an incoherent turbulent component. The first line of (4.2) is analogous to
their triple decomposition as it extracts the space-coherent component introduced by the
periodic roughness.

For completeness, the mathematical definition of the averages and the fluctuations are
given below for the velocity on a horizontal plane at constant z:

ūi(x, y) = 1
T

∫ t+T

t
ui(x, y, t′) dt′, (4.3)

〈ui〉x( y, t) = 1
Lx

∫ Lx

0
ui(x, y, t) dx, (4.4)

ũi(x, y) = ūi(x, y) − 〈ūi〉x( y), (4.5)
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u′
i(x, y, t) = ui(x, y, t) − 〈ūi〉x( y), (4.6)

u′′
i (x, y, t) = ui(x, y, t) − ūi(x, y). (4.7)

Figure 14 shows the consequences of the decomposition of streamwise velocity (u)
in the neutral EBL. The neutral value (u∗N) of friction velocity is used to normalize
velocity in figures 14–18. Upon comparison of figure 14(a,c), it is evident that the Reynolds
fluctuations (u′) and the incoherent velocity fluctuations (u′′) are similar in the unstratified
flat case and ũ = 0. However, in the 4Bump case the u′ field (figure 14b) is different from
the incoherent u′′ field (figure 14d). The u′ field contains a spatially organized component,
which is introduced by the bumps. This coherent component (ũi), isolated by applying the
triple decomposition, appears as four distinctive strips associated with the four surface
bumps in figure 14( f ). The region of positive u which is forward of a surface bump
combines with the rearward negative u to form a strip associated with the roughness. The
imprint of the 2-D bumps, extracted through ũ, is unequivocal.

The influence of the bumps extends upward from the roughness elements into the flow as
illustrated by figure 15. The vertical coherent component (w̃ in figure 15c) takes values of
O(u∗) up to z− = 0.1, which is ∼3 times the roughness height. When the boundary-layer
thickness (δt) decreases during the initial transient as the EBL adjusts to the imposed
cooling flux, the vertical reach of the bump-induced flow is no longer small compared
to δt. For example, during the initial turbulence collapse in the flat case, the boundary layer
thins to δ−

t ≈ 0.1 (figure 8a). The vertical extent of the roughness-induced perturbation to
the flow is sufficient to mitigate the turbulence collapse and δ−

t does not become smaller
than 0.2 in the 4Bump case.

The dispersive effect of the roughness is an important contributor to the Reynolds shear
stress as is demonstrated by figure 16. Let M =

√
〈u′w′〉2 + 〈v′w′〉2 denote the turbulent

momentum flux obtained after Reynolds averaging. Since the Reynolds fluctuation can be
decomposed as u′ = ũ + u′′, it follows that

M = Mcoh + Minc + Mcross, (4.8)

where the coherent (Mcoh) and incoherent (Minc) components are given by

Mcoh =
√

〈ũw̃〉2 + 〈ṽw̃〉2, Minc =
√

〈u′′w′′〉2 + 〈v′′w′′〉2, (4.9a,b)

and the cross-term is

Mcross =
√

〈ũw′′ + u′′w̃〉2 + 〈ṽw′′ + v′′w̃〉2. (4.10)

In figure 16(a), 4Bump has a higher peak value of M relative to the flat case. The incoherent
part (figure 16b) has similar values for the peak, independent of surface roughness. The
difference in M among cases arises from the coherent part (figure 16c) and also the
cross-term (figure 16d). Both, coherent and cross-terms, are negligible in the flat case,
and their values in the surface layer increase with an increasing number of bumps.

The preceding discussion shows that the presence of surface bumps substantially
modifies the instantaneous velocity and the turbulent momentum fluxes by introducing a
dispersive component. In the stratified cases the dispersive component remains substantial
and, furthermore, its importance to the turbulence energetics is increased since the
incoherent part is suppressed by buoyancy. The instantaneous Reynolds shear stress (u′w′)
carries contributions from (ũ, w̃) alone, (u′′, w′′) alone, and their cross-correlations, as
illustrated for the 4Bump stratified case. The initial turbulence collapse ends when ft ≈ 3
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FIGURE 14. A triple decomposition of the velocity in the neutral EBL, shown at z+ ≈ 16, the
crest of the roughness bumps: (a,b) Reynolds fluctuations (u′/u∗), (c,d) incoherent velocity
fluctuations (u′′/u∗) and (e, f ) coherent components (ũ/u∗). Left column (a,c,e) corresponds
to flat and right column (b,d, f ) to 4Bump. The neutral value (u∗N) of wall stress is used for
normalization in this and subsequent figures with components from the triple decomposition.

has elapsed after imposing the surface cooling flux. The instantaneous Reynolds shear
stress (u′w′ in figure 17a) at ft ≈ 3 shows the presence of the 2-D coherent bumps which is
comingled with the incoherent fluctuation (u′′w′′ in figure 17b). The dispersive component
(u′w′ − u′′w′′ in figure 17d) is substantial.

In the stratified cases roughness enhances the turbulent fluxes relative to the flat case by
not only introducing coherent (ũw̃) and dispersive (u′w′ − u′′w′′) components into the shear
stress but also by significantly changing the incoherent component (u′′w′′) relative to the
flat case. Figure 18 shows the Reynolds shear stress (same as the incoherent component
in the flat case) at early and late times in the flat, stratified case. Direct comparison of
figure 17(b) with figure 18(a) shows that, at the early time of ft ≈ 3, the 4Bump case has
significant near-wall Reynolds shear stress in contrast to the negligible level in the flat case.
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FIGURE 15. Vertical-plane snapshot of instantaneous velocity in the 4Bump unstratified case
after the flow has reached a quasi-steady state: (a) ũ/u∗, (b) u′′/u∗, (c) w̃/u∗ and (d) w′′/u∗. Flow
is shown in the vicinity of a single bump.

Later in time, u′w′ recovers somewhat in the flat case (figure 18b) although it is spatially
sparse relative to the rough case.

5. Summary and conclusions

The stratified Ekman boundary layer has served as a canonical problem that is amenable
to high-resolution simulation and is relevant to the stratified ABL. However, roughness
effects in the EBL have not been studied previously using DNS. This motivates the
present investigation of an EBL on a surface with two-dimensional bumps. A DNS
study is conducted where Re∗ is fixed at approximately 700, the cooling flux is fixed at
a non-dimensional value of L+ ≈ 700 which is sufficient to induce turbulence collapse
during the initial transient (Gohari & Sarkar 2018), the roughness amplitude is fixed at a
small value in the transitionally rough regime, and the slope of the elements (equivalently,
number of bumps per unit length) is varied. The focus is on the competition between flow
stabilization by buoyancy and possible destabilization by the roughness.

We find that the flow evolution is substantially affected by roughness in the stratified
EBL, especially so in the case with 4Bumps, the case with the highest number of bumps
per unit length and also the highest geometrical slope. In the 4Bump case the minimum
TKE reached during the initial turbulence collapse is significantly larger than in the flat
case. Furthermore, later in time after turbulence recovery, the near-surface flow state is
continuously turbulent in the 4Bump case in contrast to the local intermittency (turbulent
patches interspersed within quiescent regions of near-laminar flow) in the flat and 2Bump
cases. The MO stability functions show that, at locations where z is not small compared to
the local Obukhov length, buoyancy affects the mean momentum and temperature profiles.
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FIGURE 16. Decomposition of the turbulent momentum flux in the unstratified EBL:
(a) M =

√
〈u′w′〉2 + 〈v′w′〉2, (b) Minc =

√
〈u′′w′′〉2 + 〈v′′w′′〉2, (c) Mcoh =

√
〈ũw̃〉2 + 〈ṽw̃〉2

and (d) Mcross =
√

〈ũw′′ + u′′w̃〉2 + 〈ṽw′′ + v′′w̃〉2.

Furthermore, this buoyancy effect is substantially weaker in the 4Bump case although
the applied surface cooling flux is identical among cases. By increasing the number of
bumps per unit length keeping bump height constant, the slope of the roughness element
is systematically increased in the present DNS. It is the increase in slope that enhances the
magnitude of the roughness-associated effect on turbulence from 2Bump to 4Bump cases.

Mahrt (1998) classifies the stable ABL into two regimes: (i) a very stable ABL that has a
strong thermal inversion at the surface and vertical fluctuations which, although very small
near the surface, have a peak at an elevated location; and (ii) a weakly stable ABL that has
a weak thermal inversion and vertical fluctuations that, although somewhat reduced near
the surface with respect to the neutral state, are substantial and do not display a peak
at an elevated location. Examination of mean and turbulence profiles in the DNS results
reveal that the flat case belongs to the very stable regime while the 4Bump case belongs
to the weakly stable regime. Mahrt (1998) distinguishes between these two types of stable
boundary layer based on environmental forcing: the weakly stable case is associated with
windy night-time conditions, and the very stable case is associated with calm conditions
and clear night-time sky. Here, we find that, for the same environmental forcing, roughness
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FIGURE 17. Instantaneous Reynolds shear stress and its components in the stratified
4Bump case at ft ≈ 3 on horizontal plane at the crest of the bump (z+ ≈ 16): (a) u′w′/u2∗,
(b) u′′w′′/u2∗, (c) ũw̃/u2∗, (d) (u′w′ − u′′w′′)/u2∗. The required time averages (ū and w̄) are
computed using the evolution during 3 < ft < 6. The neutral value (u∗N) of wall stress is used
for normalization.
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FIGURE 18. Instantaneous Reynolds shear stress on the horizontal plane, z+ ≈ 16, in the
stratified flat case: (a) ft ≈ 3 during the initial transient, and (b) ft ≈ 17 at late time. The neutral
value (u∗N) of wall stress is used for normalization.

elements induce a qualitative change in the boundary layer, namely, from the strongly
stable regime to the weakly stable regime. As the neutral BL thins and near-surface
turbulence weakens during the initial response to the applied cooling flux, the reach of
the roughness elements is sufficient to keep the local gradient Richardson number from
becoming supercritical (exceeding 1/4) and concurrently maintain turbulence structures.
The present result is obtained for a relatively low-Re flow amenable to DNS, where the
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roughness elements correspond to a transitionally rough regime. It is possible that, at
higher Re and in a fully rough ABL, roughness elements can also lead to a qualitatively
similar destabilization if their reach becomes sufficient compared to the buoyancy-induced
thinning of the ABL.

The mechanism of turbulence collapse and rebirth is investigated in detail with the
analysis of turbulent fluxes. The inhibition of surface-layer shear production, associated
with the buoyancy-induced reduction of the turbulent momentum flux, is the reason for
turbulence collapse as was found by Ansorge & Mellado (2014); Shah & Bou-Zeid (2014).
The positive buoyancy flux in the TKE budget is not the reason. Collapse is followed by
turbulence recovery in both flat and rough cases. Notably, the mechanism of turbulence
recovery in the rough cases is different from that in the flat case. In the flat case a strong
LLJ is formed at the end of turbulence collapse and, as found by Gohari & Sarkar (2017),
pressure transport of fluctuations from the outer layer into the sheared lower flank of the
LLJ triggers locally intermittent turbulence as the fluctuations interact with the enhanced
shear of the LLJ. In contrast, we find in the 4Bump stratified case that the enhanced
vertical (w) velocity in the near-surface roughness layer counteracts the buoyancy-induced
reduction of turbulent momentum flux. Unlike the flat case, shear production of TKE does
not decay to a negligible value in the rough cases during the initial collapse of turbulence.

The roughness elements introduce a spatial organization into the flow. A triple
decomposition is employed to isolate the coherent component. The roughness-associated
dispersive component (total minus the incoherent part) of the Reynolds stress is found to
be substantial in both unstratified and stratified cases. Since the incoherent component is
strongly suppressed by buoyancy, the dispersive component becomes more important to
the turbulence dynamics in the stratified cases. Additionally, in the stratified cases, the
incoherent component is enhanced with respect to the flat case.

The present small-amplitude bumps of h+ = 15 correspond to a transitionally rough
regime, have a gentle slope which does not lead to flow separation, and have a small effect
on the flow in the neutral EBL. However, since the layer of boundary-associated turbulence
thins during the initial collapse, the bump height becomes sufficient for the influence of
roughness to reach into an appreciable portion of the boundary layer so as to modify
the shear and stratification in the boundary layer. In particular, the near-bottom region of
subcritical Rig becomes substantially thicker in the rough cases and, correspondingly, the
buoyancy-induced suppression of turbulent fluxes in the surface layer is mitigated. Thus,
roughness modifies the boundary layer from a very stable regime in the flat case to a
stable regime. For a sufficiently large cooling flux, larger than the value considered here,
it is possible that the rough boundary layer reverts back to a very stable regime. In future
work we will systematically vary the cooling heat flux and roughness element height to
further understand the role of roughness in counteracting the effect of stable stratification.
It will also be desirable to extend simulations in future work to higher Re and a fully
rough regime. Another future direction is the consideration of more complex geometry,
e.g. three-dimensional obstacles and multiscale roughness.
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