RESOLVENTS OF CERTAIN LINEAR GROUPS IN A FINITE FIELD

L. CARLITZ

1. Introduction. Let $F_{q}=G F(q)$ denote the finite field of order $q=p^{n}$, where p is a prime. Consider the group Γ of linear transformations

$$
\begin{equation*}
x^{\prime}=(a x+b) /(c x+d) \tag{1.1}
\end{equation*}
$$

with coefficients $a, b, c, d \in F_{q}$ and of determinant 1 . The order of Γ is $\frac{1}{2} q\left(q^{2}-1\right)$ or $q\left(q^{2}-1\right)$ according as q is odd or even, i.e., according as $p>2$ or $p=2$. Put

$$
\begin{equation*}
J=J(x)=Q^{\frac{1}{2}(q+1)} L^{-\frac{1}{2}\left(q^{2}-q\right)} \tag{1.2}
\end{equation*}
$$

$$
(p>2)
$$

where

$$
\begin{equation*}
L=x^{q}-x, Q=\left(x^{q^{2}}-x\right) /\left(x^{q}-x\right)=L^{q-1}+1 ; \tag{1.3}
\end{equation*}
$$

when $p=2$ the factor $\frac{1}{2}$ in the exponents in the right member of (1.2) is omitted. It is familiar that L is the product of distinct linear polynomials $x+a$ and Q is the product of distinct irreducible quadratics $x^{2}+a x+b$. Moreover (1, p. 4) J is an absolute and fundamental invariant of Γ, that is, every absolute invariant is a rational function of J. The equation

$$
\begin{equation*}
J(x)=y \tag{1.4}
\end{equation*}
$$

where y is an indeterminate, is normal over $F_{q}(y)$ with Galois group Γ.
If we put $u=L^{\frac{1}{2}(q-1)}$ or L^{q-1} according as $p>2$ or $p=2$, then (1.2) and (1.4) imply

$$
\begin{array}{rlrl}
\left(u^{2}+1\right)^{\frac{1}{2}(q+1)} & =y u^{q} & (p>2) \\
(u+1)^{q+1} & =y u^{q} & & (p=2)
\end{array}
$$

resolvents of degree $q+1$. The principal object of the present paper is to construct resolvents of lower degree when they occur. It is well known (see for example (2, p. 287)) that Γ can be represented as a permutation group of degree $\leqslant q$ only when

$$
\begin{equation*}
q=5,7,9,11 \tag{1.7}
\end{equation*}
$$

in which case the degree is $5,7,6,11$, respectively. Resolvents are constructed for the minimum degree in each case. For example when $q=5$ the quintic resolvent is

$$
\begin{gather*}
t^{5}-2 t^{3}=J \tag{1.8}\\
w^{7}+4 w^{5}-4 w^{4}=J \tag{1.9}
\end{gather*}
$$

while for $q=7$ we get

[^0]When $q=4$, (1.6) is a quintic. In this case we construct a sextic resolvent

$$
\begin{equation*}
t^{6}+t^{5}=J \tag{1.10}
\end{equation*}
$$

Incidentally when $q=9$, we again get the equation (1.10). However it should be observed that in the one case (1.10) has group \mathfrak{H}_{5} while in the other the group is \mathfrak{N}_{6}.

Finally in $\S 7$ we consider briefly the ternary linear group. For $q=2$ the group is of order 168 and we construct a resolvent of degree 8 . In this case the resolvent of degree 7 is easily found (compare the case $q=4$).

For the discussion of the corresponding problems in the classical case the reader is referred to ($3, \mathrm{Ch} .13 ; \mathbf{5} ; \mathbf{7}$).
2. $q=5$. In this case Γ is icosohedral and has a tetrahedral subgroup generated by

$$
\begin{equation*}
x^{\prime}=-x, \quad x^{\prime}=\frac{x+2}{x-2} \tag{2.1}
\end{equation*}
$$

This gives rise to the 12 functions

$$
\begin{equation*}
\pm x, \pm \frac{1}{x}, \pm \frac{x+2}{x-2}, \pm \frac{x-2}{x+2}, \pm 2 \frac{x+2}{x-2}, \pm 2 \frac{x-2}{x+2} \tag{2.2}
\end{equation*}
$$

Applying the second of (2.1) to $\left(x^{4}+1\right) / x^{2}$ we get

$$
\begin{equation*}
t=T / L^{2} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
T=T(x)=x^{12}+2 x^{8}+2 x^{4}+1 \tag{2.4}
\end{equation*}
$$

Since $x^{4}+1=\left(x^{2}+2\right)\left(x^{2}-2\right)$, it is clear that T is the product of six irreducible quadratics. Consequently

$$
\begin{equation*}
Q=T U \tag{2.5}
\end{equation*}
$$

where U is a polynomial of degree 6 ; we find that

$$
\begin{equation*}
U=U(x)=x^{8}-x^{4}+1 \tag{2.6}
\end{equation*}
$$

Since the function (2.3) belongs to a tetrahedral subgroup of Γ, it must satisfy an equation of degree 5 with coefficients in $F_{5}(J)$. While this equation can be found by the method of undetermined coefficients it is easier to make use of the identity

$$
\begin{equation*}
T^{2}(x)-U^{3}(x)=2 L^{4} \tag{2.7}
\end{equation*}
$$

which can be verified without difficulty. Incidentally (2.7) is one of a set of five identities obtained by replacing x by $x+c, c=0,1,2,3,4$. Using (2.3), (2.6), (2.7) we get

$$
\begin{equation*}
t^{5}-2 t^{3}=J \tag{2.8}
\end{equation*}
$$

This proves
Theorem 1. For $q=5$, (1.4) admits the quintic resolvent (2.8).

It may be noted that Garrett (6) has proved that a quintic equation in a field of characteristic 5 can in general be reduced to the form

$$
\begin{equation*}
z^{5}+a z^{2}+b=0 \tag{2.9}
\end{equation*}
$$

Replacing t by $1 / z$ in (2.8), we evidently get an equation of the form (2.9).
3. $q=7$. The group Γ is now the simple group $L F(2,7)$ of order 168 . We require a subgroup \mathfrak{S}_{4} of order 24 . Such an octahedral subgroup is generated by

$$
s_{1}=\left(\begin{array}{ll}
1 & 2 \tag{3.1}\\
1 & 3
\end{array}\right), s_{2}=\left(\begin{array}{ll}
3 & 4 \\
1 & 4
\end{array}\right), s_{3}=\left(\begin{array}{rr}
0 & 3 \\
1 & -2
\end{array}\right)
$$

The transformations s_{1}, s_{2} generate a dihedral subgroup \mathfrak{D}_{4} of order 8; a function belonging to \mathfrak{D}_{4} is

$$
\begin{equation*}
\xi=\left(x^{2}+2 x-2\right)^{4} / L \tag{3.2}
\end{equation*}
$$

Applying s_{3} to ξ we find that

$$
\begin{equation*}
t=T^{4} / L^{3} \tag{3.3}
\end{equation*}
$$

where

$$
\begin{equation*}
T=\left(x^{2}+2 x-2\right)\left(x^{2}+4 x-1\right)\left(x^{2}+x-4\right)=x^{6}-x^{3}-1 \tag{3.4}
\end{equation*}
$$

belongs to the group \mathfrak{S}_{4}. Consequently t satisfies an equation of degree 7 . It is however more convenient to find the equation of degree 7 satisfied by

$$
\begin{equation*}
w=t-4=W / L^{3} \tag{3.5}
\end{equation*}
$$

where

$$
\begin{equation*}
W=T^{4}-4 L^{3} \tag{3.6}
\end{equation*}
$$

We observe first that $W \mid Q$. To prove this let $\alpha^{6}=-1, \alpha \in G F\left(7^{2}\right)$. Then by (3.4), $T(\alpha)=-\alpha^{3}-\alpha$, which implies $T^{4}(\alpha)=3 \alpha^{3}$; also $L^{3}(\alpha)=$ $\left(\alpha^{7}-\alpha\right)^{3}$, so that

$$
W(\alpha)=3 \alpha^{3}+4 \alpha^{3}=0
$$

This implies $x^{6}+1 \mid W(x)$. Now applying the substitution s_{1}, we find that W is a product of distinct irreducible quadratics, in particular it is clear that $W \mid Q$. Also (3.6) implies $(W, T)=1$. We have accordingly

$$
\begin{equation*}
Q=T W U \tag{3.7}
\end{equation*}
$$

where U is a polynomial of degree 12 .
Returning to (3.5) we now construct the equation of degree 7 satisfied by w. This is evidently of the form

$$
w^{7}+a_{1} w^{6}+\ldots+a_{6} w=b J
$$

or what is the same thing

$$
\begin{equation*}
W^{7}+a_{1} W^{6} L^{3}+\ldots+a_{6} W L^{18}=b Q^{4} \tag{3.8}
\end{equation*}
$$

It follows immediately from (3.7) that $a_{4}=a_{5}=a_{6}=0$; also $b=1$. Since
$W=x^{24}-4 x^{21}+\ldots$, comparison of coefficients yields $a_{1}=0, a_{2}=4$, $a_{2}+a_{3}=0$. Thus (3.8) reduces to

$$
\begin{equation*}
W^{7}+4 W^{5} L^{6}-4 W^{4} L^{9}=Q^{4} \tag{3.9}
\end{equation*}
$$

In terms of w this is

$$
\begin{equation*}
w^{7}+4 w^{5}-4 w^{4}=J \tag{3.10}
\end{equation*}
$$

This proves
Theorem 2. For $q=7$ (1.4) admits the resolvent (3.10) of degree seven.
If we substitute from (3.7), (3.9) becomes

$$
\begin{equation*}
W^{3}+4 W L^{6}-4 L^{9}=T^{4} U^{4} \tag{3.11}
\end{equation*}
$$

Next using (3.6) we get

$$
\begin{equation*}
T^{8}+2 T^{4} L^{3}+3 L^{6}=U^{4} \tag{3.12}
\end{equation*}
$$

In terms of T above, (3.12) becomes

$$
\begin{equation*}
\left(T^{4}-4 L^{3}\right)^{4}\left(T^{12}+2 T^{8} L^{3}+3 T^{4} L^{6}\right)=Q \tag{3.13}
\end{equation*}
$$

from which the equation for t follows at once:

$$
\begin{equation*}
(t-4)^{4}\left(t^{3}+2 t^{2}+3 t\right)=J \tag{3.14}
\end{equation*}
$$

This equation can also be obtained directly from (3.10).
Concerning the polynomials T, U, W we may state
Theorem 3. The polynomials T, U, W satisfy (3.6), (3.7), (3.11), (3.12).
4. $q=11$. The group Γ is now the simple group $L F(2,11)$, of order 660 . We require a subgroup \mathfrak{A}_{5} of order 60 . Such an icosahedral subgroup is generated by (see for example (4, p. 479))

$$
s_{1}=\left(\begin{array}{ll}
2 & 0 \tag{4.1}\\
0 & 6
\end{array}\right), \quad s_{2}=\left(\begin{array}{rr}
3 & 1 \\
1 & -3
\end{array}\right)
$$

of period 5 and 2 , respectively. Note that

$$
s_{1} s_{2}=\left(\begin{array}{rr}
1 & 4 \tag{4.2}\\
1 & -3
\end{array}\right)
$$

which is of period 3. It is easily seen that $\left(x^{2}+1\right) /(x-3)$ is invariant under s_{2} and next that $\left(x^{10}+1\right) /\left(x^{5}-1\right)$ is invariant under (4.1). A little computation now shows that

$$
\begin{equation*}
t=T^{2} / L^{5} \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
T=x^{30}+5 x^{25}+5 x^{20}+5 x^{10}-5 x^{5}+1 \tag{4.4}
\end{equation*}
$$

belongs to \mathfrak{A}_{5}. Notice that T is a product of distinct irreducible quadratics, so that $T \mid Q$.

In the next place application of s_{1} to the quadratic $x^{2}-5 x+2$ gives $H_{1}=x^{10}+5 x^{5}-1$. Applying $s_{2} s_{1}{ }^{3}$ to $x^{2}-5 x+2$ we get $x^{2}-4 x+2$ and this gives $H_{2}=x^{10}-2 x^{5}-1$. If we put

$$
\begin{equation*}
H=H_{1} H_{2}=x^{20}+3 x^{15}-x^{10}-3 x^{5}+1 \tag{4.5}
\end{equation*}
$$

we find that

$$
\begin{equation*}
h=H^{3} / L^{5} \tag{4.6}
\end{equation*}
$$

also belongs to \mathfrak{Y}_{5}. Note that H, like T, is a product of distinct irreducible quadratics. Moreover it is not difficult to verify that T and H satisfy the relation

$$
\begin{equation*}
T^{2}-H^{3}=L^{5} \tag{4.7}
\end{equation*}
$$

in terms of t and h this is

$$
\begin{equation*}
t-h=1 \tag{4.8}
\end{equation*}
$$

(For the polynomials corresponding to T, H and L in the classical case, see (5, p. 54). The differentiation method used there is however not applicable here.)

Since (4.7) implies $(T, H)=1$, it follows that

$$
\begin{equation*}
Q=T H U \tag{4.9}
\end{equation*}
$$

where U is a polynomial of degree 30 . It is also easily verified that

$$
\begin{equation*}
u=U / L^{5} \tag{4.10}
\end{equation*}
$$

belongs to the group \mathfrak{Y}_{5}. Thus each of the functions t, h, u satisfies an equation of degree 11, which we shall now set up. We notice first that

$$
\begin{equation*}
U=T^{2}+4 L^{5} \tag{4.11}
\end{equation*}
$$

To prove (4.11) put $\phi(x)=\left(U-T^{2}\right) / L^{5}$ and let β be a number in some extension of F_{q} such that β and its conjugates under \mathfrak{H}_{5} are distinct; we may, for example, take β as the root of an irreducible polynomial of the third degree. Then since $\phi(x)$ is invariant under \mathfrak{U}_{5} we have $\phi\left(\beta_{i}\right)=\phi(\beta)$, where β_{i} is any conjugate of β under \mathfrak{A}_{5}. Then $\phi(x)-\phi(\beta)$ vanishes for 60 distinct values of x; since $\operatorname{deg} \phi(x)<60$ it follows that $\phi(x)$ is constant. Comparison of coefficients now yields (4.11). Incidentally (4.7) can be proved in a similar way.

Making use of (4.11) it is not difficult to find the equation of degree 11 satisfied by u. This equation is of the form

$$
u^{11}+a_{1} u^{10}+\ldots+a_{10} u=J
$$

or what is the same thing

$$
\begin{equation*}
U^{11}+a_{2} U^{10} L^{5}+\ldots+a_{10} U L^{50}=Q^{6} \tag{4.12}
\end{equation*}
$$

Since $U \mid Q$ we have $a_{6}=\ldots=a_{10}=0$. Also since all terms in Q have exponents divisible by 10 , it is clear that $a_{1}=0$. Thus (4.12) becomes

$$
\begin{equation*}
U^{5}+a_{2} U^{3} L^{10}+\ldots+a_{5} L^{25}=T^{6} H^{6} \tag{4.13}
\end{equation*}
$$

Using (4.7) and (4.11) we may rewrite (4.13) in terms of T; the resulting
relation is of degree 10 and must therefore be an identity in T. Comparing coefficients we readily find that

$$
a_{2}=6, a_{3}=3, a_{4}=3, a_{5}=a_{6} .
$$

Thus (4.12) becomes

$$
\begin{equation*}
U^{11}+6 U^{9} L^{10}+3 U^{8} L^{15}+3 U^{7} L^{20}+6 U^{6} L^{25}=Q^{6} \tag{4.14}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
u^{11}+6 u^{9}+3 u^{8}+3 u^{7}+6 u^{6}=J \tag{4.15}
\end{equation*}
$$

We may rewrite (4.14) as

$$
U^{5}+6 U^{3} L^{10}+3 U^{2} L^{15}+3 U L^{20}+6 L^{25}=T^{6} H^{6}
$$

and remark that the left member is

$$
\begin{aligned}
& \left(U-5 L^{5}\right)^{2}\left(U^{3}-U^{2}+4 U+2\right) \\
& \quad=\left(U-5 L^{5}\right)^{2}\left(U-4 L^{5}\right)^{3} \\
& \quad=\left(T^{2}-L^{5}\right)^{3} T^{6}=H^{6} T^{6},
\end{aligned}
$$

by (4.7) and (4.11), which is correct. Conversely we may obtain (4.14) by retracing these steps.

In view of the above it is convenient to rewrite (4.15) as

$$
\begin{equation*}
u^{6}(u-5)^{2}(u-4)^{3}=J . \tag{4.16}
\end{equation*}
$$

The corresponding equations for t and h are

$$
\begin{equation*}
t^{3}(t-1)^{2}(t+4)^{6}=J \tag{4.17}
\end{equation*}
$$

and

$$
\begin{equation*}
h^{2}(h+1)^{3}(h+5)^{6}=J \tag{4.18}
\end{equation*}
$$

We may state
Theorem 4. For $q=11$, (1.4) admits the resolvents (4.16), (4.17), (4.18) of degree 11 .

Theorem 5. The polynomials T, H, U satisfy (4.7), (4.9), (4.11) and (4.14).
5. $q=4$. When $q=4$, the equation (1.6) becomes

$$
\begin{equation*}
(u+1)^{5}=y u^{4} \tag{5.1}
\end{equation*}
$$

where $u=\left(x^{4}-x\right)^{3}$. Thus (5.1) is a quintic resolvent of (1.4). The group in this case is \mathfrak{U}_{5}. We shall construct a sextic resolvent. This can be done most rapidly by making use of an irreducible quadratic, say

$$
\begin{equation*}
P=x^{2}+x+\phi \tag{5.2}
\end{equation*}
$$

where $\phi^{2}+\phi+1=0, \phi \in F_{4}$. Now put

$$
\begin{equation*}
t=\frac{Q}{L^{2} P} \tag{5.3}
\end{equation*}
$$

It is easily verified that t belongs to the dihedral group \mathfrak{D}_{5} of order 10 generated by

$$
s_{1}=\left(\begin{array}{cc}
1 & \phi^{2} \tag{5.4}\\
\phi & \phi^{2}
\end{array}\right), \quad s_{2}=\left(\begin{array}{cc}
1 & \phi^{2} \\
1 & 1
\end{array}\right)
$$

Thus t must satisfy an equation of degree 6 . Indeed from (5.2)

$$
\begin{aligned}
& \quad P^{2}+P=x^{4}+x+1=L+1 \\
& Q=L^{3}+1=\left(P^{2}+P+1\right)^{3}+1=P^{6}+P^{5}+P^{3}+P \\
& \quad=P^{6}+P\left(P^{2}+P+1\right)^{2},
\end{aligned}
$$

so that

$$
\begin{equation*}
Q=P^{6}+P L^{2} \tag{5.5}
\end{equation*}
$$

Using (5.3), (5.5) becomes

$$
Q=\left(\frac{Q}{L^{2} t}\right)^{6}+\frac{Q}{t},
$$

which reduces to

$$
\begin{equation*}
t^{6}+t^{5}=\frac{Q^{5}}{L^{12}}=J \tag{5.6}
\end{equation*}
$$

This proves
Theorem 6. For $q=4$, (1.4) admits the resolvent (5.6) of degree 6 as well as the resolvent (5.1) of degree 5 .

We remark that if x denotes any solution of the equation $J(x)=y$ then the solutions of $t^{5}+t=y$ are the six irreducible quadratics

$$
\begin{aligned}
x^{2}+x+\phi, x^{2}+x+\phi^{2}, x^{2}+\phi x+1, & x^{2}+\phi x+\phi, \\
& x^{2}+\phi^{2} x+1, x^{2}+\phi^{2} x+\phi^{2} .
\end{aligned}
$$

6. $q=9$. The group Γ is now of order 60 . We require a subgroup of index 6 . Such an icosahedral subgroup \mathfrak{H}_{5} is generated by

$$
s_{1}=\left(\begin{array}{cc}
0 & 1 \tag{6.1}\\
-1 & 1+\sigma
\end{array}\right), \quad s_{2}=\left(\begin{array}{rr}
0 & 1 \\
-1 & 0
\end{array}\right),
$$

where $\sigma^{2}=-1$. It is easily verified that

$$
s_{1}^{5}=s_{2}^{2}=\left(s_{1} s_{2}\right)^{3}=1,
$$

so that \mathfrak{A}_{5} is indeed the icosahedral group.
Using (6.1) we find that

$$
\begin{equation*}
u=U^{5} / L^{6} \tag{6.2}
\end{equation*}
$$

where

$$
\begin{equation*}
U=x^{12}-x^{10}+x^{6}-x^{2}-1, \tag{6.3}
\end{equation*}
$$

belongs to \mathfrak{A}_{5}. Since U is a product of 6 distinct irreducible quadratics, we have

$$
\begin{equation*}
Q=T U \tag{6.4}
\end{equation*}
$$

where T is a polynomial of degree 60 . Moreover

$$
\begin{equation*}
t=T / L^{6} \tag{6.5}
\end{equation*}
$$

also belongs to \mathfrak{A}_{5}. Consequently we have a relation of the form $U^{5}-T=c L^{6}$, or what is the same thing

$$
\begin{equation*}
U^{6}-Q=c L^{6} U \tag{6.6}
\end{equation*}
$$

Comparing coefficients of x^{66} in both members of (6.6) we get $c=1$, so that

$$
\begin{equation*}
U^{6}-L^{6} U=Q \tag{6.7}
\end{equation*}
$$

Using (6.4) this becomes

$$
\begin{equation*}
T^{6}+L^{6} T^{5}=Q^{5} \tag{6.8}
\end{equation*}
$$

In terms of t as defined by (6.5), (6.8) yields

$$
\begin{equation*}
t^{6}+t^{5}=\frac{Q^{5}}{L^{36}}=J \tag{6.9}
\end{equation*}
$$

We remark that it is not difficult to verify (6.7) by direct computation. Also (6.7) implies

$$
\begin{equation*}
u(u-1)^{5}=J \tag{6.10}
\end{equation*}
$$

which is equivalent to (6.9). We may state
Theorem 7. For $q=9$, (1.4) admits the resolvents (6.9) and (6.10) of degree 6.

We shall next construct an equation of degree 6 with group \mathfrak{H}_{5}. This can be done by using one of the quadratic factors of U, for example $x^{2}-1+\sigma$. We have

$$
\begin{align*}
& \left(x^{2}-1-\sigma\right)\left(x^{10}-1+\sigma\right)-\sigma\left(x^{2}-1+\sigma\right)^{6} \\
& =(1-\sigma)\left(x^{12}-x^{10}+x^{6}-x^{2}-1\right)=(1-\sigma) U, \tag{6.11}\\
& \left(x^{10}-1+\sigma\right)^{2}-\left(x^{2}-1+\sigma\right)\left(x^{18}-1+\sigma\right) \\
& =(1-\sigma)\left(x^{18}+x^{10}+x^{2}\right)=(1-\sigma) L^{2} . \tag{6.12}
\end{align*}
$$

Put

$$
\begin{equation*}
w=\frac{x^{10}-1+\sigma}{\sigma\left(x^{2}-1+\sigma\right)^{5}} . \tag{6.13}
\end{equation*}
$$

Then by (6.11)

$$
\begin{equation*}
w-1=\frac{(1-\sigma) U}{\sigma\left(x^{2}-1+\sigma\right)^{6}} \tag{6.14}
\end{equation*}
$$

On the other hand it follows from (6.12) that

$$
w^{2}+1=-\frac{(1-\sigma) L^{2}}{\left(x^{2}-1+\sigma\right)^{10}}
$$

so that

$$
\begin{equation*}
w^{6}+1=-\frac{(1+\sigma) L^{6}}{\left(x^{2}-1+\sigma\right)^{30}} \tag{6.15}
\end{equation*}
$$

Comparison of (6.15) with (6.14) yields

$$
\begin{equation*}
w^{6}+1=-\frac{L^{6}}{U^{5}}(w-1)^{5}=-\frac{(w-1)^{5}}{u} . \tag{6.16}
\end{equation*}
$$

If we make the substitution

$$
\begin{equation*}
w=\frac{1-u-z}{1-u+z} \tag{6.17}
\end{equation*}
$$

(6.16) becomes

$$
\begin{equation*}
z^{6}+z^{5}=u(1-u)^{5} \tag{6.18}
\end{equation*}
$$

If we put $z=v-1$, (6.18) takes on the more symmetrical form

$$
\begin{equation*}
u(1-u)^{5}+v(1-v)^{5}=0 \tag{6.19}
\end{equation*}
$$

Alternatively, since $u-t=1$, we have

$$
\begin{equation*}
z^{6}+z^{5}+t^{6}+t^{5}=0 \tag{6.20}
\end{equation*}
$$

where t is defined by (6.5).
We omit the verification that z belongs to a dihedral subgroup \mathfrak{D}_{5} of \mathfrak{N}_{5} and state

Theorem 8. For $q=9$, the equation (6.20) has group \mathfrak{A}_{5} relative to $F_{9}(t)$.
It is of interest to compare (6.20) with (6.9). Thus for J an indeterminate, (6.9) has group \mathfrak{H}_{6}, while for $-J=t^{6}+t^{5}$ the group reduces to \mathfrak{H}_{5}. Since t belongs to \mathfrak{N}_{5}, this is in agreement with a familiar theorem on the effect on the Galois group of an adjunction to the coefficient field. In this connection we remark that a quintic with group \mathfrak{H}_{5} relative to $F_{9}(t)$ is evidently

$$
\begin{equation*}
\frac{z^{6}-t^{6}}{z-t}+\frac{z^{5}-t^{5}}{z-t}=0 \tag{6.21}
\end{equation*}
$$

7. The ternary group. Define

$$
[i j k]=\left|\begin{array}{ccc}
x^{q^{i}} & y^{q^{i}} & z^{q^{i}} \tag{7.1}\\
x^{q^{j}} & y^{q^{j}} & z^{q^{j}} \\
x^{q^{k}} & y^{q^{k}} & z^{q^{k}}
\end{array}\right| ;
$$

in particular put

$$
\begin{equation*}
L=[012], Q_{1}=\frac{[023]}{[012]}, Q_{2}=\frac{[013]}{[012]} \tag{7.2}
\end{equation*}
$$

Then L, Q_{1}, Q_{2} are homogeneous polynomials in x, y, z and (see, for example (8, p. 17)) form a full system of invariants for the ternary linear group over F_{q}. Moreover x, y, z satisfy the equation

$$
\begin{equation*}
\xi^{q^{3}}=Q_{2} \xi^{q^{2}}-Q_{1} \xi^{q}+L^{q-1} \xi \tag{7.3}
\end{equation*}
$$

Indeed the general solution of (7.3) is furnished by

$$
a x+b y+c z \quad\left(a, b, c \in F_{q}\right)
$$

Now in particular when $q=2$, the ternary group Γ is of order 168 ,

$$
\begin{equation*}
\operatorname{deg} L=7, \operatorname{deg} Q_{1}=6, \operatorname{deg} Q_{2}=4 \tag{7.5}
\end{equation*}
$$

Also (7.3) becomes

$$
\begin{equation*}
\xi^{7}=Q_{2} \xi^{3}+Q_{1} \xi+L \tag{7.6}
\end{equation*}
$$

an equation with group Γ.
Let

$$
\begin{equation*}
X=y z^{2}+y^{2} z, \quad Y=x z^{2}+x^{2} z, Z=x y^{2}+x^{2} y \tag{7.7}
\end{equation*}
$$

Then by (7.6)

$$
\begin{aligned}
Z^{4} & =x^{4}\left(Q_{2} y^{4}+Q_{1} y^{2}+L y\right)+y^{4}\left(Q_{2} x^{4}+Q_{1} x^{2}+L x\right) \\
& =Q_{1} Z^{2}+L\left(x^{4} y+x y^{4}\right), \\
Z^{8} & =Q_{1}^{2} Z^{4}+L^{2} x^{2}\left(Q_{2} y^{4}+Q_{1} y^{2}+L y\right)+L^{2} y^{2}\left(Q_{2} x^{4}+Q_{1} x^{2}+L x\right),
\end{aligned}
$$

so that

$$
\begin{equation*}
Z^{8}+Q_{1}^{2} Z^{4}+L^{2} Q_{2} Z^{2}+L^{3} Z=0 \tag{7.8}
\end{equation*}
$$

Similarly X and Y also satisfy (7.8); indeed the general solution of (7.8) is

$$
\begin{equation*}
a X+b Y+c Z \tag{7.9}
\end{equation*}
$$

$$
\left(a, b, c \in F_{2}\right)
$$

It follows that

$$
\begin{equation*}
L(X Y Z)=L^{3}, Q_{1}(X Y Z)=L^{2} Q_{2}, Q_{2}(X Y Z)=Q_{1}^{2} \tag{7.10}
\end{equation*}
$$

We shall now construct a resolvent of degree 8 for the equation (7.6). To do this we make use of irreducible factorable polynomials over F_{2}, that is polynomials of the type

$$
\begin{equation*}
\prod_{i=0}^{2}\left(x+\alpha^{2^{i}} y+\beta^{2 j} z\right) \quad\left(\alpha, \beta \in F_{8}\right) \tag{7.11}
\end{equation*}
$$

The condition that (7.11) be irreducible (relative to F_{2}) is that α or β be a primitive number of F_{8}. We shall restrict our attention to those polynomials (7.11) that are of rank 3 , that is those for which $1, \alpha, \beta$ are linearly independent relative to F_{2}; it is easily verified that the number of such polynomials is 8 . If we define the field F_{8} by means of

$$
\begin{equation*}
\phi^{3}=\phi^{2}+1, \tag{7.12}
\end{equation*}
$$

then the 8 polynomials in question are given by

$$
(\alpha, \beta)=\left(\phi, \phi^{2}\right), \quad\left(\phi, \phi^{3}\right), \quad\left(\phi, \phi^{4}\right),\left(\begin{array}{l}
\left.\phi, \phi^{6}\right) \tag{7.13}\\
\left(\phi^{3}, \phi^{4}\right), \\
\left(\phi^{3}, \phi^{5}\right),
\end{array}\left(\phi^{3}, \phi\right),\left(\phi^{5}, \phi^{3}\right) .\right.
$$

The polynomials (7.13) are permuted by Γ; each is left invariant by a certain subgroup of order 21. By direct computation we find that the polynomials are

$$
\begin{aligned}
& P_{1}=x^{3}+y^{3}+z^{3}+x y z+x^{2} y+x^{2} z+y^{2} z \\
& P_{2}=x^{3}+y^{3}+z^{3}+x y z+x^{2} y+x z^{2}+y^{2} z \\
& P_{3}=x^{3}+y^{3}+z^{3}+x y z+x^{2} y+x^{2} z+y z^{2} \\
& P_{4}=x^{3}+y^{3}+z^{3}+x y z+x^{2} y+x z^{2}+y z^{2} \\
& P_{5}=x^{3}+y^{3}+z^{3}+x y z+x y^{2}+x^{2} z+y^{2} z \\
& P_{6}=x^{3}+y^{3}+z^{3}+x y z+x y^{2}+x z^{2}+y^{2} z \\
& P_{7}=x^{3}+y^{3}+z^{3}+x y z+x y^{2}+x^{2} z+y z^{2} \\
& P_{8}=x^{3}+y^{3}+z^{3}+x y z+x y^{2}+x z^{2}+y z^{2} .
\end{aligned}
$$

Using (7.7) we find that the polynomials P_{j} can be exhibited as

$$
P_{1}+a X+b Y+c Z \quad\left(a, b, c \in F_{2}\right)
$$

Consequently if the equation of degree 8 satisfied by P_{j} is $f(\xi)=0$, then writing $\xi=\eta+P_{1}$, we have $f\left(\eta+P_{1}\right)=0$ when η takes on the values (7.9). It follows that $f\left(\eta+P_{1}\right)$ is identical with the left member of (7.8). Hence we get

$$
\begin{equation*}
\xi^{8}+Q_{1}^{2} Z^{4}+L^{2} Q_{2} Z^{2}+L^{3} Z=A \tag{7.14}
\end{equation*}
$$

as the equation satisfied by P_{j}, where

$$
\begin{equation*}
A=\prod_{j=1}^{8} P_{j} \tag{7.15}
\end{equation*}
$$

It remains to compute the coefficient A. Since $\operatorname{deg} A=24$ and A is an invariant we have

$$
A=a Q_{1}^{4}+b Q_{1}^{2} Q_{2}^{3}+c Q_{2}^{6}+d L^{2} Q_{1} Q_{2}
$$

and it is only necessary to determine the constants a, b, c, d. We readily compute the following special values:

$$
Q_{1}(11 z)=z^{4}+z^{2}, Q_{2}(11 z)=z^{4}+z^{2}+1, L(11 z)=0
$$

In particular

$$
Q_{1}(111)=0, Q_{2}(111)=1, L(111)=0 .
$$

Since for $x y z=111$ each $P_{j}=1$ it follows that $c=1$. We also find from the explicit polynomial expressions for P_{j}, that for $x y=11$ each reduces to $z^{3}+z+1$ or $z^{3}+z^{2}+1$. This yields the identity

$$
\begin{aligned}
\left(z^{6}+z^{5}+z^{4}+z^{3}+z^{2}+z\right. & +1)^{4}=a\left(z^{4}+z^{2}\right)^{4} \\
& +b\left(z^{4}+z^{2}\right)^{2}\left(z^{4}+z^{2}+1\right)^{3}+\left(z^{4}+z^{2}+1\right)^{6}
\end{aligned}
$$

Put $z=\epsilon, \epsilon^{2}+\epsilon+1=0$, and we get $a=1$. For $z=\phi$ we get

$$
0=(\phi+1)^{4}+b(\phi+1)^{2} \phi^{3}+\phi^{6},
$$

so that $b=0$. To get the coefficient d we take $x y z=\phi \phi^{2} \phi^{4}$. We find that $L\left(\phi \phi^{2} \phi^{4}\right)=1, Q_{1}\left(\phi \phi^{2} \phi^{4}\right)=Q_{2}\left(\phi \phi^{2} \phi^{4}\right)=0$. Also it is easily verified that each $P_{j}=1$. It follows that $d=1$. Hence (7.14) becomes

$$
\begin{equation*}
\xi^{8}+Q_{1}^{2} \xi^{4}+L^{2} Q_{2} \xi^{2}+L_{3} \xi=Q_{1}^{4}+Q_{2}^{5}+L^{2} Q_{1} Q_{2} \tag{7.16}
\end{equation*}
$$

We may now state
Theorem 9. For $q=2$, the equation (7.16) of degree 8 has the Galois group $L F(3,2)$ of order 168. The solutions of (7.16) are the irreducible factorable cubics P_{j}; if P_{1} is a particular solution then the general solution is

$$
P_{1}+a X+b Y+c Z
$$

where X, Y, Z are defined by (7.7) and $a, b, c \in F_{2}$.

References

1. L. E. Dickson, An invariantive investigation of irreducible binary modular forms, Trans. Amer. Math. Soc. 12 (1911), 1-8.
2. L. E. Dickson, Linear Groups (Leipzig, 1901).
3. -_, Modern Algebraic Theories (New York, 1923).
4. R. Fricke, Die elliptische Funktionen und ihre Anwendungen, II (Leipzig and Berlin, 1922).
5. ——, Lehrbuch der Algebra, II (Braunschweig, 1926).
6. J. R. Garrett, Normal equations and resolvents in fields of characteristic p, Duke Math. J. 18 (1951), 373-384.
7. F. Klein, Vorlesungen über das Ikosaeder und die Auflösung der Gleichungen vom fünften Grade (Leipzig, 1884).
8. D. E. Rutherford, Modular Invariants, Cambridge Tracts in Mathematics and Mathematical Physics, No. 27 (Cambridge, 1932).

Duke University,
Durham, North Carolina

[^0]: Received October 8, 1955.

