
RESOLVENTS OF CERTAIN LINEAR GROUPS 
IN A FINITE FIELD 

L. CARLITZ 

1. Introduction. Let Fq = GF(q) denote the finite field of order 
q = pn, where p is a prime. Consider the group T of linear transformations 

(1.1) x' = {ax + b)/{cx + d) 

with coefficients a, b, c, d Ç Fa and of determinant 1. The order of Y is 
i#(<Z2 ~~ 1) o r #(<Z2 ~~ 1) according as q is odd or even, i.e., according as p > 2 
or /> = 2. Put 
(1.2) / = J{x) = çiCï+DL-ic^-w (/> > 2), 

where 
(1.3) L = x« - x, Q = (x«2 - x)/(xff - x) = L^-1 + 1; 

when p = 2 the factor ^ in the exponents in the right member of (1.2) is 
omitted. It is familiar that L is the product of distinct linear polynomials 
x + a and Q is the product of distinct irreducible quadratics x2 + ax + b. 
Moreover (1, p. 4) J is an absolute and fundamental invariant of I\ that is, 
every absolute invariant is a rational function of / . The equation 

(1.4) J(x) = y, 

where y is an indeterminate, is normal over Fq(y) with Galois group T. 
If we put u = Z^(ff_1) or Lq~l according as p > 2 or p = 2, then (1.2) and 

(1.4) imply 
(1.5) (u2 + 1)^+1> = yu« (p > 2), 

(1.6) (u+ l)q+1 = yuq {p = 2), 

resolvents of degree q + 1. The principal object of the present paper is to 
construct resolvents of lower degree when they occur. It is well known (see 
for example (2, p. 287)) that T can be represented as a permutation group of 
degree < ç only when 
(1.7) q = 5 ,7 ,9 ,11 , 

in which case the degree is 5, 7, 6, 11, respectively. Resolvents are constructed 
for the minimum degree in each case. For example when q = 5 the quintic 
resolvent is 
(1.8) /5 - 2/3 = / , 

while for q = 7 we get 

(1.9) w1 + 4w5 - 4w4 = / . 
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When q = 4, (1.6) is a quintic. In this case we construct a sextic resolvent 

(1.10) /6 + th = / . 

Incidentally when g = 9, we again get the equation (1.10). However it should 
be observed that in the one case (1.10) has group 3U while in the other the 
group is 2t6. 

Finally in §7 we consider briefly the ternary linear group. For q — 2 the 
group is of order 168 and we construct a resolvent of degree 8. In this case the 
resolvent of degree 7 is easily found (compare the case q = 4). 

For the discussion of the corresponding problems in the classical case the 
reader is referred to (3, Ch. 13; 5; 7). 

2. q = 5. In this case T is icosohedral and has a tetrahedral subgroup 
generated by 

(2.1) x' = - x , x' = ^ ^ . 
x — Z 

This gives rise to the 12 functions 

(,2) ± I , ± i , ± l ± | , ± ^ , ± 2 | ± | , ± 2 | ^ | . 
Applying the second of (2.1) to (x4 + l) /x2 we get 

(2.3) t = T/L\ 

where 
(2.4) T = T(x) = x12 + 2x8 + 2x4 + 1. 

Since x4 + 1 = (x2 + 2)(x2 — 2), it is clear that T is the product of six 
irreducible quadratics. Consequently 

(2.5) Q = TU, 

where U is a polynomial of degree 6 ; we find that 

(2.6) U = U(x) = x8 - x4 + 1. 

Since the function (2.3) belongs to a tetrahedral subgroup of T, it must 
satisfy an equation of degree 5 with coefficients in Fs(J). While this equation 
can be found by the method of undetermined coefficients it is easier to make 
use of the identity 
(2.7) T2(x) - lP(x) = 2L4, 

which can be verified without difficulty. Incidentally (2.7) is one of a set of 
five identities obtained by replacing x by x + c, c = 0, 1, 2, 3, 4. Using (2.3), 
(2.6), (2.7) we get 
(2.8) tb - 2t* = / . 

This proves 

THEOREM 1. For q = 5, (1.4) admits the quintic resolvent (2.8). 
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It may be noted that Garrett (6) has proved that a quintic equation in a 
field of characteristic 5 can in general be reduced to the form 

(2.9) zb + az2 + b = 0. 

Replacing / by 1/z in (2.8), we evidently get an equation of the form (2.9). 

3. q = 7. The group T is now the simple group LF(2, 7) of order 168. We 
require a subgroup @4 of order 24. Such an octahedral subgroup is generated 
by 

(3.D Sl = (; *), „ - (5 *), s* = ç j). 
The transformations $i, s2 generate a dihedral subgroup ©4 of order 8; a 
function belonging to 354 is 

(3.2) f = (x2 + 2x - 2)4/L. 

Applying s3 to £ we find that 
(3.3) t = r4 /X3 , 

where 
(3.4) T = (x2 + 2x - 2) (x2 + 4x - 1) (x2 + x - 4) = x6 - x3 - 1 

belongs to the group ©4. Consequently / satisfies an equation of degree 7. 
It is however more convenient to find the equation of degree 7 satisfied by 

(3.5) w = / - 4 = W/L\ 

where 
(3.6) W = T4 - 4L3. 

We observe first that W\Q. T O prove this let a6 = - 1, a Ç GF(72). 
Then by (3.4), T(a) = — a3 — a, which implies TA(a) = 3a3; also L3(a) = 
(a7 — a)3, so that 

W(a) = 3a3 + 4a3 = 0. 

This implies x6 + l | W(x). Now applying the substitution su we find that W 
is a product of distinct irreducible quadratics, in particular it is clear that 
W\Q. Also (3.6) implies (W, T) = 1. We have accordingly 

(3.7) Q = TWU, 

where U is a polynomial of degree 12. 
Returning to (3.5) we now construct the equation of degree 7 satisfied by w. 

This is evidently of the form 

w7 + aiWQ + . . . + a&w = bJ 

or what is the same thing 

(3.8) W7 + axW*U + . . . + asWL1* = bQ\ 

It follows immediately from (3.7) that a± = a5 = #6 = 0; also b = 1. Since 
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W = xu — 4x21 + . . . , comparison of coefficients yields ai = 0, a2 = 4, 
a2 + a3 — 0. Thus (3.8) reduces to 

(3.9) W7 + 4W*L« - 4W*L9 = Q\ 

In terms of w this is 

(3.10) w7 + 4w5 - 4ze/4 = / . 

This proves 

THEOREM 2. For q = 7 (1.4) admits the resolvent (3.10) of degree seven. 

If we substitute from (3.7), (3.9) becomes 

(3.11) Wz + ±WL« - 4L» = T4t/4. 

Next using (3.6) we get 

(3.12) T8 + 2r 4 L 3 + 3L6 = U\ 

In terms of T above, (3.12) becomes 

(3.13) ( r 4 - 4L3)4 (r12 + 2r8L3 + 3r4L6) = <2, 
from which the equation for t follows at once : 

(3.14) (/ - 4)4 (*3 + 2*2 + 3/) = J. 

This equation can also be obtained directly from (3.10). 
Concerning the polynomials 7\ £/, W we may state 

THEOREM 3. The polynomials T, U, W satisfy (3.6), (3.7), (3.11), (3.12). 

4. q = 11. The group T is now the simple group LF(2, 11), of order 660. 
We require a subgroup 21Ô of order 60. Such an icosahedral subgroup is generated 
by (see for example (4, p. 479)) 

(4.1) * = (J J), 52 = (J _J) 
of period 5 and 2, respectively. Note that 

(4.2) Sls2 = ( j _ * ) , 

which is of period 3. It is easily seen that (x2 + l ) / (x — 3) is invariant under 
s2 and next that (x10 + l ) / (x 5 — 1) is invariant under (4.1). A little computa
tion now shows that 
(4.3) / = ryz , 5 , 

where 
(4.4) T = x30 + 5x25 + 5x20 + 5x10 - 5x5 + 1, 

belongs to 2I5. Notice that T is a product of distinct irreducible quadratics, 
so that T\Q. 
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In the next place application of Si to the quadratic x2 — 5x + 2 gives 
Hi = x10 + 5x5 — 1. Applying s2Siz to x2 — 5x + 2 we get #2 — 4# + 2 and 
this gives iJ2 = x10 — 2xb — 1. If we put 

(4.5) H = ^1^2 = x20 + 3x15 - x10 - 3x5 + 1 

we find that 
(4.6) h = # 3 / £ 5 

also belongs to 21s- Note that H, like T, is a product of distinct irreducible 
quadratics. Moreover it is not difficult to verify that T and H satisfy the 
relation 
(4.7) T2 - Hz = L5; 

in terms of t and h this is 
(4.8) / - h = 1. 

(For the polynomials corresponding to T, H and L in the classical case, see 
(5, p. 54). The differentiation method used there is however not applicable 
here.) 

Since (4.7) implies (T, H) = 1, it follows that 

(4.9) Q = THU, 

where U is a polynomial of degree 30. It is also easily verified that 

(4.10) u = U/Lb 

belongs to the group 2I5. Thus each of the functions /, h, u satisfies an equation 
of degree 11, which we shall now set up. We notice first that 

(4.11) U = T2 + 4L5. 

To prove (4.11) put <j>(x) = (U — T2)/L6 and let /3 be a number in some 
extension of Fg such that /3 and its conjugates under 2t5 are distinct; we may, 
for example, take 0 as the root of an irreducible polynomial of the third degree. 
Then since <j>(x) is invariant under 2l5 we have 4>(0i) = <t>(0)y where @t is any 
conjugate of /3 under 2U. Then <j>(x) — 0(0) vanishes for 60 distinct values of 
x; since deg 4>{x) < 60 it follows that <t>(x) is constant. Comparison of coeffic
ients now yields (4.11). Incidentally (4.7) can be proved in a similar way. 

Making use of (4.11) it is not difficult to find the equation of degree 11 
satisfied by u. This equation is of the form 

u11 + aiu10 + . . . + aioii = / 

or what is the same thing 

(4.12) Uu + a2U
10L* + . . . + a10UL™ = Q\ 

Since U\Q we have a6 = . . . = #io = 0. Also since all terms in Q have expo
nents divisible by 10, it is clear that a± = 0. Thus (4.12) becomes 

(4.13) Ub + a2U
3L10 + . . . + a5L25 = T«H«. 

Using (4.7) and (4.11) we may rewrite (4.13) in terms of T\ the resulting 

https://doi.org/10.4153/CJM-1956-062-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1956-062-6


RESOLVENTS OF LINEAR GROUPS 573 

relation is of degree 10 and must therefore be an identity in T. Comparing 
coefficients we readily find that 

#2 = 6, #3 = 3, a± = 3, a$ = a%. 

Thus (4.12) becomes 

(4.14) U11 + 6£/9L10 + 3Z78L15 + 3£/7L20 + 6£/6L25 = Q6, 

and therefore 
(4.15) u11 + 6w9 + 3w8 + 3w7 + 6w6 = / . 

We may rewrite (4.14) as 

Uh + 6E/3L10 + 3U2Llb + SUL20 + 6L25 = T«H« 

and remark that the left member is 

(U - 5L5)2([/3 - f/2 + 4C7 + 2) 

= ( £ 7 - 5 L 5 ) 2 ( r j - 4L5)3 

= ( r 2 - LbyT* = i i 6 r 6 , 

by (4.7) and (4.11), which is correct. Conversely we may obtain (4.14) by 
retracing these steps. 

In view of the above it is convenient to rewrite (4.15) as 

(4.16) u«(u - 5)2(u - 4)3 = 7. 

The corresponding equations for t and h are 

(4.17) t*(t - 1)2(/ + 4)6 = / 
and 
(4.18) h2(h + l)3(/* + 5)6 = / . 

We may state 

THEOREM 4. For q = 11, (1.4) admits the resolvents (4.16), (4.17), (4.18) 
of degree 11. 

THEOREM 5. The polynomials T, H, U satisfy (4.7), (4.9), (4.11) and 
(4.14). 

5. q = 4. When q = 4, the equation (1.6) becomes 

(5.1) (u + l ) 5 = yu\ 

where u = (xA — x)3. Thus (5.1) is a quintic resolvent of (1.4). The group in 
this case is 2U. We shall construct a sextic resolvent. This can be done most 
rapidly by making use of an irreducible quadratic, say 

(5.2) P = x2 + x + 0, 

where <£2 + <j> + 1 = 0, <t> G FA. Now pu t 

(5.3) / = ?P-
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It is easily verified that t belongs to the dihedral group J)6 of order 10 generated 

M - - c :;)• - - G î> 
Thus t must satisfy an equation of degree 6. Indeed from (5.2) 

P2 + P = x4 + x + l = L + l , 

Q = U + 1 = (P2 + P + l)3 + 1 = P6 + P5 + P3 + P. 

= P6 + P(P2 + P+ l)2, 

so that 
(5.5) Q = P6 + PL\ 

Using (5.3), (5.5) becomes 

<-(£'+* 
which reduces to 

(5.6) t* + tb = -̂ 12 = / . 

This proves 

THEOREM 6. For q = 4, (1.4) admits the resolvent (5.6) of degree 6 as w/ / as 
Jfte resolvent (5.1) 0/ degree 5. 

We remark that if x denotes any solution of the equation J(x) = y then the 
solutions of t5 + / = y are the six irreducible quadratics 

X2 + X + <£, X2 + X + 02 , X2 + $X + 1, X2 + $X + </>, 

X2 + (j>2X + 1, X2 + <£2X + <£2. 

6. q = 9. The group T is now of order 60. We require a subgroup of 
index 6. Such an icosahedral subgroup 2l5 is generated by 

(6-D * = (-Î i | ,)• *2 = (_? j) 
where a2 = — 1. It is easily verified that 

Sl* = S2
2 = ( ^ 2 ) 3 = 1, 

so that 3I5 is indeed the icosahedral group. 
Using (6.1) we find that 
(6.2) u = Ub/L\ 

where 
(6.3) U = x12 - x10 + x6 - x2 - 1, 
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belongs to 2U- Since U is a product of 6 distinct irreducible quadratics, we 
have 
(6.4) Q = TU, 

where T is a polynomial of degree 60. Moreover 

(6.5) / = T/L« 

also belongs to 2U. Consequently we have a relation of the form Ub — T = cL6, 
or what is the same thing 

(6.6) £/6 - Q = cL«U. 

Comparing coefficients of x66 in both members of (6.6) we get c = 1, so that 

(6.7) U« - UU = Q. 

Using (6.4) this becomes 

(6.8) T« + L«T* = Q\ 

In terms of / as defined by (6.5), (6.8) yields 

(6.9) f + t" = -^ë = / . 

We remark that it is not difficult to verify (6.7) by direct computation. 
Also (6.7) implies 

(6.10) u(u - l ) 5 = 7, 

which is equivalent to (6.9). We may state 

THEOREM 7. For q = 9, (1.4) admits the resolvents (6.9) and (6.10) of 
degree 6. 

We shall next construct an equation of degree 6 with group 2I5. This can be 
done by using one of the quadratic factors of U, for example x2 — 1 + a. 
We have 

(x2 - 1 - cr)(x10 - 1 + a) - a(x2 - 1 + cr)6 

(6.11) = (1 - er)(x12 - X10 + X6 - X2 - 1) = (1 - o)U, 

(x10 - 1 + a)2 - (x2 - 1 + <r)(x18 - 1 + a) 

(6.12) = (1 - o-)(x18 + x10 + x2) = (1 - (T)L2 . 

Put 

(6.13) w = 

Then by (6.11) 

x10 - 1 + a 
<r(x2 - 1 + \5 • 

( 1 - tr)U 
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On the other hand it follows from (6.12) that 

{X — 1 + <T) 

so that 

(6.15) w + 1 = - -r-2V rZ~~v* 
(x — 1 + a) 

Comparison of (6.15) with (6.14) yields 

(6.16) W
6 + l = - f , ( w - l ) s = -& H \ 

If we make the substitution 

,n i * r \ 1 — W — S 
((U7) w = T=r^+-Z 
(6.16) becomes 
(6.18) z6 + zh = «(1 - w)5. 

If we put 2 = v — 1, (6.18) takes on the more symmetrical form 

(6.19) u(l - w)5 + z/(l - v)b = 0; 

Alternatively, since u — t = 1, we have 

(6.20) z6 + zb + /6 + /5 = 0, 

where / is defined by (6.5). 
We omit the verification that z belongs to a dihedral subgroup 3)5 of 2l5 

and state 

THEOREM 8. For q = 9, the equation (6.20) has group 21s relative to F$(t). 

It is of interest to compare (6.20) with (6.9). Thus for J an indeterminate, 
(6.9) has group 2Ï6, while for — J — t% + /5 the group reduces to 2I5. Since t 
belongs to 21s, this is in agreement with a familiar theorem on the effect on 
the Galois group of an adjunction to the coefficient field. In this connection 
we remark that a quintic with group 2ïs relative to F9(t) is evidently 

6 _ /6 5 _ /5 

(6.21) - j + z- j = 0. 
z — t z — t 

7. The ternary group. Define 

(7.1) [ijk] = 

in particular put 

xqi yqi zqi 

xqj yqi zqi 

xqk yqk zqk 

(7.2) L = [012], Qi = JfiT5J, & 
[023] _ [013] 
[012] ' ^2 [012] ' 
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Then L, Qh Q2 are homogeneous polynomials in x, yy z and (see, for example 
(8, p. 17)) form a full system of invariants for the ternary linear group over 
Fq. Moreover x, y, z satisfy the equation 

(7.3) £«3 = Q2^ - Qà* + L«-% 

Indeed the general solution of (7.3) is furnished by 

(7.4) ax + by + cz (a, b, c G Fq). 

Now in particular when q = 2, the ternary group T is of order 168, 

(7.5) deg L = 7, deg Q1 = 6, deg Q2 = 4. 

Also (7.3) becomes 
(7.6) 1? = Q,e + Qà + L, 

an equation with group I\ 
Let 

(7.7) X = yz2 + y2z, Y = xz2 + x2z, Z = xy2 + x2y. 

Then by (7.6) 

Z4 = x4(Ç23'4 + Ci?2 + Ly) + y4(Ç2x4 + QiX2 + Lx) 
= d Z 2 + L(x*y + xy*), 

Z8 = QfZ4 + L2x2(Q2y* + Qiy2 + Ly) + L2y2(Q2x* + Qxx
2 + Lx), 

so that 
(7.8) Z8 + QïZ4 + L2(?2Z

2 + UZ = 0. 

Similarly X and F also satisfy (7.8) ; indeed the general solution of (7.8) is 

(7.9) aX + bY+cZ (a, b, c Ç F2). 

It follows that 
(7.10) L(XYZ) = L», (2x(ZFZ) = L2Q2, Q2(XYZ) = Ql 

We shall now construct a resolvent of degree 8 for the equation (7.6). To 
do this we make use of irreducible factorable polynomials over F2, that is 
polynomials of the type 

(7.H) n (* + J y + A ) («, p e F8). 

The condition that (7.11) be irreducible (relative to F2) is that a or 0 be a 
primitive number of F%. We shall restrict our attention to those polynomials 
(7.11) that are of rank 3, that is those for which 1, a, (i are linearly independent 
relative to F2; it is easily verified that the number of such polynomials is 8. 
If we define the field Fs by means of 

(7.12) 03 = <t>2 + 1, 

then the 8 polynomials in question are given by 

(7.13) (a,|8) = (0,02), (0,03), (</>,04), (4>,06), 
(*8,*4), (4>3, 05), (4>3, 0), (4>5,4>3). 
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The polynomials (7.13) are permuted by T; each is left invariant by a certain 
subgroup of order 21. By direct computation we find that the polynomials are 

Pi = x3 + yz + zz + xyz + x2y + x2z + 3>2* 

P2 = x3 + y3 + z3 + ffys + #2;y + #z2 + 3>2z 

Pz = x3 + j 3 + z3 + x^2 + x23> + x2z + ^s2 

P4 = x3 + ^3 + £3 + ^ 2 + x2y + xz2 + yz2 

Pb = xz + yz + £3 + ^ 2 + X3/2 + x2z + ^2s 

Pe = x3 + 3̂ 3 + z3 -f- #3^ + x^2 + xz2 + 3/2s 

P7 = x3 + y3 + zz + x^z + xy2 + x2z + 3̂ z2 

Pa = xz -\- yz + zz + xyz + #3>2 + xz2 + ;yz2. 

Using (7.7) we find that the polynomials Pj can be exhibited as 

Pl + aX + bY+cZ (a,b,c€F2). 

Consequently if the equation of degree 8 satisfied by Pj is/(£) = 0, then writing 
£ = 77 + Pi , we have /(17 + Pi) = 0 when 17 takes on the values (7.9). It 
follows that/(?7 + Pi) is identical with the left member of (7.8). Hence we 
get 
(7.14) £ + Q\ZA + L2Q2Z

2 + L3Z = A 

as the equation satisfied by Pjy where 

(7.15) A = I I P,-
J=I 

It remains to compute the coefficient A. Since deg A = 24 and A is an 
invariant we have 

A = aQi + bQl Ql + cQ\ + dL2Q1 Q2, 
and it is only necessary to determine the constants a, b, c, d. We readily com
pute the following special values: 

(MU*) = *4 + *2> 02(11») = z4 + z2 + 1, L( l lz) = 0. 

In particular 

Ç i ( l l l ) = 0, (22(111) = 1, £(111) = 0. 

Since for xyz = 1 1 1 each Pj = 1 it follows that c = 1. We also find from the 
explicit polynomial expressions for Pjy that for xy = 11 each reduces to 
zz + z + 1 or zz + z2 + 1. This yields the identity 

(z6 + z5 + z4 + zz + z2 + z + l ) 4 = a(z* + z2)4 

+ 6(z4 + z2)2(s4 + z2 + l ) 3 + (z4 + z2 + l)6 . 

Put z = e, e2 + e + 1 = 0, and we get a = 1. For z = 0 we get 

0 = (4>+ l)* + b(t+ l )V 3 + 06, 
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so that b — 0. To get the coefficient d we take xyz = </>$V4- We find that 
L(<W>V) = 1, (?i(0#V) = (?2(MV) = 0. Also it is easily verified that each 
Pj = 1. It follows that d = 1. Hence (7.14) becomes 

(7.16) f + Q\t + L2Q2 £2 + L3 £ = Q[ + Ql + L2Q, Q2. 

We may now state 

THEOREM 9. For q — 2, the equation (7.16) of degree 8 has the Galois group 
LF(Z, 2) of order 168. The solutions of (7.16) are the irreducible factorable 
cubics Pj] if Pi is a particular solution then the general solution is 

Pi + aX + bY+ cZ, 

where X, F, Z are defined by (7.7) and a, b, c Ç F2. 
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