Contents

Preface page xi
1 Introduction 1
1.1 Pairing in nuclei, superconductors, liquid ${ }^{3} \mathrm{He}$ and neutrons stars 1
1.2 Macroscopic wavefunction and phase rigidity 3
1.3 Broken symmetry and collective modes 6
1.4 Superfluid ${ }^{4} \mathrm{He}$ (He II) 8
1.5 Critical velocity for superconductors 13
1.6 Pairing in nuclei 14
1.7 Superconductivity 19
1.8 Superfluidity of liquid ${ }^{3} \mathrm{He}$ 25
1.9 Comparison of pairing in nuclei with superconductivity 26
1.10 Neutron stars 30
2 The pairing force and seniority 33
2.1 Evidence for pairing correlations 33
2.2 The pairing interaction 36
2.3 The δ-function nucleon-nucleon potential 39
2.4 The degenerate model and quasi-spin 42
2.5 Pairing binding energy formula 44
2.6 Quasi-spin wavefunctions 45
2.7 Pairing rotations 47
2.8 Exact solution of the pairing Hamiltonian 48
3 The BCS theory 52
3.1 The BCS wavefunction 52
3.2 The energy 55
3.3 Excited states and quasiparticles 57
3.4 The mean-field Hamiltonian 60
3.5 The correlation energy 61
3.6 Pairing correlations in the wavefunction 64
3.7 The degenerate model in the BCS approximation 65
3.8 Gauge invariance 66
3.9 Matrix elements of one-body operators 67
3.10 Pairing and isospin 69
4 Spontaneous symmetry breaking 72
4.1 General background 72
4.2 Pairing in atomic nuclei (0 D systems; $\xi \gg R$) 75
4.3 Infinite 3D neutral superconductors $(\xi \ll L)$ 88
5 Pairing vibrations 92
5.1 The two-level model 92
5.2 Applications 102
5.3 Multipole pairing vibrations 108
6 Phase transitions 117
6.1 The experimental situation 119
6.2 Static pairing correlations: the BCS theory of pairing phase transitions in strongly rotating nuclei 122
6.3 Pairing fluctuations 138
6.4 Moments of inertia 141
6.5 Condensation-induced tunnelling 144
6.6 Response function technique to calculate RPA fluctuations 145
$7 \quad$ Plastic behaviour of nuclei and other finite systems 154
7.1 Exotic decay 155
7.2 A variety of applications 163
7.3 Low-lying surface vibrations 165
7.4 Fission in metal clusters 168
8 Sources of pairing in nuclei 170
8.1 The bare nucleon-nucleon potential and the pairing interaction 171
8.2 Mean-field theory 177
8.3 Random phase approximation 184
8.4 Correlation energy contribution to nuclear masses 199
9 Beyond mean field 204
9.1 Doorway states 204
9.2 Effective mass (ω-mass) 211
9.3 The ω-mass and the induced interaction 215
10 Induced interaction 219
10.1 Simple estimates 219
10.2 Microscopic calculations 223
10.3 Slab model 231
10.4 Induced pairing interaction, effective mass and vertex correction processes 239
10.5 Superfluidity in the inner crust of neutron stars 244
11 Pairing in exotic nuclei 257
11.1 The halo nucleus ${ }^{11} \mathrm{Li}$ 258
11.2 The halo nucleus ${ }^{12} \mathrm{Be}$ 275
Appendix A A brief résumé of second quantization 280
A. 1 Fermions 280
A. 2 Particles and holes 286
A. 3 Bosons 288
A. 4 Quasi-bosons 290
Appendix B Single particle in a non-local potential 292
B. 1 Single particle in a non-local, ω-dependent potential 294
Appendix C Useful relations in the treatment of collective modes 297
C. 1 Limit on the multipolarity of collective surface vibrations 297
C. 2 The relation between \hat{F} and $\hat{\alpha}$ 297
Appendix D Particle-vibration coupling 299
D. 1 Estimate of $\left\langle l j\left\|Y_{L}\right\| l j\right\rangle$ 301
D. 2 A simple estimate of $\left\langle R_{0} \frac{\partial U}{\partial r}\right\rangle$ 303
Appendix E Model of the single-particle strength function 305
Appendix F Simple model of Pauli principle corrections 308
Appendix G Pairing mean-field solution 310
G. 1 Solution of the pairing Hamiltonian 310
G. 2 Two-quasiparticle excitations 315
G. 3 Minimization 317
G. 4 BCS wavefunction 318
Appendix H Pairing in a single \mathbf{j}-shell 320
H. 1 BCS solution 320
H. 2 Cranking moment of inertia 322
H. 3 Two-particle transfer 323
H. 4 Polarization effects 324
Appendix I Fluctuations and symmetry restoration 327
I. 1 Conjugate variables 327
I. 2 Rotation about an axis 328
I. 3 Rotations in gauge space 329
I. 4 Symmetry restoring fluctuations and pairing rotations 330
Appendix \mathbf{J} RPA solution of the pairing Hamiltonian 335
J. 1 Diagonalization of the $H_{0}+H_{\mathrm{p}}^{\prime}$ Hamiltonian (odd-solution) 336
J. 2 Diagonalization of the $H_{0}+H_{\mathrm{p}}^{\prime \prime}$ Hamiltonian (even-solution) 339
J. 3 Diagonalization of the full Hamiltonian $H=H_{0}+H_{\mathrm{p}}^{\prime}+H_{\mathrm{p}}^{\prime \prime}$ 343
Appendix K Vortices in nuclei 349
K. 1 Simple estimates 349
K. 2 Critical velocity for the excitation of rotons 354
K. 3 Critical velocity for superfluidity 355
Appendix L Josephson effect 356
References 361
Index 374

