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Abstract. The definition of subshifts of finite symbolic rank is motivated by the finite rank
measure-preserving transformations which have been extensively studied in ergodic theory.
In this paper, we study subshifts of finite symbolic rank as essentially minimal Cantor
systems. We show that minimal subshifts of finite symbolic rank have finite topological
rank, and conversely, every minimal Cantor system of finite topological rank is either an
odometer or conjugate to a minimal subshift of finite symbolic rank. We characterize the
class of all minimal Cantor systems conjugate to a rank-1 subshift and show that it is dense
but not generic in the Polish space of all minimal Cantor systems. Within some different
Polish coding spaces of subshifts, we also show that the rank-1 subshifts are dense but
not generic. Finally, we study topological factors of minimal subshifts of finite symbolic
rank. We show that every infinite odometer and every irrational rotation is the maximal
equicontinuous factor of a minimal subshift of symbolic rank 2, and that a subshift factor
of a minimal subshift of finite symbolic rank has finite symbolic rank.
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1. Introduction
This paper is a contribution to the study of symbolic and topological dynamical systems,
but the main notion studied here originated from ergodic theory.

One of the main sources of examples and counterexamples in ergodic theory has
been the measure-preserving transformations constructed from a cutting-and-stacking
process. The first such example was given by Chacón in [10] more than half a century
ago, and since then, there has been a large volume of literature devoted to the study
of measure-theoretic properties of these transformations. In fact, much of the work
concentrated on the so-called rank-one transformations, where there is only one stack
in every step of the cutting-and-stacking process. This is partially because the class of
rank-one transformations forms a dense Gδ set in (the Polish space of) the class of all
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measure-preserving transformations (cf, e.g., [23, 24]), and thus behaviors of the rank-one
transformations capture the generic behaviors of all measure-preserving transformations.
However, measure-preserving transformations of arbitrary finite rank (where there is a
uniform finite bound on the number of stacks used in every step of the cutting-and-stacking
process, first defined by Ornstein, Rudolph, and Weiss in [39]) have also been extensively
studied. In particular, they are known to have different models, some of which are of
geometric nature and some symbolic. Ferenczi [23] gave an excellent survey over a quarter
of a century ago.

Meanwhile, there has also been an effort to develop an analogous theory of topological
dynamics for Cantor systems of finite topological rank. The starting point was [33] by
Herman, Putnam, and Skau, in which essentially minimal Cantor systems were described
by their Bratteli–Vershik representations through a nested sequence of Kakutani–Rohlin
partitions. These were seen to be analogous/parallel to the cutting-and-stacking processes
used to build measure-preserving transformations. In the time period between [33] and [14]
by Downarowicz and Maass, many special kinds of Cantor systems were studied through
their Bratteli–Vershik representations. These systems included odometers, substitution
subshifts, linear recurrent subshifts, symbolic codings of interval exchange maps, etc.
Along with these studies, there had been a number of attempts to produce a good definition
of topological rank for Cantor systems. In the end, the natural notion of finite rank Bratteli
diagram (where there is a uniform bound on the number of nodes on all of its levels)
was chosen to be the connotation of finite topological rank. The supporting evidence was
abundant. First, all the special kinds of systems mentioned above have finite rank Bratteli
diagrams. More importantly, in [14], the authors considered general Cantor minimal
systems with finite rank Bratteli diagrams, and proved that they are either equicontinuous
or else expansive and hence conjugate to subshifts. This important dichotomy theorem
and its proof suggested that the assumption of finite rank Bratteli diagram has far-reaching
consequences. Shortly after, the terminology of finite topological rank started to be used
(by Durand in [16]), and since then, the Cantor minimal systems of finite topological rank
have been more extensively studied in this generality (see Durand [16], Bressaud, Durand,
and Maass [9], Bezuglyi et al [7], Donoso et al [13], Durand and Perrin [17], and Golestani
and Hosseini [25]).

At the same time, motivated by the symbolic definition of measure-preserving transfor-
mations of finite rank, Ferenczi [22] introduced a notion of an S-adic subshift. An S-adic
subshift is defined from a substitution process with infinitely many levels, and it has finite
alphabet rank if there is a bound on the numbers of letters used on all of the levels. This
notion of rank, as well as its interplay with the notion of finite topological rank, have been
studied by Durand [15], Berthé and Delecroix [5], Leroy [38], Berthé et al [6], Donoso
et al [13], Espinoza [19, 20], etc. In particular, it has been shown in [13] that every minimal
Cantor system of finite topological rank is either an odometer or conjugate to an S-adic
subshift of finite alphabet rank. Conversely, every S-adic subshift of finite alphabet rank
has finite topological rank.

In this paper, we consider a notion of symbolic rank for subshifts which is more directly
motivated by the symbolic definition of finite rank measure-preserving transformations. In
some sense, a subshift of finite symbolic rank is simply a finite rank measure-preserving
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transformation without the measure. Rank-one subshifts in this sense have been studied
in the literature. For example, they are known to have zero topological entropy, and
Bourgain [8] proved Sarnak’s conjecture for minimal rank-one subshifts. Other topological
properties of rank-one subshifts have been considered by Adams, Ferenczi, and Petersen
[1], Danilenko [11], El Abdalaoui, Lemańczyk, and de la Rue [18], Etedadialiabadi and
Gao [21], Gao and Hill [25, 26], Gao and Ziegler [28, 29], etc.

A systematic study of subshifts of finite symbolic rank started in [27]. Among other
things, it was proved that they all have zero topological entropy. Much of [27] focused on
the combinatorial properties of infinite words that generate subshifts of finite symbolic
rank, and not so much on the topological properties of the subshifts themselves. In
particular, one of the main questions left unsolved was how the symbolic rank relates to
the other more well-established notions of rank for various Cantor systems.

In this paper, we prove a number of results on the topological properties of subshifts
of finite symbolic rank. The subshifts we consider all have alphabet {0, 1}, and therefore
they are subshifts of 2Z. We show that any minimal subshift of finite symbolic rank has
finite topological rank (Theorem 6.7) and conversely, any Cantor minimal system of finite
topological rank is either an odometer or conjugate to a minimal subshift of finite symbolic
rank (Theorem 6.9). Thus, the notion of finite symbolic rank is essentially the same as the
notion of finite topological rank, and by previous results [13], it is also essentially the same
as the notion of finite alphabet rank.

Although we do not solve any open problem about systems of finite topological rank in
this paper, it is our hope that the relatively new notion of finite symbolic rank will provide
a new perspective and an alternative approach to the future study of these systems. For
example, one of the key open problems about minimal Cantor systems is their classification
up to topological conjugacy. In [25], the authors have described a complete classification
of subshifts of symbolic rank one. This gives hope that further progress can be made
by considering subshifts of higher symbolic ranks. Another example of a major open
problem is Sarnak’s conjecture for topological dynamical systems of zero topological
entropy. Bourgain [8] gave a proof for all minimal subshifts of symbolic rank one, and
in [21], Sarnak’s conjecture was confirmed for a class of subshifts of symbolic rank one
which is essentially minimal but not minimal. Note that by results of [2] or our Proposition
6.11 below, subshifts of symbolic rank one can have arbitrarily high topological rank or
alphabet rank. Hence, the results of [8, 21, 25] cannot be covered by results about any
fixed topological rank or alphabet rank.

In this paper, we also consider various classes of Cantor systems and characterize
their descriptive complexity. In particular, the class of all Cantor systems can be coded
by the Polish space Aut(C) (this is defined and discussed in §2.3), and we show that the
classes of all essentially minimal Cantor systems, minimal Cantor systems, as well as those
whose topological rank has a fixed bound all form Gδ subspaces, and hence are Polish
(§3). However, the class of all minimal Cantor systems conjugate to a rank-1 subshift is
dense but not generic in the Polish space of all minimal Cantor systems (Proposition 7.1).
Additionally, we consider two more Polish spaces of subshifts as done in [40] and show that
the class of minimal subshifts conjugate to a rank-1 subshift is dense in these spaces, but
is not generic in either of them. This is in contrast to the situation in the measure-theoretic
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setting. Nevertheless, together with the results of [40], our results show that the class of
minimal subshifts conjugate to one of symbolic rank ≤ 2 is generic in both of these Polish
coding spaces of subshifts.

We also consider topological factors of minimal subshifts of finite symbolic rank (§8).
We improve Theorem 6.9 by showing that a minimal subshift of finite topological rank
≥ 2 must be of finite symbolic rank itself (Corollary 8.4), and is not just conjugate to a
subshift of finite symbolic rank as guaranteed by Theorem 6.9. However, the symbolic
rank of the subshift might be much greater than the one to which it is conjugate. We show
that any infinite odometer and any irrational rotation is the maximal equicontinuous factor
of a minimal subshift of symbolic rank 2, which is in contrast with known results about
rank-1 subshifts.

The rest of the paper is organized as follows. In §2, we give the preliminaries
on descriptive set theory, topological dynamical systems, (essentially) minimal Cantor
systems, ordered Bratteli diagrams, Kakutani–Rohlin partitions, subshifts, and what it
means for a subshift to have finite symbolic rank. In §3, we compute the descriptive
complexity of the classes of essentially minimal Cantor systems and those with topological
rank ≤ n for some n ≥ 1, by giving some topological characterizations of these classes
within the Polish space of all Cantor systems. In §4, we give a topological characterization
of all minimal Cantor systems conjugate to a rank-1 subshift. In §5, we characterize
minimal subshifts of finite symbolic rank as exactly those admitting a proper finite rank
construction with bounded spacer parameter. This will be a basic tool in the study of
minimal subshifts of finite symbolic rank. Section 6 is the main section of this paper, in
which we prove the main theorems (Theorems 6.7 and 6.9) which clarify the relationship
between the notions of symbolic rank and topological rank. We give some examples to
show that our results are in some sense optimal. We also prove a result connecting the
notion of finite alphabet rank for S-adic subshifts with the notion of finite symbolic rank.
This gives an alternative proof of Theorem 6.9 via the main result of [13]. In §7, we
consider the density and the genericity of the class of all minimal subshifts conjugate
to a rank-1 subshift in various Polish coding spaces of Cantor systems and subshifts.
Finally, in §8, we consider topological factors of minimal subshifts of finite symbolic
rank.

2. Preliminaries
2.1. Descriptive set theory. In the rest of the paper, we will be using some concepts,
terminology, and notation from descriptive set theory. In this subsection, we review these
concepts, terminology, and notation, which can be found in [35].

A Polish space is a topological space that is separable and completely metrizable.
Let X be a Polish space and dX be a compatible complete metric on X. Let K(X) be

the space of all compact subsets of X, and let dH be the Hausdorff metric defined on
K(X) as follows. For A ∈ K(X) and x ∈ X, let d(x, A) = inf{d(x, y) : y ∈ A}. Now for
A, B ∈ K(X), let

dH (A, B) = max{sup{d(x, B) : x ∈ A}, sup{d(y, A) : y ∈ B}}.
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Then dH is a metric on K(X) that makes K(X) a Polish space. Moreover, if X is compact,
then K(X) is compact.

Let X be a Polish space. A subset A of X isGδ if A is the intersection of countably many
open subsets of X. A subspace Y of X is Polish if and only if Y is a Gδ subset of X. We say
that a subset A of X is generic, or the elements of A are generic in X, if A contains a dense
Gδ subset of X.

More generally, by a transfinite induction on 1 ≤ α < ω1, we can define the Borel
hierarchy on X as follows:

�0
1 = the collection of all open subsets of X,

�0
1 = the collection of closed subsets of X,

�0
α =

{ ⋃
n∈N

An : An ∈ �0
βn

for some βn < α

}
,

�0
α = {X \ A : A ∈ �0

α}.

We also define �0
α = �0

α ∩ �0
α . Thus, �0

1 is the collection of all clopen subsets of X. With
this notation,

⋃
α<ω1

�0
α = ⋃

α<ω1
�0
α = ⋃

α<ω1
�0
α is the collection of all Borel subsets

of X. The collection of all Gδ subsets of X is exactly �0
2.

Let X be a topological space. Recall that a subset A of X is nowhere dense in X if the
interior of the closure of A is empty. Here, A is meager in X if A ⊆ ⋃

n∈N Bn, where each
Bn is nowhere dense in X; A is non-meager in X if it is not meager in X; and A is comeager
in X if X \ A is meager in X.

2.2. Topological dynamical systems. The concepts we review in this subsection are
standard and can be found in any standard text on topological dynamics, e.g., [4, 37]. By
a topological dynamical system, we mean a pair (X, T ), where X is a compact metrizable
space and T : X → X is a homeomorphism. If (X, T ) is a topological dynamical system
and Y ⊆ X satisfies T Y = Y , then Y is called a T-invariant subset.

If (X, T ) and (Y , S) are topological dynamical systems and ϕ : X → Y is a continuous
surjection satisfying ϕ ◦ T = S ◦ ϕ, then ϕ is called a factor map and (Y , S) is called
a (topological) factor of (X, T ). If in addition ϕ is a homeomorphism, then it is called
a (topological) conjugacy (map), and we say that (X, T ) and (Y , S) are (topologically)
conjugate.

If (X, T ) is a topological dynamical system and ρ is a compatible metric on X, then ρ
is necessarily complete since X is compact. Let (X, T ) be a topological dynamical system
and fix ρ a compatible metric on X. We say that (X, T ) is equicontinuous if for all ε > 0,
there is δ > 0 such that for all n ∈ Z, if ρ(x, y) < δ, then ρ(T nx, T ny) < ε. Since X is
compact, the equicontinuity is a topological notion and does not depend on the compatible
metric ρ.

Every topological dynamical system (X, T ) has a maximal equicontinuous factor (or
MEF), that is, an equicontinuous factor (Y , S) with the factor map ϕ such that if (Z, G)
is another equicontinuous factor of (X, T ) with factor map ψ , then there is a factor map
θ : (Y , S) → (Z, G) such that ψ = θ ◦ ϕ.
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If (X, T ) is a topological dynamical system and x ∈ X, the orbit of x is defined as
{T kx : k ∈ Z}. If A is a clopen subset of X, the return times of x to A is defined as
RetA(x) = {n ∈ Z : T nx ∈ A}. We regard RetA(x) as an element of 2Z = {0, 1}Z.

2.3. Minimal Cantor systems. Recall that a Cantor space is a zero-dimensional, perfect,
compact metrizable space. Let X be a Cantor space and T : X → X be a homeomorphism.
Then (X, T ) is called a Cantor system. Here, T is minimal if every orbit is dense, that is, for
all x ∈ X, {T kx : k ∈ Z} is dense in X. A minimal Cantor system is a pair (X, T ), where
X is a Cantor space and T : X → X is a minimal homeomorphism.

Let C = 2N = {0, 1}N be the infinite product of the discrete space {0, 1} with the
product topology. Then every Cantor space is homeomorphic to C. Let dC be the canonical
compatible complete metric on C, that is, for x, y ∈ C, if x 	= y, then

dC(x, y) = 2−n where n ∈ N is the least such that x(n) 	= y(n).

Let

Aut(C) = {T : T is a homeomorphism from C to C}
be equipped with the compact-open topology, or equivalently the supnorm metric, that is,
for T , S ∈ Aut(C),

d(T , S) = sup{dC(T x, Sx) : x ∈ C}.
Then Aut(C) is a Polish space (cf, e.g., [36]). Let M(C) be the set of all minimal
homeomorphisms of C. Then for a T ∈ Aut(C), T ∈ M(C) if and only if for all non-empty
clopen U ⊆ C, there is N ∈ N such that C = ⋃

−N≤n≤N T nU . This characterization
implies that M(C) is a Gδ subset of Aut(C), and hence M(C) is also a Polish space. Here,
M(C) is our coding space for all minimal Cantor systems.

We will also consider essentially minimal Cantor systems. A Cantor system (X, T )
is essentially minimal if it contains a unique minimal set, that is, a non-empty closed
T-invariant set which is minimal among all such sets.

2.4. Ordered Bratteli diagrams. The concepts and terminology reviewed in this subsec-
tion are from [14, 30, 33]. Some notation are from [13, 16]. Recall that a Bratteli diagram
is an infinite graph (V , E) with the following properties:
• the vertex set V is decomposed into pairwise disjoint non-empty finite sets V = V0 ∪

V1 ∪ V2 ∪ · · · , where V0 is a singleton {v0};
• the edge set E is decomposed into pairwise disjoint non-empty finite sets E = E1 ∪

E2 ∪ · · · ;
• for any n ≥ 1, each e ∈ En connects a vertex u ∈ Vn−1 with a vertex v ∈ Vn. In

this case, we write s(e) = u and r(e) = v. Thus, s, r : E → V are maps such that
s(En) = Vn−1 and r(En) = Vn for all n ≥ 1;

• s−1(v) 	= ∅ for all v ∈ V and r−1(v) 	= ∅ for all v ∈ V \ V0.
An ordered Bratteli diagram is a Bratteli diagram (V , E) together with a partial

ordering � on E so that edges e and e′ are �-comparable if and only if r(e) = r(e′).
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A finite or infinite path in a Bratteli diagram (V , E) is a sequence (e1, e2, . . .),
where r(ei) = s(ei+1) for all i ≥ 1. Given a Bratteli diagram (V , E) and 0 ≤ n < m,
let En,m be the set of all finite paths connecting vertices in Vn and those in Vm.
If p = (en+1, . . . , em) ∈ En,m, define r(p) = r(em) and s(p) = s(en+1). If in addition
the Bratteli diagram is partially ordered by �, then we also define a partial ordering
p �′ q for p = (en+1, . . . , em), q = (fn+1, . . . , fm) ∈ En,m as either p = q or there
exists n+ 1 ≤ i ≤ m such that ei 	= fi , ei � fi , and ej = fj for all i < j ≤ m. For
an arbitrary strictly increasing sequence (nk)k≥0 of natural numbers with n0 = 0, we
define the contraction or telescoping of a Bratteli diagram (V , E) with respect to (nk)k≥0

as (V ′, E′), where V ′
k = Vnk for k ≥ 0 and E′

k = Enk−1,nk for k ≥ 1. If in addition the
given Bratteli diagram is ordered, then by contraction or telescoping, we also obtain an
ordered Bratteli diagram (V ′, E′, �′) with the order �′ defined above. The inverse of the
telescoping process is called microscoping. Two ordered Bratteli diagrams are equivalent
if one can be obtained from the other by a sequence of telescoping and microscoping
processes.

A Bratteli diagram (V , E) is simple if there is a strictly increasing sequence (nk)k≥0 of
natural numbers with n0 = 0 such that the telescoping (V ′, E′) of (V , E) with respect to
(nk)k≥0 satisfies that for all n ≥ 1, u ∈ V ′

n−1, and v ∈ V ′
n, there is e ∈ E′

n with s(e) = u

and r(e) = v. This is equivalent to the property that for any n ≥ 1, there ism > n such that
every pair of vertices u ∈ Vn and v ∈ Vm are connected by a finite path. It is obvious that
if a Bratteli diagram B is simple, then any Bratteli diagram equivalent to it is also simple.

Given a Bratteli diagram B = (V , E), define

XB = {(en)n≥1 : en ∈ En, r(en) = s(en+1) for all n ≥ 1}.
Since XB is a subspace of the product space

∏
n≥1 En, we equip XB with the sub-

space topology of the product topology on
∏
n≥1 En. An ordered Bratteli diagram

B = (V , E, �) is essentially simple if there are unique elements xmax = (en)n≥1, xmin =
(fn)n≥1 ∈ XB such that for every n ≥ 1, en is a �-maximal element and fn is a �-minimal
element. Here, B = (V , E, �) is simple if (V , E) is simple and B is essentially simple. If
an ordered Bratteli diagram B is (essentially) simple, then any ordered Bratteli diagram
equivalent to it is also (essentially) simple.

Given an essentially simple ordered Bratteli diagram B = (V , E, �), we define
the Vershik map λB : XB → XB as follows: λB(xmax) = xmin; if (en)n≥1 ∈ XB and
(en)n≥1 	= xmax, then let

λB((e1, e2, . . . , ek , ek+1, . . .)) = (f1, f2, . . . , fk , ek+1, . . .),

where k is the least such that ek is not �-maximal, fk is the �-successor of ek , and
(f1, . . . , fk−1) is the unique path from v0 to s(fk) = r(fk−1) such that fi is �-minimal for
each 1 ≤ i ≤ k − 1. Then (XB , λB) is an essentially minimal Cantor system [33], which
we call the Bratteli–Vershik system generated by B. If B = (V , E, �) is a simple ordered
Bratteli diagram and XB is infinite, then (XB , λB) is a minimal Cantor system [30]. If
two simple ordered Bratteli diagrams are equivalent, then the Bratteli–Vershik systems
generated by them are conjugate, with the conjugacy map sending xmin to xmin.
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An essentially minimal Cantor system (X, T ) is of finite topological rank if it is
conjugate to a Bratteli–Vershik system given by an essentially simple ordered Bratteli
diagram (V , E, �), where (|Vn|)n≥1 is bounded by a natural number d. The minimum
possible value of d is called the topological rank of the system, and is denoted by
ranktop(X, T ). Such Bratteli diagrams have been called finite rank Bratteli diagrams in the
literature, but [16] appears to be the first place where the terminology of finite topological
rank was introduced.

An essentially minimal Cantor system (X, T ) with topological rank 1 is called an
(infinite) odometer. It is easy to see that any ordered Bratteli diagram for such an odometer
is necessarily simple, and therefore an odometer is in fact minimal. The infinite odometers
coincide with all equicontinuous minimal Cantor systems.

2.5. Kakutani–Rohlin partitions. The concepts and terminology reviewed in this sub-
section are again from [30, 33], with some notation from [13].

For an essentially minimal Cantor system (X, T ), a Kakutani–Rohlin partition is a
partition

P = {T jB(k) : 1 ≤ k ≤ d , 0 ≤ j < h(k)}
of clopen sets, where d , h(1), . . . , h(d) are positive integers and B(1), . . . , B(d) are
clopen subsets of X such that

d⋃
k=1

T h(k)B(k) =
d⋃
k=1

B(k).

The set B(P) = ⋃d
k=1 B(k) is called the base of P . For 1 ≤ k ≤ d , the subpartition

P(k) = {T jB(k) : 0 ≤ j < h(k)} is the kth tower of P , which has base B(k) and
height h(k).

The following is a basic fact regarding the construction of Kakutani–Rohlin partitions.

LEMMA 2.1. [33, Lemma 4.1] Let (X, T ) be an essentially minimal Cantor system, Y be
the unique minimal set, y ∈ Y , and Z be a clopen subset of X containing y, and let Q be a
finite partition of X into clopen sets. Then there is a Kakutani–Rohlin partition P such that
y ∈ B(P) = Z and P refines Q, that is, every element of Q is a union of elements of P .

The proof of the lemma gives a canonical construction of Kakutani–Rohlin partitions.
Specifically, given y ∈ Y and clopen set Z containing y, the function Z → N, x → nx ,
where nx is the least positive integer n such that T nx ∈ Z, is continuous. Thus, by
the compactness of X, x → nx is bounded. For any h > 0, let Ah = {x ∈ Z : nx = h}.
Let h(1), . . . , h(d) enumerate all h > 0, where Ah 	= ∅. Then {TjAh(k) : 1 ≤ k ≤ d ,
0 ≤ j < h(k)} is a Kakutani–Rohlin partition with base Z.

Applying Lemma 2.1 repeatedly, one quickly obtains the following theorem.

THEOREM 2.2. [33, Theorem 4.2] For any essentially minimal Cantor system (X, T ) and
x in the unique minimal set, there exist:
• positive integers dn for n ≥ 0, with d0 = 1;
• positive integers hn(k) for n ≥ 0 and 0 ≤ k < dn, with h0(1) = 1;
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• Kakutani–Rohlin partitions Pn for n ≥ 0, where

Pn = {T jBn(k) : 1 ≤ k ≤ dn, 0 ≤ j < hn(k)},
with B0(1) = X,

such that for all n ≥ 0:
(1) each Pn+1 refines Pn;
(2) B(Pn+1) ⊆ B(Pn);
(3)

⋂
n B(Pn) = {x};

(4)
⋃
n Pn generates the topology of X.

We call the system of Kakutani–Rohlin partitions in Theorem 2.2 a nested system. From
such a system, we define an ordered Bratteli diagram following [33]. For each n ≥ 0, let

Vn = {Pn(k) : 1 ≤ k ≤ dn}.
For n ≥ 1, 1 ≤ k ≤ dn, 1 ≤ � ≤ dn−1, and 0 ≤ j < hn(k), there is an edge ej ∈ En
connecting Pn(k) to Pn−1(�) if T jBn(k) ⊆ ⋃

0≤i<hn(�) T
iBn−1(�). Then, if ej1 , . . . , ejm

are all edges in En connecting Pn(k) to some element of Vn−1, we set the partial ordering
� by letting ej � ej ′ if and only if j ≤ j ′. It was proved in [33] that this ordered
Bratteli diagram is essentially simple and that the Bratteli–Vershik system generated by
this ordered Bratteli diagram is conjugate to (X, T ), with the conjugacy map sending xmin

to x. If in addition (X, T ) is a minimal Cantor system, then the resulting ordered Bratteli
diagram is necessarily simple.

Thus, we have described a procedure to obtain an ordered Bratteli diagram given an
essentially minimal Cantor system (X, T ) and a point x in the unique minimal set. It was
proved in [33] that the equivalence class of the ordered Bratteli diagram does not depend on
the choice of the Kakutani–Rohlin partitions in the procedure, that is, all ordered Bratteli
diagrams obtained through this procedure are equivalent.

Conversely, if B = (V , E, �) is an essentially simple ordered Bratteli diagram and
(XB , λB) is the Bratteli–Vershik system generated by B, then there is a nested system of
Kakutani–Rohlin partitions for (XB , λB) and xmin such that the ordered Bratteli diagram
B ′ defined above is equivalent to B. Thus, if an essentially minimal Cantor system (X, T )
has finite topological rank d, then there is a nested system of Kakutani–Rohlin partitions
{Pn}n≥1, where dn = d for all n ≥ 1.

2.6. Subshifts. The concepts and notation reviewed in this subsection are from [25, 27].
By a finite word, we mean an element of 2<N = {0, 1}<N = ⋃

N∈N{0, 1}N . If v is a finite
word, we regard it as a function with domain {0, 1, . . . , N − 1} for some N ∈ N, and call
N its length, denoted as |v| = N . The empty word is the unique finite word with length 0 (or
the empty domain), and we denote it as ∅. If v is a finite word and s, t are integers such that
0 ≤ s ≤ t ≤ |v| − 1, then v�[s, t] denotes the finite word u of length t − s + 1, where for
0 ≤ i < t − s + 1, u(i) = v(s + i); v�s denotes v�[0, s], and is called a prefix or an initial
segment of v. An end segment or a suffix of v is v�[s, |v| − 1] for some 0 ≤ s ≤ |v| − 1].
The empty word is both a prefix and a suffix of any word. Any word is also both a prefix
and a suffix of itself. If u, v are finite words, then uv denotes the finite word w of length

https://doi.org/10.1017/etds.2024.45 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.45


10 S. Gao and R. Li

|u| + |v|, where w�[0, |u| − 1] = u and w�[|u|, |u| + |v| − 1] = v. For finite words u, v
with |u| ≤ |v|, we say that u is a subword of v if there is 0 ≤ s ≤ |v| − |u| such that
u = v�[s, s + |u| − 1]; when this happens, we also say that u occurs in v at position s.

An infinite word is an element of 2N, and a bi-infinite word is an element of 2Z. For
any infinite word V ∈ 2N and integers s, t with 0 ≤ s ≤ t , the notions V �[s, t], V �s, finite
subwords, and their occurrences are similarly defined. For any bi-infinite word x ∈ 2Z and
integers s, t with s ≤ t , the notions x�[s, t], finite subwords, and their occurrences are also
similarly defined.

We consider the Bernoulli shift on 2Z = {0, 1}Z, which is the homeomorphism
σ : 2Z → 2Z defined by

σ(x)(n) = x(n+ 1).

Since 2Z is homeomorphic to C = 2N, (2Z, σ) is a Cantor system. A subshift X is a closed
σ -invariant subset of 2Z. By a subshift, we also refer to the Cantor system (X, σ �X) or
simply (X, σ) when there is no danger of confusion.

The following simple fact is a folklore.

LEMMA 2.3. An infinite subshift is not equicontinuous. In particular, it is not conjugate to
any infinite odometer.

If V ∈ 2N is an infinite word, let

XV = {x ∈ 2Z : every finite subword of x is a subword of V }.
Then (XV , σ) is a subshift and we call it the subshift generated by V. For any V ∈ 2N, XV
is always non-empty. Note that for any x ∈ XV and finite subword u of x, u must occur in
V infinitely many times. We say that V is recurrent if every finite subword of V occurs in
V infinitely many times. When V is recurrent, XV is either finite or a Cantor set, and XV
is finite if and only if V is periodic, that is, there is a finite word v such that V = vvv · · · .
Thus, an infinite subshift generated by a recurrent V is a Cantor system.

It is well known that all infinite odometers form a dense Gδ in the space M(C) of all
minimal Cantor systems. We give a proof of this fact in Corollary 3.4 and Proposition 3.6.

2.7. Subshifts of finite symbolic rank. Some of the concepts and notation reviewed in
this subsection are from [25, 27], and some are new.

Subshifts of finite symbolic rank are defined from infinite words of finite symbolic
ranked constructions, whose definitions are inspired by the cutting-and-stacking processes
that were used to construct measure-preserving transformations of finite rank [23]. We first
define (symbolic) rank-1 subshifts, which are also called Ferenczi subshifts in [2] to honor
the fact that Ferenczi popularized the concept in [23].

An infinite (symbolic) rank-1 word V is defined as follows. Given a sequence of positive
integers {rn}n≥0 with rn > 1 for all n ≥ 0 (called the cutting parameter) and a doubly
indexed sequence of non-negative integers {sn,i}n≥0,1≤i<rn (called the spacer parameter),
a (symbolic) rank-1 generating sequence given by the parameters is the recursively defined
sequence of finite words:
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v0 = 0,

vn+1 = vn1sn,1vn · · · vn1sn,rn−1vn.

Since vn is a prefix of vn+1, it makes sense to define V = limn vn. This V is called a
(symbolic) rank-1 word and XV is called a (symbolic) rank-1 subshift.

To generalize and define (symbolic) rank-n subshifts, we use the following concepts
and notation. Let F be the set of all finite words in 2<N that begin and end with 0. For
a finite set S ⊆ F and finite word w ∈ F , a building of w from S consists of a sequence
(v1, . . . , vk+1) of elements of S and a sequence (s1, . . . , sk) of non-negative integers for
k ≥ 1 such that

w = v11s1v2 · · · vk1sk vk+1.

The sequence (s1, . . . , sk) is called the spacer parameter of the building; it is bounded
by M if s1, . . . , sk ≤ M . We say that every word of S is used in this building if
{v1, . . . , vk+1} = S. When there is a building of w from S, we also say that w is built
from S; when the building consists of (v1, . . . , vk+1) and (s1, . . . , sk), we also say that
w is built from S starting with v1. These notions can be similarly defined when the finite
word w is replaced by an infinite word W.

For n ≥ 1, a (symbolic) rank-n generating sequence is a doubly indexed sequence
{vi,j }i≥0,1≤j≤ni of finite words satisfying, for all i ≥ 0:
• ni ≤ n;
• v0,j = 0 for all 1 ≤ j ≤ n0;
• vi+1,1 is built from Si � {vi,1, . . . , vi,ni } starting with vi,1;
• vi+1,j is built from Si for all 2 ≤ j ≤ ni+1.
A (symbolic) rank-n construction is the (symbolic) rank-n generating sequence
{vi,j }i≥0,1≤j≤ni together with exactly one building of vi+1,j from Si (for vi+1,1, the
building should start with vi,1) for all i ≥ 0, 1 ≤ j ≤ ni . We call Si the ith level of the
construction. The spacer parameter of the rank-n construction is the collection of all
spacer parameters of all the buildings in the construction; it is bounded if there is an
M > 0 such that all the spacer parameters of all the buildings in the construction are
bounded by M. The (symbolic) rank-n construction is proper if for all i ≥ 0, ni = n, and
for all 1 ≤ j ≤ n, every word of Si is used in the building of each vi+1,j . Since each vi,1
is a prefix of vi+1,1, it makes sense to define V = limi vi,1.

Given a rank-n construction with associated rank-n generating sequence {vi,j }i≥0,1≤j≤ni ,
we define the set of all expected subwords of vi,j , for i ≥ 0 and 1 ≤ j ≤ ni , inductively as
follows: for each v0,j , the set of all of its expected subwords is {v0,j } = {0}; for i ≥ 0, the
set of all expected subwords of vi+1,j consists of:
• vi+1,j ;
• u1, . . . , uk+1 ∈ Si , where (u1, . . . , uk+1) and (a1, . . . , ak) give the building of

vi+1,j from Si ;
• all expected subwords of u1, . . . , uk+1 ∈ Si .
Finally, define the set of all expected subwords of V = limi vi,1 to be the union of the
sets of all expected subwords of vi,1 for all i ≥ 0. Without loss of generality, we may

https://doi.org/10.1017/etds.2024.45 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.45


12 S. Gao and R. Li

assume that for all i ≥ 0, all finite words in Si are expected subwords of V. It follows
immediately from the construction that for all i ≥ 0, the infinite word V is built from Si

starting with vi,1.
Let w ∈ F and S, T ⊆ F are finite. Suppose w is built from S and that every word

in S is built from T. Then by composing the building of w from S with the buildings
of each element of S from T, we obtain a building of w from T, and thus w is also
built from T. Given a rank-n construction with associated rank-n generating sequence
{vi,j }i≥0,1≤j≤ni , and given i < i′, for all 1 ≤ j ′ ≤ ni′ , we obtain a building of vi′,j ′
from Si by composing the buildings of elements of Sι from Sι−1 for all i + 1 ≤ ι ≤ i′.
With this repeated composition process, we may obtain, for any increasing sequence
{ik}k≥0 with i0 = 0, a rank-n construction with associated rank-n generating sequence
{vik ,j }k≥0,1≤j≤nik . Since limi vi,1 = limk vik ,1, the resulting infinite words are the same.
We call this process telescoping.

An infinite word V is called a (symbolic) rank-n word if it has a rank-n construction but
not a rank-(n− 1) construction. A subshift X has finite symbolic rank if for some n ≥ 1,
X = XV , where V has a rank-n construction; the smallest such n is called the symbolic
rank of X, and is denoted ranksymb(X) = ranksymb(X, σ).

By definition, if ranksymb(X) = n, then there is a rank-n word V such that X = XV .
Before closing this subsection, we give some examples. The best known example of a

rank-1 generating sequence is the one coding the Chacón transformation:

v0 = 0; vn+1 = vnvn1vn.

The Morse sequence is the infinite 0,1-word generated by the Thue–Morse substitution
0 → 01 and 1 → 10. The subshift generated by the Morse sequence is an example of a
minimal subshift of symbolic rank 2. More generally, any S-adic subshift of finite alphabet
rank, for which the initial alphabet A0 = {0, 1} (defined in §6.4), is a natural example of
subshifts of finite symbolic rank, where the symbolic rank is no more than the alphabet
rank. Our main results in this paper will show that any minimal S-adic subshift of finite
alphabet rank is conjugate to a minimal subshift of finite symbolic rank.

Finally, we turn to symbolic codings of interval exchange transformations, known as
IET subshifts. When there are two intervals of irrational lengths, the interval exchange
transformations are exactly irrational rotations and the corresponding IET subshifts are
generated by Sturmian words. These subshifts have symbolic rank 2 [27]. In general,
when there are more than two intervals and if the corresponding IET subshifts are
minimal, they are known to have finite topological rank, and by our main results in this
paper, they are conjugate to a minimal subshift of finite symbolic rank. If one considers
the quotient systems of these subshifts where one of the intervals is coded by 0 and
the rest are coded by 1, then the subshifts are natural examples of subshifts of finite
symbolic rank.

3. Some computations of descriptive complexity
In this section, we compute the descriptive complexity of various classes of Cantor
systems. We first show that the class of all essentially minimal Cantor systems is a Gδ
subset of Aut(C). Then we give a characterization of all essentially minimal Cantor systems
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with bounded topological rank. As a consequence, we show that for each n ≥ 1, the class of
all essentially minimal Cantor systems of topological rank ≤ n is a Gδ subset of Aut(C).
This implies that for each n ≥ 1, the class of all minimal Cantor systems of topological
rank ≤ n is a Gδ subset of M(C).

We first give a characterization of essential minimality for a Cantor system (X, T ).
We say a subset A of X has the finite covering property if there is some N ∈ N such that⋃

−N≤n≤N T nA = X.

PROPOSITION 3.1. Let (X, T ) be a Cantor system and let ρ ≤ 1 be a compatible metric
on X. Then the following are equivalent:
(1) (X, T ) is essentially minimal;
(2) for any clopen set A of X, if A has the finite covering property, then there is a clopen

subset B of A with the finite covering property such that diam(B) ≤ diam(A)/2.

Proof. First assume (X, T ) is essentially minimal. Suppose A is a clopen subset of X with
the finite covering property, that is, for some N ∈ N, we have

⋃
−N≤n≤N T nA = X. Let x

be an arbitrary element of the unique minimal set of X. Then for some −N ≤ n ≤ N ,
x ∈ T nA, where T nA is still clopen. Let Y be a clopen subset of T nA containing x
such that diam(T −nY ) ≤ diam(A)/2. By [33, Theorem 1.1],

⋃
k∈Z T kY = X. By the

compactness of X, Y has the finite covering property. Let B = T −nY . Then B ⊆ A,
diam(B) ≤ diam(A)/2 and B also has the finite covering property.

Conversely, assume condition (2) holds. Starting with A0 = X and repeatedly applying
condition (2), we obtain a decreasing sequence {An}n≥0 of clopen subsets of X such that
diam(An) ≤ 2−n and each An has the finite covering property. Let x be the unique element
of

⋂
n An. Then any clopen subset B of X containing x has the finite covering property. By

[33, Theorem 1.1], (X, T ) is essentially minimal.

Let E(C) be the set of all essentially minimal homeomorphisms of C.

COROLLARY 3.2. E(C) is a Gδ subset of Aut(C), and hence is a Polish space.

Proof. Note that for any clopen subset A of C, A has the finite covering property for (C, T )
is an open condition for T ∈ Aut(C). Thus, condition (2) of Proposition 3.1 gives a Gδ
condition for T ∈ Aut(C).

We next give a characterization of essentially minimal Cantor systems of bounded
topological rank.

THEOREM 3.3. Let (X, T ) be an essentially minimal Cantor system, ρ ≤ 1 be a compati-
ble complete metric on X, and n ≥ 1. The following are equivalent:
(1) (X, T ) has topological rank ≤ n;
(2) there exists x ∈ X such that for all ε > 0, there is a Kakutani–Rohlin partition P with

no more than n many towers such that diam(A) < ε for all A ∈ P , diam(B(P)) < ε,
and x ∈ B(P);
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(3) for any clopen subset Z of X with the finite covering property, for any finite partition
Q into clopen sets, there is a Kakutani–Rohlin partition P with no more than n many
towers such that B(P) ⊆ Z, diam(B(P)) ≤ diam(Z)/2, and P refines Q.

Proof. We first show (1)⇒(2). Suppose (X, T ) has topological rank ≤ n. Then there is an
essentially simple ordered Bratteli diagram B = (V , E, �) such that (X, T ) is conjugate
to the Bratteli–Vershik system (XB , λB) generated by B, and for all k ≥ 1, |Vk| ≤ n. It
suffices to verify that condition (2) holds for (XB , λB). Let y = xmin. Each level Vk of B
gives rise to a Kakutani–Rohlin partition Pk , where each set in Pk corresponds to a path
from V0 to a vertex in Vk , and B(Pk) consists of all the basic open sets correspondent to
the minimal paths from V0 to each vertex of Vk . Since y is the unique minimal infinite path,
we have

⋂
k B(Pk) = {y}. Let η ≤ 1 be the standard metric on XB . Let ε > 0. Then there

is a large enough k such that all the minimal paths from V0 to the vertices of Vk agree on
the first k′ < k many edges, where 2−k′ < ε. This implies that diam(B(Pk)) ≤ 2−k′ < ε.
Also, for all A ∈ Pk , diam(A) ≤ 2−k < 2−k′ < ε. Pk has |Vk| ≤ n many towers. Since
y ∈ B(Pk), we have that Pk witnesses condition (2) for (XB , λB).

Next we show (2)⇒(3). Suppose condition (2) holds for x ∈ X. We note that for any
n ∈ Z, condition (2) holds also for T nx. This is because the property described in condition
(2) is invariant under topological conjugacy, and T n : (X, T ) → (X, T ) is a topological
conjugacy sending x to T nx. Let Z be a clopen subset of X with the finite covering
property. Without loss of generality, assume dim(Z) > 0. Then Z meets every orbit in
X, and therefore there is x ∈ Z such that the property in condition (2) holds. Let Q be a
finite partition of X into clopen sets. Let δ > 0 be the infimum of d(y, z) where y, z are
from different elements of Q. Let ξ > 0 be such that x ∈ {y ∈ X : ρ(x, y) < ξ} ⊆ Z and
diam(Z) > 2ξ . Let ε = min{δ, ξ} > 0. Let P be a Kakutani–Rohlin partition with no more
than n many towers such that diam(A) < ε for allA ∈ P , diam(B(P)) < ε, and x ∈ B(P).
Then B(P) ⊆ {y ∈ X : ρ(x, y) < ξ} ⊆ Z, diam(B(P)) < ξ < diam(Z)/2, and P refines
Q because for any A ∈ P , diam(A) < δ.

Finally we prove (3)⇒(1). Assume (X, T ) is essentially minimal and condition (3)
holds. Note that the base of any Kakutani–Rohlin partition has the finite covering property.
By applying condition (3) repeatedly, we obtain a system of Kakutani–Rohlin partitions
{Pk}k≥0 so that P0 = {X}, each Pk+1 refines Pk , B(Pk+1) ⊆ B(Pk), diam(B(Pk+1)) ≤
diam(B(Pk))/2, each Pk consists of no more than n many towers, and

⋃
k Pk generates

the topology of X. Let x be the unique element of
⋂
k B(Pk). Then any clopen subset of

X containing x has the finite covering property. By [33, Theorem 1.1], x is in the unique
minimal set of X. Now {Pk}k≥0 is a nested system of Kakutani–Rohlin partitions in the
sense of Theorem 2.2, which gives rise to an ordered Bratteli diagram for (X, T ) with
each level consisting of no more than n vertices. Thus, ranktop(X, T ) ≤ n.

COROLLARY 3.4. For any n ≥ 1, the set of all essentially minimal T ∈ Aut(C) with
topological rank ≤ n is aGδ subset ofE(C). Similarly, for any n ≥ 1, the set of all minimal
T ∈ Aut(C) with topological rank ≤ n is a Gδ subset of M(C).

Proof. This follows immediately from clause (3) of Theorem 3.3.
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We also have the following immediate corollary regarding the descriptive complexity
of (essentially) minimal Cantor systems with finite topological rank.

COROLLARY 3.5. The set of all essentially minimal T ∈ Aut(C) with finite topological
rank is a �0

3 subset of E(C). Similarly, the set of all minimal T ∈ Aut(C) with finite
topological rank is a �0

3 subset of M(C).

Here we remark that the proof of Theorem 3.3 implies that in clauses (2) and (3) of
Theorem 3.3, one may replace ‘no more than n many towers’ with ‘exactly n many towers.’
Similar proofs also give that if the system (X, T ) considered is minimal, then in clause (2)
of Theorem 3.3, one may replace ‘there exists x ∈ X’ with either ‘for non-meager many
x ∈ X’ or ‘for comeager many x ∈ X.’

Finally, we note that the set of all infinite odometers form a dense Gδ in M(C).

PROPOSITION 3.6. The set of all infinite odometers is a dense Gδ in the space of all
minimal Cantor systems.

Proof. Since the set of all infinite odometers is just the set of all minimal Cantor systems
of topological rank 1, it is a Gδ in the space of all minimal Cantor systems by Corollary
3.4. We only verify that it is dense. Let (X, T ) be a minimal Cantor system and suppose
P is a clopen partition of X. We only need to define an infinite odometer S on X such
that SZ = T Z for all Z ∈ P . Consider T̃ = T −1. Then (X, T̃ ) is again a minimal Cantor
system. If we define an infinite odometer S̃ on X such that S̃−1Z = T̃ −1Z for all Z ∈ P ,
then S = S̃−1 is again an infinite odometer, and SZ = T Z holds for all Z ∈ P . Thus, we
focus on (X, T̃ ) in the rest of this proof.

By Lemma 2.1, P can be refined by a Kakutani–Rohlin partition for T̃ . Therefore,
without loss of generality, we may assume that P itself is a Kakutani–Rohlin partition.
Suppose P = {T̃ jB(k) : 1 ≤ k ≤ d , 0 ≤ j < h(k)}.

We define a directed graph G = (V , E), where V = {v1, . . . , vd} has d vertices,
and for any 1 ≤ k, k′ ≤ d , there is a directed edge e ∈ E from vk to vk′ if and only if
B(k′) ∩ T̃ h(k)B(k) 	= ∅. It follows from the minimality of T̃ that G = (V , E) is strongly
connected, i.e., there is a directed path from any vertex to any other vertex. Now fix a finite
sequence p = (e1, . . . , em) of edges in G such that (e1, . . . , em, e1) is a directed path and
{e1, . . . , em} = E. Then p is a directed cycle in G.

Consider an edge e ∈ E, say e is from vk to vk′ . Let ne be the number of times e appears
in p. Let Ae = B(k) ∩ T̃ −h(k)(B(k′)). Then Ae is a clopen set in X. Let {Ae,1, . . . , Ae,ne }
be a partition of Ae into ne many clopen subsets of X. If e appears in p as ei1 , . . . , eine , we
associate with each eij the set Ae,j for 1 ≤ j ≤ ne.

Thus, we have obtained disjoint non-empty clopen sets C1, . . . , Cm such that
Q � {C1, . . . , Cm} is a partition of B(P), and for any 1 ≤ i ≤ m, if ei is an edge from vk

to vk′ , then Ci ⊆ B(k) and T̃ h(k)Ci ⊆ B(k′). We define an odometer S̃ : X → X such that
for any 1 ≤ i ≤ m, if ei is an edge from vk to vk′ , then S̃h(k)Ci = Ci+1 (with Cm+1 = C1)
and S̃jCi = T̃ jCi for 1 ≤ j < h(k). In fact, Q is a Kakutani–Rohlin partition for S̃ (with
one tower), and S̃ is defined by recursive refinements starting with Q. It is now clear that
S̃−1Z = T̃ −1Z for all Z ∈ P as desired.
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4. A characterization of minimal rank-1 subshifts
In this section, we give an explicit topological characterization for all minimal Cantor
systems which are conjugate to infinite rank-1 subshifts. In contrast to the results in §3, the
descriptive complexity of this characterization will be on a higher level than Gδ .

Define

Z = {x ∈ 2Z : for all n there exists m > n x(m) = 0 and

for all n there exists m > n x(−m) = 0}.
Then Z is a σ -invariant dense Gδ subset of 2Z.

For a bi-infinite word x ∈ Z and a finite word v ∈ F , we say that x is built from v if
σn(x) can be written in the form

σn(x) = · · · v1s−2v1s−1v1s0 · v1s1v1s2 · · ·
for a bi-infinite sequence (. . . , s−2, s−1, s0, s1, s2, . . .) of non-negative integers and for
some n ∈ Z. For finite words u, v ∈ F , we say that u is built from v if there are
non-negative integers s1, . . . , sk for k ≥ 1 such that

u = v1s1v · · · v1sk v.

The demonstrated occurrences of v in u are called expected occurrences.

LEMMA 4.1. Let x ∈ Z and v ∈ F . Then the following are equivalent:
(i) x is built from v;

(ii) for allm ∈ N, there exists a finite word u such that x�[−m, m] is a subword of u and
u is built from v.

Proof. The implication (i)⇒(ii) is immediate. We show (ii)⇒(i). Let n be the number of 0
terms in v, that is, n is the number of distinct occurrences of 0 in v. Letm0 be large enough
such that x�[−m0, m0] contains at least n many 0s. Let k1 < · · · < kn ∈ [−m0, m0] be
such that x(ki) = 0 for all 1 ≤ i ≤ n and that if k1 ≤ k ≤ kn is such that x(k) = 0, then
k = ki for some 1 ≤ i ≤ n. By condition (ii), for each m ≥ m0, there is a finite word u
such that x�[−m, m] is a subword of u and u is built from v. Exactly one of k1, . . . , kn
corresponds to a starting position of an expected occurrence of v in u. We denote this
value of k ∈ {k1, . . . , kn} as k(m). Let k∞ ∈ {k1, . . . , kn} be such that for infinitely many
m ≥ m0, k(m) = k∞. Let M∞ be the infinite set such that for all m ∈ M∞, k(m) = k∞.
Then v occurs in x starting at position k∞. We claim that for all k > k∞ such that x(k) = 0
and there are a multiple of n many 0s from k∞ to k − 1, v occurs in x starting at position k.
This is because, fixing such a k and letting m ∈ M∞ with m ≥ k + |v|, there is a finite
word u such that x�[−m, m] is a subword of u and u is built from v; since the occurrence
of v starting at position k∞ corresponds to an expected occurrence of v in u, it follows that
there is another expected occurrence of v in u starting at the position corresponding to k,
and so v occurs in x starting at position k. By a similar argument, we can also prove a claim
that for all k < k∞ such that x(k) = 0 and there are a multiple of n many 0 terms from k to
k∞ − 1, v occurs in x starting at position k. Putting these two claims together, we conclude
that x is built from v.
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Lemma 4.1 implies immediately that for any v ∈ F , the set of all x ∈ Z such that x is
built from v is closed in Z .

Let (X, T ) be a Cantor system and let A be a clopen subset of X. Define BT (A) to be
the smallest Boolean algebra B of subsets of X such that T nA ∈ B for all n ∈ Z. We say
that (T , A) is generating if BT (A) contains all clopen subsets of X.

THEOREM 4.2. Let (X, T ) be a minimal Cantor system and x0 ∈ X. Then the following
are equivalent:
(1) (X, T ) is conjugate to a (infinite) rank-1 subshift;
(2) there is a clopen subset A of X such that (T , A) is generating and for all n ∈ N, there

is a v ∈ F satisfying:
• |v| ≥ n and RetA(x0) is built from v; and
• for any u ∈ F such that |u| ≥ |v| and RetA(x0) is built from u, there exists

u′ ∈ F such that |u′| ≤ |u| + |v|, u′ is built from v, and u is an initial segment
of u′.

Proof. Clause (2) is apparently conjugacy invariant, thus to see (1)⇒(2), we may assume
V is a rank-1 word, X = XV is an infinite minimal rank-1 subshift, and T = σ . Let
A = {x ∈ X : x(0) = 1}. Then (T , A) is generating and RetA(x0) = x0. The set of all
finite words v such that V is built from v is a subset of the set of all finite words v such that
x0 is built from v. Now given any n ∈ N, let v ∈ F be such that V is built fundamentally
from v (see [25, Definition 2.13]). Then by [25, Proposition 2.16], for any u ∈ F such that
|u| ≥ |v| and V is built from u, u is built from v. This proves clause (2) by [25, Proposition
2.36].

Conversely, assume A is a clopen subset of X witnessing clause (2). Since (T , A)
is generating, the map RetA : X → 2Z is a homeomorphic embedding such that RetA ◦
T = σ ◦ RetA. Thus, RetA(X) is a minimal subshift, and RetA is a conjugacy map. By
repeatedly applying clause (2), we obtain an infinite sequence of finite words {vn}n≥0 in
F such that RetA(x0) is built from each vn and for all n ≥ 0, vn is an initial segment
of vn+1 and vn+1 is an initial segment of some u which is built from vn. This allows us
to define an infinite word V = limn vn. By definition, V is a rank-1 word. To finish the
proof, it suffices to verify that RetA(X) = XV . By the minimality of RetA(X), for any
y ∈ RetA(X), the set of all finite subwords of y coincides with the set of all finite subwords
of RetA(x0). However, our assumption guarantees that the set of all finite subwords of
RetA(x0) coincides with the set of all finite subwords of V. Thus, RetA(X) = XV and X is
conjugate to XV , a rank-1 subshift.

The apparent descriptive complexity given by clause (2) of the above theorem is �0
5,

which is significantly more complex than Gδ .

5. Proper finite rank constructions
The following is a basic property regarding symbolic rank-n constructions.

PROPOSITION 5.1. Let n ≥ 1. Suppose {Ti}i≥0 is a sequence of finite subsets of F such
that T0 = {0} and for all i ≥ 0, |Ti | ≤ n and each element of Ti+1 is built from Ti . Then
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there is a rank-n construction with associated rank-n generating sequence {vi,j }i≥0,1≤j≤ni
such that for all i ≥ 0, vi,1, . . . , vi,ni ∈ Ti .
Proof. For each i ≥ 0 and v ∈ Ti+1, fix a building of v from Ti . Define a binary relation
R on

⋃
i≥0 Ti by R(u, v) if for some i ≥ 0, u ∈ Ti , v ∈ Ti+1, and the building of v

from Ti starts with u. Let < be the transitive closure of R. Then < is a (strict) partial
order on

⋃
i≥0 Ti . We inductively define an infinite R-chain of words {ui}i≥0, that is,

ui ∈ Ti and R(ui , ui+1) for all i ≥ 0. Let u0 = 0. Note that there are infinitely many
words u ∈ ⋃

i≥0 Ti such that u0 < u (in fact, u0 < u for all u ∈ ⋃
i≥0 Ti). In general,

assume ui has been defined such that there are infinitely many w ∈ ⋃
i≥0 Ti with ui < w.

In particular, the set W = {w ∈ ⋃
j≥i+2 Tj : ui < w} is infinite. Note that for each

w ∈ W , there is a uw ∈ Ti+1 such that R(ui , uw) and uw < w. Since Ti+1 is finite,
there is a v ∈ Ti+1 such that for infinitely many w ∈ W , uw = v. Let ui+1 = v. Then
there are infinitely many w ∈ ⋃

i≥0 Ti such that ui+1 < w. This finishes the inductive
construction.

Now define vi,j for each i ≥ 0 so that vi,1 = ui and {vi,1, . . . , vi,ni } = Ti , where
ni = |Ti |. With the fixed buildings, this gives a rank-n construction as required.

Next we characterize the rank-n subshifts which have proper rank-n constructions. We
use 1Z to denote the element x ∈ 2Z, where x(k) = 1 for all k ∈ Z.

THEOREM 5.2. Let n ≥ 1 and let X be a subshift of symbolic rank n. The following are
equivalent:
(1) there exists a rank-n word V such that X = XV , and V has a proper rank-n

construction;
(2) for any rank-n word V such that X = XV , V has a proper rank-n construction;
(3) for any x ∈ X such that x 	= 1Z, the orbit of x is dense in X.

Proof. We first show (1)⇒(3). Suppose V is a rank-n word such that X = XV , and V has
a proper rank-n construction with associated rank-n generating sequence {vi,j }i≥0,1≤j≤n.
For each i ≥ 0, define ai = max1≤j≤n |vi,j |. Let x ∈ XV and assume x 	= 1Z. There
exists an m ∈ Z so that x(m) = 0. Fix an i ≥ 0 and consider the finite word u = x�
[m− ai+1, m+ ai+1]. By the definition of XV , u is a subword of V. Since V is built from
Si+1, by considering the length of u, we get that there is 1 ≤ j0 ≤ n such that vi+1,j0 is a
subword of u. By the properness of the rank-n construction, vi,1 is a subword of vi+1,j0 ,
and hence a subword of x. This implies that the orbit of x is dense in XV .

Next we show (3)⇒(2). Let V be a rank-n word such that X = XV . Suppose for any
x ∈ XV such that x 	= 1Z, the orbit of x is dense in XV . We fix a rank-n construction with
associated rank-n generating sequence {vi,j }i≥0,1≤j≤ni , where V = limi vi,1. Since V is a
rank-n word, it does not have a rank-(n− 1) construction; by telescoping if necessary, we
may assume that ni = n for all i ≥ 0. Also, without loss of generality, we assume that for
all i ≥ 0, all finite words in Si are expected subwords of V. In particular, if i < i′, then
every finite word in Si is an expected subword of some word in Si′ .

Next we claim that for any i0 > 0 and 1 ≤ j0 ≤ n, there exists i > i0 such that for any
1 ≤ j ≤ n, vi0,j0 is an expected subword of vi,j . Assume not; then for any i > i0, there is
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1 ≤ j ≤ n such that vi0,j0 is not an expected subword of vi,j . We define a sequence {Tk}k≥0

of finite subsets of F as follows. Let T0 = {0}. For k > 0, let Tk be the set of all vi0+k,j

for 1 ≤ j ≤ n such that vi0,j0 is not an expected subword of vi0+k,j . Then for all k ≥ 0,
Tk ⊆ Si0+k and so |Tk| ≤ n− 1. Also, for all k ≥ 0, each element of Tk+1 is built from
Tk . By Proposition 5.1, there is a rank-(n− 1) construction with associated rank-(n− 1)
generating sequence {wk,�}k≥0,1≤�≤mk such that for all k ≥ 0 and 1 ≤ � ≤ mk ,wk,� ∈ Tk ⊆
Si0+k . Let W = limk wk,1. Then every finite subword of W is a subword of V. Hence, XW
is an closed invariant subset of XV . It is clear from the construction of W that there is
x ∈ XW such that x 	= 1Z. Since the orbit of x is dense inXV , we get thatXW = XV . This
contradicts our assumption that ranksymb(XV ) = n.

Using the claim, and by telescoping, we obtain a proper rank-n construction for V.
Finally, (2)⇒(1) is immediate.

Note that the implication (1)⇒(3) in the above theorem does not require that X is of
symbolic rank n.

COROLLARY 5.3. Let n ≥ 1 and X be an infinite subshift of symbolic rank ≤ n. Suppose
X = XV and V has a proper rank-n construction. Then (X, σ) is an essentially minimal
Cantor system. In particular, there is k ∈ N such that 0k is not a subword of V.

Proof. Since X = XV , where V has a proper rank-n construction, V is recurrent. Since
XV is infinite, it is a Cantor set. Now if 1Z 	∈ X, then by Theorem 5.2(3), X is minimal; if
1Z ∈ X, then {1Z} is invariant and by Theorem 5.2(3), it is the unique minimal set in X.
Thus, (X, σ) is an essentially minimal Cantor system. In either case, 0Z 	∈ XV , and thus
there is k ∈ N such that 0k is not a subword of V.

Note that any rank-1 construction is proper, and thus any infinite rank-1 subshift is an
essentially minimal Cantor system.

COROLLARY 5.4. Let n ≥ 1 and let X be an infinite subshift of symbolic rank n. Then the
following are equivalent:
(1) X is minimal;
(2) there exists a rank-n word V such that X = XV , and V has a proper rank-n

construction with bounded spacer parameter;
(3) for any rank-n word V such that X = XV , V has a proper rank-n construction with

bounded spacer parameter.

Proof. To see (1)⇒(3), suppose X is minimal. Then 1Z 	∈ X and clause (3) of Theorem 5.2
holds. By Theorem 5.2, for any rank-n word V such that X = XV , V has a proper rank-n
construction with associate rank-n generating sequence {vi,j }i≥0,1≤j≤n. Without loss of
generality, we may assume that every word in this sequence is an expected subword of
V. We claim that this given proper rank-n construction has bounded spacer parameter.
Otherwise there are arbitrarily large k with 1k as a subword of V, and then 1Z ∈ XV = X,
which is a contradiction.

The implication (3)⇒(2) is immediate.
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Finally, we prove (2)⇒(1). Suppose V is a rank-n word such that X = XV , and V
has a proper rank-n construction with bounded spacer parameter. Then 1Z 	∈ XV , and by
Theorem 5.2, X is minimal.

Again, we remark that the implication (2)⇒(1) of the above corollary does not require
that X be a subshift of symbolic rank n.

6. Finite symbolic rank and finite topological rank
In this section, we prove that minimal subshifts of finite symbolic rank have finite
topological rank, and conversely, any minimal Cantor system of finite topological rank
is either an odometer or conjugate to a subshift of finite symbolic rank. Together with
previous results [13, 14], our results show that the three notions of finite rank for minimal
expansive Cantor systems all coincide with each other.

6.1. From finite symbolic rank to finite topological rank. We first consider minimal
subshifts of finite symbolic rank.

The following concept of unique readability will be useful in our proofs to follow. Let
n ≥ 1. Fix a symbolic rank-n construction with associated rank-n generating sequence
{vi,j }i≥0,1≤j≤n. Let V = limi vi,1. Without loss of generality, assume every vi,j is an
expected subword of V, and that for each i ≥ 1, the words vi,1, . . . , vi,n are distinct. For
x ∈ XV , a reading of x is a sequence {Ei}i≥0 satisfying, for each i ≥ 0:

(i) each element of Ei is a pair (k, j), where 1 ≤ j ≤ n and k is the starting position of
an occurrence of vi,j in x;

(ii) if (k1, j1), (k2, j2) ∈ Ei and k1 < k2, then k1 + |vi,j1 | ≤ k2;
(iii) E0 = {(k, j) : x(k) = 0 and j = 1}; and
(iv) for each (k, j) ∈ Ei , there is exactly one (k′, j ′) ∈ Ei+1 such that k′ ≤ k and

k′ + |vi+1,j ′ | ≥ k + |vi,j |.
If every x ∈ XV has a unique reading, we say that {vi,j }i≥0,1≤j≤m has unique readability,
and we call an occurrence (starting at position) k of vi,j in x expected if (k, j) ∈ Ei for the
unique reading of x. Every rank-1 generating sequence whose induced infinite rank-1 word
is not periodic has unique readability [25, Proposition 2.29].

LEMMA 6.1. Let n ≥ 1, {vi,j }i≥0,1≤j≤n be a rank-n generating sequence, and
V = limi vi,1. Then any x ∈ XV has a reading.

Proof. We fix a rank-n construction of V with associated rank-n generating sequence
{vi,j }i≥0,1≤j≤n. Without loss of generality, we may assume that every vi,j is an expected
subword of V, and that for each i ≥ 1, the words vi,1, . . . , vi,n are distinct. For each i ≥ 0,
define ai = max1≤j≤n |vi,j | and bi = inf1≤j≤n |vi,j |. Then bi+1 ≥ 2bi for all i ≥ 0.

We consider several cases.
Case 1: x = 1Z. In this case, a unique reading is given by Ei = ∅ for all i ≥ 0.
Case 2: there exists k0 ∈ Z such that x(k0) = 0 and x(k) = 1 for all k < k0. First,

fix any i ≥ 0. Define ui = x�[k0 − ai , k0 + ai]. Since ui is a subword of V, V is built
from {vi,1, . . . , vi,n}, and ai ≥ |vi,j | for all 1 ≤ j ≤ n, we have that for some 1 ≤ j0 ≤ n,
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k0 is the starting position of an occurrence of vi,j0 in x. Now following the rank-n
construction of V, by an induction on t = i, i − 1, . . . , 0, we define collections Eit for
t ≤ i as follows. First, let Eii = {(k0, j0)}. Suppose now Eit has been defined, which is
a collection of some pairs (k, j), where k is the starting position of an occurrence of
vt ,j in x. Assume that for (k1, j1), (k2, j2) ∈ Eit with k1 < k2, we have k1 + |vt ,j1 | ≤ k2.
Now for each (k, j) ∈ Eit , the building of vt ,j from {vt−1,1, . . . , vt−1,n} in the fixed
rank-n construction gives rise to pairs (k′, j ′), where vt−1,j ′ occurs at position k′ and this
occurrence corresponds to the occurrence of vt−1,j ′ in the building of vt ,j as an expected
subword. We put all such (k′, j ′) in Eit−1. It is clear that for (k′

1, j ′
1), (k

′
2, j ′

2) ∈ Eit−1
with k′

1 < k′
2, we have k′

1 + |vt−1,j ′
1
| ≤ k′

2. It is also clear that for each (k′, j ′) ∈ Eit−1,
there is exactly one (k, j) ∈ Eit such that k ≤ k′ and k + |vt ,j | ≥ k′ + |vt−1,j ′ |. Finally, we
note that Ei0 = {(k, j) : x(k) = 0, k0 ≤ k ≤ k0 + |vi,j | − 1, and j = 1}. This finishes the
definition of Eit for t ≤ i. We have that for all k0 ≤ k ≤ k0 + bi + 1, (k, 1) ∈ Ei0 if and
only if x(k) = 0.

For i ≥ 0, define ei ∈ {0, 1}N×Z×{1,...,n} by letting ei(t , k, j) = 1 if and only if t ≤ i

and (k, j) ∈ Eit . Since {0, 1}N×Z×{1,...,n} is compact, there exists an accumulation point e
of {ei}i≥0. For each t ≥ 0, define Et = {(k, j) : e(t , k, j) = 1}. Since {bi}i≥0 is strictly
increasing, we conclude that for all k ≥ k0, (k, 1) ∈ E0 if and only if x(k) = 0. The other
properties of a reading are also easily verified. Thus, {Et }t≥0 is a reading of x.

Case 3: there exists k0 ∈ Z such that x(k0) = 0 and x(k) = 1 for all k > k0. This case
is similar to Case 2.

Case 4: for any k ∈ Z, there are k1 < k < k2 such that x(k1) = x(k2) = 0. Let k0 be an
integer satisfying x(k0) = 0. For i ≥ 0, let �i,1 be the (2ai + 1)th natural number such that
x(k0 + �i,1) = 0; let �i,2 be the (2ai + 1)th natural number such that x(k0 − �i,2) = 0.
Define ui = x�[k0 − �i,2, k0 + �i,1]. Then ui is a subword of V. Since V is built from
{vi,1, . . . , vi,n}, by the definition of ai , there exist mi < k0 and a subword wi of V such
that:
• wi is of the form vi,j11s1vi,j2 1s2vi,j3 , where 1 ≤ j1, j2, j3 ≤ n and s1, s2 ≥ 0;
• mi is the starting position of an occurrence of wi in x; and
• mi + |vi,j11s1 | ≤ k0 ≤ mi + |vi,j11s1vi,j2 | − 1.
Now we proceed as in the proof of Case 2 to define Eit for all t ≤ i and finally obtain a
reading {Et }t≥0 of x by compactness.

Next we define a concept that guarantees unique readability. Let n ≥ 1. We say a rank-n
construction with associated rank-n generating sequence {vi,j }i≥0,1≤j≤n is good if it is
proper and for any i ≥ 0 and 1 ≤ j ≤ n, vi,j is not of the form

α1s1vi,j11s2vi,j2 · · · vi,jk−11skβ,

where k ≥ 1, α is a non-empty suffix of some vi,jk , and β is a non-empty prefix of some
vi,jk+1 . If a rank-n construction is good, we say that the infinite word V = limi vi,1 is good.

LEMMA 6.2. Consider a good rank-n construction with associate rank-n generating
sequence {vi,j }i≥0,1≤j≤n. Then {vi,j }i≥0,1≤j≤n has unique readability.
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Proof. Let x ∈ XV . Let {Ei}i≥0 be a reading of x, which exists by Lemma 6.1. By the
definition of a reading, we have that for each i ≥ 0, Ei gives a way in which x is built from
{vi,1, . . . , vi,n}. Now suppose {E′

i}i≥0 is another reading of x, and suppose i ≥ 0 is the
smallest such that Ei 	= E′

i . Without loss of generality, let (k, j) ∈ Ei \ E′
i .

Consider two cases.
Case 1: there is j ′ 	= j such that (k, j ′) ∈ E′

i . In this case, without loss of generality,
assume |vi,j | > |vi,j ′ |. Then vi,j can be written in the form vi,j ′1s1vi,j1 · · · vi,j�1s�+1β for
some � ≥ 0 and non-empty β, where β is a prefix of some vi,j�+1 . This contradicts the
assumption that our rank-n construction is good.

Case 2: there is no j ′ such that (k, j ′) ∈ E′
i . By the definition of a reading, there

is a unique (k′, j ′) ∈ E′
i , where k′ < k such that k ≤ k′ + |vi,j ′ |. If k′ + |vi,j ′ | ≤ k +

|vi,j |, then vi,j can be written in the form α1s1vi,j1 · · · vi,j�1s�+1β, which contradicts
the assumption that our rank-n construction is good. If k′ + |vi,j ′ | > k + |vi,j |, then
vi,j ′ can be written in the form α1s1vi,j1 · · · vi,j�1s�+1β, which again contradicts our
assumption.

Note that the definition of goodness does not rule out the possibility that some vi,j is a
subword of vi,j ′ for j ′ 	= j .

LEMMA 6.3. Suppose V has a good rank-n construction with associated rank-n generating
sequence {vi,j }i≥0,1≤j≤n. Then for any i ≥ 0, 1 ≤ j ≤ n, and k ∈ Z, the set

{x ∈ XV : there is an expected occurrence of vi,j at position k}
is clopen in XV .

Proof. Let Ei,j ,k denote the set in question. Then x ∈ Ei,j ,k if and only if for any
0 ≤ t ≤ |vi,j | − 1, x(k + t) = vi,j (t) and for any 1 ≤ j ′ ≤ n and k′ ≤ k, if j ′ 	= j and
k′ + |vi,j ′ | ≥ k + |vi,j |, then there is 0 ≤ s ≤ |vi,j ′ | − 1 such that x(k′ + s) 	= vi,j ′(s).
This implies that Ei,j ,k is clopen.

PROPOSITION 6.4. Let n ≥ 1 and X be an infinite subshift of symbolic rank ≤ n. Suppose
X = XV and V has a proper rank-n construction. Then there exists a word W with a good
rank-2n construction such that X is a factor of XW . Moreover, if in addition X is minimal,
then W can be chosen so that XW is minimal.

Proof. Fix a proper rank-n construction of V with associated rank-n generating sequence
{vi,j }i≥0,1≤j≤n. Without loss of generality, assume vi,1, . . . , vi,n are distinct for all i ≥ 1.
By Corollary 5.3, there is a k0 ∈ N such that 0k0 is not a subword of V; we fix such a k0.
For all i ≥ 0, define ai = max1≤j≤n |vi,j | and bi = inf1≤j≤n |vi,j |. Then bi+1 ≥ nbi for
all i ≥ 0, and hence, in particular, bi ≥ ni for all i ≥ 0.

We define a rank-2n generating sequence {wp,q}p≥0,1≤q≤2n. Let w0,q = 0 for
1 ≤ q ≤ 2n. To define w1,q , let i1 ≥ 0 be such that bi1 > 4k0 + 4. Then define

w1,q =
{
vi1,q if 1 ≤ q ≤ n,
010|vi1,q−n|−410 if n+ 1 ≤ q ≤ 2n.

Note that for all 1 ≤ j ≤ n, |w1,j | = |w1,j+n| = |vi1,j |.
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For p ≥ 1, suppose ip has been defined and wp,q have been defined for all 1 ≤ q ≤ 2n.
We define ip+1 and wp+1,q as follows. First set

mp =
⌈
aip+1

bip

⌉
.

Then let ip+1 > ip be large enough such that by telescoping using the buildings in the
proper rank-n construction {vi,j }i≥0,1≤j≤n, we can write, for all 1 ≤ j ≤ n, vip+1,j in the
form

vip ,j11s1 · · · 1s�vip ,j�+1 (1)

with � > 12mp + 4n. This is doable since � ≥ nip+1−ip . Note that for j = 1, we have
j1 = 1. We also note the following property (*) of the word in equation (1): for any
1 ≤ t ≤ �+ 2 − 2mp, {jt , . . . , jt+2mp−1} = {1, . . . , n}. This is because

u � vip ,jt 1
st · · · vip ,jt+2mp−1 (2)

consists of 2mp many consecutive expected occurrences of subwords of vip+1,j of the form
vip ,j ′ ; since vip+1,j is built from {vip+1,1, . . . , vip+1,n}, by our definition of mp, u must
contain some expected occurrence of vip+1,j ′ , where 1 ≤ j ′ ≤ n, as a subword. Hence,
property (*) holds by the properness of the construction.

We now fix 1 ≤ j ≤ n and assume that vip+1,j is in the form of equation (1). For
1 ≤ t ≤ �+ 1, define

φ(t) =
{
jt + n if 2 ≤ t ≤ 2mp + j + 1 or �− 2mp − j + 1 ≤ t ≤ �,
jt otherwise

and

ψ(t) =
{
jt + n if 2 ≤ t ≤ 2mp + j + n+ 1 or �− 2mp − j − n+ 1 ≤ t ≤ �,
jt otherwise.

Then define

wp+1,j = wp,φ(1)1s1 · · · 1s�wp,φ(�+1)

and

wp+1,j+n = wp,ψ(1)1s1 · · · 1s�wp,ψ(�+1).

This finishes the definition of {wp,q}p≥0,1≤q≤2n.
We verify that the construction defined is proper, that is, for all p ≥ 1 and

1 ≤ q ≤ 2n, all words in {wp,1, . . . , wp,2n} are used in the building of wp+1,q . We
first assume 1 ≤ q ≤ n. Since � > 12mp + 4n, there exists 1 ≤ t0 ≤ �+ 1 such that for
all t0 ≤ t ≤ t0 + 2mp − 1, φ(t) = jt . By property (*), {φ(t0), . . . , φ(t0 + 2mp − 1)} =
{jt0 , . . . , jt+2mp−1} = {1, . . . , n}. Thus, all words in {wp,1, . . . , wp,n} are used in
the building of wp+1,q . However, for 2 ≤ t ≤ 2mp + 1, φ(t) = jt + n. By property
(*) again, {φ(2), . . . , φ(2mp + 1)} = {j2 + n, . . . , j2mp+1 + n} = {n+ 1, . . . , 2n}.
Hence, all words in {wp,n+1, . . . , wp,2n} are also used in the building of wp+1,q . The
case n+ 1 ≤ q ≤ 2n is similar.
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Next we claim that:
• for all p ≥ 2 and 1 ≤ q ≤ 2n, wp,q is not of the form

α1r1wp,q1 1r2wp,q2 · · · wp,qd−1 1rd β, (3)

where d ≥ 1, α is a non-empty suffix of some wp,qd , and β is a non-empty prefix of
some wp,qd+1 ; and

• for all p ≥ 2 and 1 ≤ q, q ′ ≤ 2n, if q 	= q ′, then wp,q is not a subword of wp,q ′ .
We prove this claim by induction on p ≥ 2.

First suppose p = 2. We observe that w2,q can be written as u1yu2, where 0k0 is not
a subword of y, y begins and ends with 0, every word of {vi1,1, . . . , vi1,n} occurs at least
three different times in y, and both u1 and u2 are of the form

α01s1010h1101s2010h210 · · · 010h2mp+q101s2mp+q+10β, (4)

where α, β have lengths at least 3k0, 0k0 is not a subword of either α or β, and ht > 4k0 for
all 1 ≤ t ≤ 2mp + q. The statement about y is based on the observation that, by equation
(1), y can be taken to contain subwords of the form in equation (2) for three different
values 2mp + 2n+ 1 < t1 < t2 < t3 < �− 4mp − 2n, where t3 − t2, t2 − t1 > 2mp; by
property (*), for each value t1, t2, t3, the subword of the form in equation (2) contains a
distinct occurrence of each word in {vi1,1, . . . , vi1,n}. Note that for q ′ 	= q, w2,q ′ does not
have a subword of the form in equation (4), and hence w2,q is not a subword of w2,q ′ . Now
suppose w2,q can be written in the form of equation (3), then by the above observation,
there are 1 ≤ q1, q2 ≤ 2n, a non-empty suffix y1 of w2,q1 , and a non-empty prefix y2 of
w2,q2 , such thatw2,q = y11sy2 for some non-negative integer s. First suppose q1 = q2 = q.
Then w2,q must have a subword of the form z � 02k0101s1vi1,j11svi1,j21s2 0102k0 and,
in fact, y must be a subword of z. However, note that y has at least three different
occurrences of each word in {vi1,1, . . . , vi1,n}, while z does not have this property, which
is a contradiction. Next suppose q1 	= q. Then u1 is not a subword of w2,q1 , so y1 is a
prefix of u1. It follows that yu2 is a suffix of y2, q2 = q, and y2 must be w2,q itself, which
contradicts the assumption that y1 is non-empty. The case q2 	= q is similar. This completes
the proof of the claim for p = 2.

Suppose the claim holds for p ≥ 2. We verify it for p + 1. First we observe that for any
1 ≤ q ≤ 2n, wp+1,q can be written as u1yu2, where u1 and u2 are of the form

wp,q1 1s1wp,q21s2 · · · wp,q2mp+q+11s2mp+q+1wp,q2mp+q+2 , (5)

where 1 ≤ q1, q2mp+q+2 ≤ n, n+ 1 ≤ qt ≤ 2n for all 2 ≤ t ≤ 2mp + q + 1, and by
inductive hypothesis, if wp,κ is a subword of y, then 1 ≤ κ ≤ n. By the inductive
hypothesis, if q 	= q ′, then wp+1,q ′ does not contain a subword of the form in equation (5),
and hence wp+1,q is not a subword of wp+1,q ′ . Next assume wp+1,q can be written
in the form in equation (3) with p + 1 replacing p. Then by the above observation,
there are 1 ≤ q1, q2 ≤ 2n, a non-empty suffix y1 of wp+1,q1 , and a non-empty prefix
y2 of wp+1,q2 such that wp+1,q = y11sy2 for some non-negative integer s. First suppose
q1 = q2 = q. Then wp+1,q has a subword of the form z � wp,j11s1wp,j2 1swp,j31s2wp,j4 ,
where n+ 1 ≤ j1, j4 ≤ 2n and 1 ≤ j2, j3 ≤ n. In fact, y must be a subword of z. However,
y contains at least three different occurrences of words in {wp,1, . . . , wp,n}, which is a
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contradiction. Next suppose q1 	= q, then u1 is not a subword of wp+1,q1 , so y1 is a prefix
of u1. It follows that yu2 is a suffix of y2, q2 = q, and y2 must be wp+1,q itself, which
contradicts the assumption that y1 is non-empty. The case q2 	= q is similar. This completes
the proof of the claim.

In view of the claim, if we define {w′
p,q}p≥0,1≤q≤2n by letting w′

0,q = 0 and
w′
p,q = wp+1,q for p ≥ 1 and 1 ≤ q ≤ 2n, then we obtain a good proper rank-2n

construction. Let W = limp w
′
p,1. Note that W = limp wp,1.

We define a factor map ϕ : XW → XV . For x ∈ XW and k ∈ Z, if there is 1 ≤ j ≤ n

such that the position k is part of an expected occurrence of w′
1,j or w′

1,j+n which starts
at position k′ ≤ k, then let ϕ(x)(k) = vi2,j (k − k′); otherwise, let ϕ(x)(k) = 1. By the
unique readability, and since for all 1 ≤ j ≤ n, |w′

1,j | = |w′
1,j+n| = |w2,j | = |w2,j+n| =

|vi2,j |, ϕ is well defined. By Lemma 6.3, ϕ is continuous. It is clear that ϕ is a factor map.
Finally, if XV is minimal, then the construction associated with {vi,j }i≥0,1≤j≤n must

have bounded spacer parameter, because otherwise, 1Z ∈ XV and {1Z} is invariant. Now it
follows from our construction that the defined proper rank-2n construction of W also has
bounded spacer parameter, and by the implication (2)⇒(1) of Corollary 5.4 (which does
not require the assumption on the symbolic rank of XW ), XW is minimal.

The following is a corollary to the proof of Proposition 6.4.

PROPOSITION 6.5. Let n ≥ 1 and X be an infinite subshift of symbolic rank ≤ n. Suppose
X = XV and V has a proper rank-n construction {vi,j }i≥0,1≤j≤n which has unique
readability. Then for any i ≥ 0, 1 ≤ j ≤ n, and k ∈ Z, the set

{x ∈ X : there is an expected occurrence of vi,j in x at position k}
is clopen in X.

Proof. Let W be the infinite word with a good rank-2n construction with associated
rank-2n generating sequence {w′

p,q}p≥0,1≤q≤2n and let ϕ : XW → XV be the factor map
both given in the proof of Proposition 6.4. Given i ≥ 0, 1 ≤ j ≤ n, and k ∈ Z, let Ei,j ,k

denote the set in question. It suffices to show that Ei,j ,k is clopen for all i = ip for some
p > 1.

Suppose i = ip for some p > 1. Note that a reading of y ∈ XW can determine a reading
of ϕ(y). Thus, ϕ−1(Ei,j ,k) consists exactly of those y ∈ XW such that there is an expected
occurrence of w′

p,j or w′
p,j+n in y at position k. By our construction, ϕ−1(Ei,j ,k) is easily

seen to be clopen. Thus, Ei,j ,k is clopen.

We are now ready to compute the topological rank of a minimal Cantor system if it has
a good construction.

PROPOSITION 6.6. Let n ≥ 1. Let X be an infinite minimal subshift of symbolic rank ≤ n.
Suppose X = XV and V has a good rank-n construction. Then X has finite topological
rank.

Proof. Fix a good rank-n construction with associated rank-n generating sequence
{vi,j }i≥0,1≤j≤n. Let � ∈ N be such that 1� is not a subword of V. Note that for each
i ≥ 0, there are at least four distinct expected occurrences of vi,1 in vi+3,1. We let ki be the
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starting position of the second expected occurrence of vi,1 in vi+3,1. Let x0 be the unique
element of 2Z such that for all i ≥ 0, there exists an occurrence of v3i,1 which starts at the
position − ∑

0≤i′≤i−1 k3i′ . Then every finite subword of x0 is a subword of v3i,1 for some
i ≥ 0, and thus x0 ∈ XV .

Now for every m ≥ 2, let Am be the set of all x ∈ XV such that there is an expected
occurrence of v3m,1 in x starting at the position − ∑

0≤i≤m−1 k3i , which is the second
expected occurrence of v3m,1 in an expected occurrence of v3m+3,j in x for some
1 ≤ j ≤ n. By Lemma 6.3, each Am is clopen in XV . By definition, x0 ∈ Am.

Now consider the canonical Kakutani–Rohlin partition P with base Am defined in
the remark after Lemma 2.1. The number of towers in P corresponds to the number
of different h > 0 such that h is the smallest positive integer with σh(x) ∈ Am for
some x ∈ Am. Suppose x ∈ Am and let 1 ≤ j ≤ n be the integer such that an expected
occurrence of v3m+3,j in x contains the position 0. Suppose h is the smallest positive
integer with σh(x) ∈ Am. Then there is an expected occurrence of v3m+3,j ′ in x for
some 1 ≤ j ′ ≤ n such that the second expected occurrence of v3m,1 in this occurrence
of v3m+3,j ′ starts exactly at h− ∑

0≤i≤m−1 k3i . By the minimality of h, we get that the
expected occurrence of v3m+3,j and this expected occurrence of v3m+3,j ′ is only separated
by some 1s . Conversely, the expected occurrence of some v3m+3,j ′ immediately to the right
of the expected occurrence of v3m+3,j determines the smallest h such that σh(x) ∈ Am.
Therefore, for 1 ≤ j , j ′ ≤ n and 0 ≤ s ≤ �, if we let Bj ,s,j ′ be the set of all x ∈ XV such
that there is an expected occurrence of v3m,1 in x starting at the position − ∑

0≤i≤m−1 k3i ,
which is the second expected occurrence of v3m,1 in an expected occurrence of v3m+3,j in
x, and this expected occurrence of v3m+3,j is followed by 1s and an expected occurrence of
v3m+3,j ′ in x, we know that {Bj ,s,j ′ : 1 ≤ j , j ′ ≤ n; 0 ≤ s ≤ �} is a clopen partition of Am
and this partition refines P � Am. In summary, we obtain a new Kakutani–Rohlin partition
P ′ whose base is still Am, and if Bj ,s,j ′ 	= ∅, then Bj ,s,j ′ ∈ P ′. Here, P ′ has at most n2�

towers.
Finally note that the diameter of Am is at most 2−|v3m−3,1| since for any x ∈ Am,

x�[−|v3m−3,1|, |v3m−3,1|] = x0�[−|v3m−3,1|, |v3m−3,1|] and is thus completely fixed. Sim-
ilarly, every clopen set in P ′ has a diameter at most 2−|v3m−3,1|. By Theorem 3.3(2),XV has
topological rank at most n2�.

THEOREM 6.7. Let X be an infinite minimal subshift of finite symbolic rank. Then X has
finite topological rank.

Proof. By Corollary 5.4, X = XV , where V has a proper rank-n construction for some
n ≥ 1. By Proposition 6.4, there is a word W which has a good rank-2n construction
such that XV is a factor of XW and XW is minimal. By Proposition 6.6, XW has
finite topological rank. Thus, XV has finite topological rank by the main theorem [31,
Theorem 1.1].

In [31], the authors showed that if a minimal Cantor system (Y , S) is a factor of a mini-
mal Cantor system (X, T ) of finite topological rank, then ranktop(Y , S) ≤ 3ranktop(X, T ).
In [19, Corollary 4.8], this is improved to ranktop(Y , S) ≤ ranktop(X, T ). Combining these
with our results, we can state the following quantitative result.
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COROLLARY 6.8. Let XV be an infinite minimal subshift of finite symbolic rank. Then

ranktop(XV , σ) ≤ 4(M + 1)(ranksymb(XV ))
2,

where M is a bound for the spacer parameter of any proper construction of V.

6.2. From finite topological rank to finite symbolic rank. It was proved in [14] that every
minimal Cantor system of finite topological rank is either an odometer or a subshift on a
finite alphabet. We will show that in the case it is a subshift, it is conjugate to a subshift of
finite symbolic rank.

We use the following notation from [31] (with a slight modification) in this subsection.
Let B = (V , E, �) be an ordered Bratteli diagram. For each i ≥ 1, let V ∗

i denote the set of
all words on the alphabet Vi , and define a map ηi+1 : Vi+1 → V ∗

i as follows. For v ∈ Vi+1,
enumerate all edges e ∈ Ei+1 with r(e) = v in the �-increasing order as e1, . . . , ek , and
define

ηi+1(v) = s(e1) · · · s(ek).

We also define η1 : V1 → E∗
1 , where E∗

1 is the set of all words on the alphabet E1. For
v ∈ V1, enumerate all e ∈ E1 with r(e) = v in the �-increasing order as e1 · · · ek , and
define

η1(v) = e1 · · · ek .

THEOREM 6.9. Every minimal Cantor system (X, T ) of finite topological rank is an
odometer or is conjugate to a minimal subshift XV of finite symbolic rank. Moreover, if
(X, T ) is not an odometer, then ranksymb(XV ) ≤ ranktop(X, T ).

Proof. We just need to show that for every simple ordered Bratteli diagramB = (W , E, �),
where |Wi | ≤ n for all i ≥ 1, if the Bratteli–Vershik system (XB , λB) generated by B is not
an odometer, then it is conjugate to XV for a word V which has a rank-n construction. By
telescoping if necessary, we assume without loss of generality that the following properties
hold for B:
(1) for each i ≥ 0, w ∈ Wi , and w′ ∈ Wi+1, there is an edge e ∈ Ei+1 with s(e) = w

and r(e) = w′;
(2) for each i ≥ 1, |Wi | ≥ 2;
(3) for each i ≥ 1, there are vertices wimin and wimax inWi such that for every w ∈ Wi+1,

ηi+1(w) starts with wimin and ends with wimax;
(4) for each w ∈ W1, |η1(w)| � n;
(5) for any x, y ∈ XB , if x 	= y, then there exists w ∈ W1 such that RetAw(x) 	=

RetAw(y), where Aw denotes the union of the Kakutani–Rohlin tower determined
by w.

For proprty (3), we consider the unique xmin and xmax. Fix an i ≥ 1. Let wimin ∈ Wi be
the vertex inWi which xmin passes through and wimax ∈ Wi be the vertex inWi which xmax

passes through. Then by the uniqueness of xmin, there is an i0 > i such that for all i′ ≥ i0

and w ∈ Wi′ , the minimal path between v0 and w passes through wimin. Similarly, there
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is an i1 such that for all i′ ≥ i1 and w ∈ Wi′ , the maximal path between v0 and w passes
through wimax. Now we get property (3) by telescoping.

For property (5), we use the main theorem of [14], which guarantees that (X, T ) is a
subshift on a finite alphabet. In particular, there is a finite partition P of X into clopen
sets such that the smallest Boolean algebra containing elements of P and closed under
T and T −1 contains all clopen subsets of X. Now we also have that (X, T ) is conjugate
to (XB , λB). Thus, there is also a finite partition Q of XB into clopen sets such that the
smallest Boolean algebra containing elements of Q and closed under λB and λ−1

B contains
all clopen subsets ofXB . Hence, there is i ≥ 1 such that every element of Q is the union of
the basic open sets given by the paths from v0 to some elements of Wi . Let F be the set of
all paths from v0 to an element of Wi . For each p ∈ F , let Np denote the basic open set of
XB given by p. Then for all x, y ∈ XB with x 	= y, there is p ∈ F such that RetNp(x) 	=
RetNp(y). Now for any w ∈ Wi , let Aw denote the union of the Kakutani–Rohlin tower
determined by w, then Aw is the clopen set given by all paths from v0 to w. We claim that
for all x, y ∈ XB with x 	= y, there is w ∈ Wi such that RetAw(x) 	= RetAw(y). For this,
note that for any w ∈ Wi , if we enumerate all paths from v0 to w in the �′-increasing order
as p1, . . . , pk , then for any x ∈ XB , 1 ≤ j ≤ k, and m ∈ Z, m ∈ RetNpj (x) if and only if
m− ak − j + 1, . . . , m ∈ RetAw(x) andm− ak − j /∈ RetAw(x) for a natural number a.
Thus, if x 	= y ∈ XB and p is a path from v0 to w such that RetNp(x) 	= RetNp(y), then
RetAw(x) 	= RetAw(y). Now property (5) follows by telescoping.

For each i ≥ 1, enumerate the elements of Wi as wi,1, wi,2, . . . , wi,ni , where
2 ≤ ni ≤ n, so that wi,1 = wimin. Define

v1,j = 0(01)j0|η1(w1,j )|−2n−4j−2(10)j+n0

for 1 ≤ j ≤ n1. For i ≥ 2, assume vi−1,j have been defined for all 1 ≤ j ≤ ni−1. Then we
define

vi,j = vi−1,j1vi−1,j2 · · · vi−1,jk

if

ηi(wi,j ) = wi−1,j1wi−1,j2 · · · wi−1,jk .

It is clear that this defines a rank-n construction. Let V = limi vi,1.
We note that V has a proper rank-m construction for some m ≤ n. In fact, let m ≥ 2 be

the smallest such that ni = m for infinitely many i ≥ 2. Let {ik}k≥0 enumerate this infinite
set of indices. Then by telescoping with respect to {ik}k≥0, we obtain a proper rank-m
construction for V. We note in addition that the rank-m generating sequence associated to
this construction is a subsequence of the rank-n generating sequence {vi,j }i≥0,1≤j≤ni , and
therefore has bounded spacer parameter. Thus, by Corollary 5.4, XV is minimal.

We claim that for any 1 ≤ j ≤ n1, v1,j is not of the form

α1s1v1,j11s2 · · · v1,jk−1 1skβ,

where k > 0, α is a non-empty suffix of some v1,jk , and β is a non-empty prefix of some
v1,jk+1 . This follows easily from the observation that v1,j has a prefix of the form 00(10)j00
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and a suffix of the form 00(01)j+n00, and for 1 ≤ j ′ ≤ n1, where j ′ 	= j , v1,j ′ does not
contain either of these words as a subword.

Let Y = (2W1)Z and view it as a shift over the alphabet 2W1 . Define θ : XB → Y by

θ(x)(k)(w) = RetAw(x)(k).

Then θ is clearly continuous. It is easy to check that θ ◦ λB = σ ◦ θ . By property (5),
θ is injective. Thus, θ is a conjugacy map between (XB , λB) and θ(XB), which is a
subshift of Y.

Finally, we verify that XV is conjugate to θ(XB). For this, we define ϕ : XV → (2W1)Z

by letting ϕ(z)(k)(w1,j ) = 1 if and only if there is k′ ≤ k with k′ + |v1,j | − 1 ≥ k such
that v1,j occurs in z starting at position k′. Here, ϕ is well defined because of the above
claim. It is clear that ϕ is continuous and injective, and ϕ ◦ σ = σ ◦ ϕ. Thus, ϕ is a
conjugacy map between XV and ϕ(XV ). To complete our proof, it suffices to show
θ(XB) = ϕ(XV ). Consider a y ∈ XV such that y�[0, ∞) = V . Then by our definitions
of θ and ϕ, and particularly because |vi,j | = |η(w1,j )| for all 1 ≤ j ≤ n1, we have
θ(xmin)�[0, ∞) = ϕ(y)�[0, ∞). By the shift invariance and the compactness of θ(XB)
and ϕ(XV ), we get θ(XB) ∩ ϕ(XV ) 	= ∅. By the minimality of θ(XV ) and ϕ(XB), we
have θ(XB) = ϕ(XV ) as required.

The consideration of the shift Y in the above proof is motivated by the work in [34] (the
construction before [34, Theorem 3.4]).

6.3. Some examples. In this subsection, we give some examples to demonstrate that the
results in the preceding subsections are optimal. We first show that a non-minimal rank-1
subshift need not have finite topological rank.

PROPOSITION 6.10. There exists a rank-1 word V such that XV is not minimal and XV is
not of finite topological rank.

Proof. For any n ≥ 0, let rn ≥ 2n+ 5 and sn,1, . . . , sn,rn−1 be non-negative integers
satisfying the following:

(i) sn,1 = 3n+ 1 and sn,rn−1 = 3n+ 2;
(ii) for all 1 < i < rn − 1, sn,i = 3m for some 0 ≤ m ≤ n+ 1;

(iii) for any 1 ≤ m ≤ n+ 1, there exist 1 < i < rn − 1 such that sn,i = sn,i+1 = 3m.
Then as usual, define v0 = 0 and vn+1 = vn1sn,1vn1sn,2 · · · 1sn,rn−1vn inductively, and let
V = limn vn,1.

We note that for any n ≥ 1, 0 ≤ m ≤ n+ 1, and u a non-empty prefix of vn, 013mu is
not a suffix of vn.

Toward a contradiction, assume XV has topological rank K ≥ 1. Fix a positive integer
N ≥ 1. Then by Theorem 3.3, there is a Kakutani–Rohlin partition P of XV with the
following properties:
(a) P has K many towers, with bases B1, . . . , BK ;
(b) 1Z ∈ B(P) = ⋃

1≤k≤K Bk and diam(B(P)) < 2−N−2;
(c) diam(A) < 2−N−2 for all A ∈ P .
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Since every A ∈ P is clopen, there exists N ′ > N + 4 such that for every A ∈ P , there
exists UA ⊆ {0, 1}2N ′+1 with

A = {x ∈ XV : x�[−N ′, N ′] ∈ UA}.

Let n � N ′ + 3N .
Fix any 1 ≤ m ≤ n+ 1. Let x ∈ XV be such that vn13mvn13mvn occurs in x at position

−|vn|, and each of the three demonstrated occurrences of vn is expected. Then from the
definition ofN ′, and because |vn| ≥ 2n � n � N ′, we have that σ |vn|+3m(x) and x belong
to the same set in the partition P . Thus, there is 0 < j ≤ |vn| + 3m such that σ j (x) ∈
B(P). Let t = 3m− j . Then −|vn| ≤ t < 3m, y � σ 3m−t (x) ∈ Bk for some 1 ≤ k ≤ K ,
vn13mvn13mvn occurs in y at position t − |vn| − 3m, and every z ∈ XV with an occurrence
of vn13mvn13mvn at position t − |vn| − 3m is in Bk . Let tm be the least such t and km be
the corresponding k. We note the following two properties of the element y. First, there is
an occurrence of vn13mvn in y at position tm. Second, because of the minimality of tm, we
have that for any 0 ≤ j ≤ tm + |vn|, σ j (y) ∈ σ j (Bkm) and σ j (Bkm) ∩ B(P) = ∅ when
j 	= 0, and so σ j (Bkm) is an element of P (it is one of the sets in the kmth tower of P).

We claim that for any 1 ≤ m1, m2 ≤ �N/3� with m1 	= m2, we must have
km1 	= km2 . Toward a contradiction, assume k � km1 = km2 . Without loss of generality,
assume tm1 ≤ tm2 .

Consider first the case tm1 < tm2 . Then we have a subclaim that tm2 ≥ tm1 + 3m1. To
see this, let y1 ∈ Bk be an element with an occurrence of vn13m1vn at position tm1 as
above, and similarly, y2 ∈ Bk be an element with an occurrence of vn13m2vn at t2. Since
diam(Bk) < 2−N−2, y1�[−N , N] = y2�[−N , N]. Also, since for all 0 ≤ j ≤ tm2 + |vn|,
σ j (Bk) is an element of P , which has diameter < 2−N−2, we have that y1�[−N + j ,
j +N] = y2�[−N + j , j +N] for all 0 ≤ j ≤ tm2 + |vn|. In particular, y2(tm2 + |vn| −
1) = 0 = y1(tm2 + |vn| − 1). Since tm2 + |vn| − 1 ≥ tm1 + |vn| and y1 has an occurrence
of 13m1 at tm1 + |vn|, we must have tm2 + |vn| − 1 ≥ tm1 + |vn| + 3m1 − 1, or tm2 ≥
tm1 + 3m1 as in the subclaim. Note that our argument above gives that

y1�[tm1 + |vn| − 1, tm2 + |vn| − 1] = y2�[tm1 + |vn| − 1, tm2 + |vn| − 1].

Since tm2 ≥ tm1 + 3m1, the left-hand side is a word of the form 013m1u, where u is a
non-empty prefix of vn. However, the right-hand side is a suffix of vn. This contradicts our
construction of vn.

Thus, tm1 = tm2 . Denote t � tm1 = tm2 . Without loss of generality, assume m1 < m2.
By the above argument, we again have y1�[−N + t + |vn|, t + |vn| +N] = y2�[−N +
t + |vn|, t + |vn| +N]. Since 3m1 < 3m2 ≤ N , we have in particular y1�[t + |vn|,
t + |vn| + 3m2 − 1] = y2�[t + |vn|, t + |vn| + 3m2 − 1]. However, the left-hand side
is of the form 13m1u, where u is a non-empty prefix of vn, while the right-hand side is
13m2 , which is a contradiction.

This finishes our proof of the claim that whenever 1 ≤ m1 	= m2 ≤ �N/3�, we have
km1 	= km2 . It follows from the claim that K ≥ �N/3�. This contradicts the arbitrariness
of N.
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The next examples show that the topological rank is not bounded by a function of the
symbolic rank alone, and thus the extra parameter as in Corollary 6.8 is necessary. The
proposition is also a consequence of [2, Corollary 4.9].

PROPOSITION 6.11. For any N > 1, there is a minimal rank-1 subshift whose topological
rank is at least N.

Proof. Fix p ≥ 2N and q � N . Define v0 = 0 and

vn+1 = (vn1)qvn1an,1vn1an,2 · · · 1an,pvn(1N+2vn)
q ,

where an,1, . . . , an,p are non-negative integers satisfying the following:
(i) for any 1 ≤ i ≤ p, 2 ≤ an,i ≤ N + 1;

(ii) for any 2 ≤ m ≤ N + 1, there is 1 ≤ i ≤ p such that an,i = an,i+1 = m.
Let V = limn vn.

By an easy induction, we have that for all n ≥ 1 and 1 ≤ m ≤ N + 1, if u is a non-empty
prefix of vn, then 01mu is not a suffix of vn.

Consider a Kakutani–Rohlin partition P of XV such that:
(a) P has K many towers, with bases B1, . . . , BK ;
(b) diam(B(P)) < 2−N−4;
(c) diam(A) < 2−N−4 for all A ∈ P .
Since every A ∈ P is clopen, there exists N ′ > N + 6 such that for every A ∈ P , there
exists UA ⊂ {0, 1}2N ′+1 with

A = {x ∈ XV : x�[−N ′, N ′] ∈ UA}.
Let n � N ′ + 3N . Similar to the proof of Proposition 6.10, we can define, for each

2 ≤ m ≤ N + 1, numbers tm where −|vn| ≤ tm ≤ m, km where 1 ≤ km ≤ K , and an
element y ∈ Bkm such that vn1mvn occurs in y at position tm and for all 0 ≤ 1 ≤ tm + |vn|,
σq(Bkm) is an element of P .

As in the proof of Proposition 6.10, we have that for all 2 ≤ m1, m2 ≤ N + 1, if
m1 	= m2, then km1 	= km2 . This implies that K ≥ N .

6.4. From finite alphabet rank to finite symbolic rank. In this subsection, we explore
some connections between subshifts of finite symbolic rank and S-adic subshifts of finite
alphabet rank considered by various authors, e.g., [6, 13].

We first recall the basic definition of S-adic subshifts and related notions following
[13]. For a finite alphabet A, let A∗ be the set of all finite words on A. If A, B are
finite alphabets, a morphism τ : A∗ → B∗ is a map satisfying that τ(∅) = ∅ and for
all u, v ∈ A∗, τ(uv) = τ(u)τ(v). A directive sequence is a sequence of morphisms
τ = (τn : A∗

n+1 → A∗
n)n≥0. For 0 ≤ n < N , denote by τ[n,N) the morphism τn ◦ τn+1 ◦

· · · ◦ τN−1. For any n ≥ 0, define

L(n)(τ ) = {w ∈ A∗
n : w occurs in τ[n,N)(a) for some a ∈ AN and N > n}

and

X(n)τ = {x ∈ AZ

n : every finite subword of x is a subword of some w ∈ L(n)(τ )}.
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Here, X(n)τ is a subshift on the alphabet An, and we denote the shift map by σ . Now let
Xτ = X

(0)
τ . Then (Xτ , σ) is the S-adic subshift generated by the directive sequence τ .

The alphabet rank of τ is defined as

AR(τ ) = lim inf
n→∞ |An|

and the alphabet rank of a subshift (X, σ) as

AR(X) = inf{AR(τ ) : Xτ = X}.
As a convention, inf ∅ = +∞.

There is a similar notion of telescoping for directive sequence τ which does not change
the S-adic subshift generated by τ .

An S-adic subshift Xτ is primitive if for any n ≥ 0, there exists N > n such that
τ[n,N)(a) contains all letters in An for all a ∈ AN .

If τ : A∗ → B∗ is a morphism, x ∈ BZ, and Y ⊆ AZ is a subshift, then a
τ -representation of x in Y is a pair (k, y) ∈ Z × Y such that x = σk(τ (y)). Moreover,
(k, y) is a centered τ -representation if 0 ≤ k < |τ(y(0))| in addition. Now τ is
recognizable in Y if each x ∈ BZ has at most one centered τ -representation in Y, and
a directive sequence τ = (τn : A∗

n+1 → A∗
n)n≥0 is recognizable if for each n ≥ 0, τn is

recognizable in X(n+1)
τ . An S-adic subshift Xτ is recognizable if τ is recognizable.

THEOREM 6.12. Let Xτ be a primitive, recognizable S-adic subshift of finite alphabet
rank K. Then (Xτ , σ) is conjugate to a subshift of finite symbolic rank ≤ K . Moreover,
there exists a proper rank-K construction for a uniquely readable rank-K generating
sequence {vi,j }i≥0,1≤j≤K such that (Xτ , σ) is conjugate to (XV , σ), where V = limi vi,1.

Proof. This is similar to the proof of Theorem 6.9. By telescoping if necessary, we assume
without loss of generality that the following properties hold for τ :
(1) for each i ≥ 0, a ∈ Ai and b ∈ Ai+1, τi(b) contains the letter a;
(2) for each i ≥ 1, |Ai | = K;
(3) for each a ∈ A1, |τ0(a)| � K .
Since each Ai is finite, a finite splitting argument similar to the proof of Proposition 5.1
shows that we can enumerate each Ai as ai,1, . . . , ai,ni such that ni = K for all i > 1 and
for each i ≥ 0, τi(ai+1,1) starts with ai,1. Now, as in the proof of Theorem 6.9, define

v1,j = 0(01)j0|τ0(a1,j )|−2n−4j−2(10)j+n0

for 1 ≤ j ≤ K . For i ≥ 1 and 1 ≤ j ≤ K , if

τi(ai+1,j ) = ai,j1ai,j2 · · · ai,jk ,
then let

vi+1,j = vi,j1vi,j2 · · · vi,jk .
This gives a proper rank-K construction for V = limi vi,1.
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Clearly, the recognizability of τ , together with our definition of v1,j , imply the unique
readability of {vi,j }i≥0,1≤j≤K . Now (Xτ , σ) and (XV , σ) are conjugate by the substitution
τ0(a1,j ) → v1,j .

With Theorem 6.12, our Theorem 6.9 becomes a consequence of the main theorem of
[13] which states that every minimal Cantor system of finite topologival rank is either an
odometer or conjugate to a primitive, recognizable S-adic subshift of finite alphabet rank.

7. Density and genericity of subshifts of finite symbolic rank
It is known that the set of rank-1 measure-preserving transformations is a dense Gδ
subset of the Polish space of all measure-preserving transformations (see [23]). Here
in the topological setting, we show that the situation is different. In fact, we consider
various different spaces of Cantor systems and subshifts, and show that the class of all
rank-1 subshifts is dense in all but one of them but generic in none. However, we note
that subshifts of symbolic rank 2 are generic in the spaces for all transitive and totally
transitive subshifts.

We start with the coding space for all minimal Cantor systems.

PROPOSITION 7.1. The set of all minimal Cantor systems conjugate to a rank-1 subshift is
dense but not generic in the space of all minimal Cantor systems.

Proof. By Proposition 3.6 and Lemma 2.3, the set of all subshifts is meager, and
not generic, in the space of all minimal Cantor systems. For the density, in view of
Proposition 3.6, it suffices to show that infinite minimal rank-1 subshifts can approximate
any infinite odometer. To be precise, we need to show that for all k ≥ 2, there is an
infinite rank-1 subshift XV and a clopen subset A of XV such that σk(A) = A and
{A, σ(A), . . . , σk−1(A)} form a partition of XV .

Fix k ≥ 2. We define the following Chacón-like rank-1 generating sequence:

v0 = 0

v1 = 02k1k0k

vn+1 = vnvn1kvn for n ≥ 1.

Let V = limn vn. Then XV is infinite. Let A be the set of all x ∈ XV such that

x�[0, 3k − 1] ∈ {03k , 02k1k , 0k1k0k , 1k0k1k , 1k02k}.

Then A is a clopen subset of XV with the required property.

To investigate the density and the genericity of subshifts of finite symbolic rank, we
consider some spaces of subshifts as defined in [40]. First, let S2 be the space of all
σ -invariant closed subsets of 2Z. Here, S2 is a Gδ subspace of K(2Z), and hence is a
Polish space. The Hausdorff metric on S2 is equivalent to the following metric which is
easier to work with in our setting. For X ∈ S2 and integer n ≥ 0, let Ln(X) be the set of
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all finite words of length n which occurs in some element of X. Let L(X) = ⋃
n Ln(X).

For X, Y ∈ S2, let

dL(X, Y ) = 2− inf{n:Ln(X)	=Ln(Y )}.

However, S2 is not a perfect space; in particular, the finite subshifts are isolated points
in this space. Thus, following [40], we consider the following perfect subspace, which in
particular includes all infinite rank-1 subshifts. Let S ′

2 be the subspace of all elements of
S2 which are not isolated (the notation is inspired by the Cantor–Bendixson derivative; see
[35]). Here, S ′

2 is a perfect subspace of S2, and hence a Polish space.
Recall that a Cantor system (X, T ) is (point) transitive if there exists x ∈ X such that

the orbit of x is dense in X; it is totally (point) transitive if for all integer n ≥ 1, there exists
x ∈ X such that {T nkx : k ∈ Z} is dense in X.

Let T ′
2 be the subspace of all transitive subshifts in S ′

2. Let T ′
2 be the closure of T ′

2 in
S ′

2. Moreover, let T T ′
2 be the subspace of all totally transitive subshifts in S ′

2. Let T T ′
2 be

the closure of T T ′
2 in S ′

2. Then T T ′
2 ⊆ T ′

2 are both closed subspaces of S ′
2, and hence are

Polish spaces, and the metric dL remains a compatible metric on these subspaces.
The following theorem shows that minimal rank-1 subshifts can approximate infinite

minimal subshifts of topological rank 2 in the sense of dL.

THEOREM 7.2. Let n ≥ 1 and let (X, σ) be an infinite minimal subshift of topological
rank 2. Then there exists an infinite minimal subshift (Y , σ) such that Ln(X) = Ln(Y )

and (Y , σ) is conjugate to (XV , σ) for some infinite rank-1 word V. Moreover, if (X, σ) is
totally transitive, then we can find (Y , σ) which is also totally transitive.

Proof. By the main theorem of [13], (X, σ) is conjugate to a primitive, recognizable
S-adic subshift of alphabet rank 2. By the proof of Theorem 6.12, there exists a proper
rank-2 construction for an infinite word W with the following properties:
(1) the associated rank-2 generating sequence {wi,j }i≥0,1≤j≤2 has unique readability;
(2) for all i ≥ 1 and j = 1, 2, the spacer parameter in the building of wi+1,j from

{wi,1, wi,2} is bounded by 0;
(3) (XW , σ) is conjugate to (X, σ).
Let f be a conjugacy map from (XW , σ) to (X, σ).

Fix n1 ≥ 1 such that for any x, y ∈ XW and k ∈ Z, whenever x�[k − n1,k + n1] =
y�[k − n1, k + n1], we have f (x)(k) = f (y)(k). For any v ∈ L(XW), if |v| > 2n1, and
for some x ∈ XW and k ∈ Z, we have x�[k, k + |v| − 1] = v, then define �(v) = f (x)�
[k + n1, k + |v| − n1 − 1]. Clearly, �(v) is well defined and does not depend on the
choice of x.

For any finite or infinite word u and m ≤ |u|, let Lm(u) denote the set of all subwords
of u of length n.

Let i0 ≥ 1 be sufficiently large such that for j = 1, 2, |wi0,j | > 2n+ 4n1 and
Ln+2n1(W) = Ln+2n1(wi0,j ). Since X is infinite, W is aperiodic, and it follows that there
is j0 ∈ {1, 2} such that for any j = 1, 2, both wi0,j0wi0,j ∈ L(W) and wi0,jwi0,j0 ∈ L(W).
For the same reason, there exists i1 > i0 such that �(wi1,1) does not have a period t
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for any t ≤ |wi0,1| + |wi0,2|, that is, there are 0 ≤ a < a + kt < |�(wi1,1)| such that
�(wi1,1)(a) 	= �(wi1,1)(a + kt).

Define a rank-1 generating sequence by letting

v1 = wi0,j0wi1,1wi0,j0

and for any i ≥ 1,

vi+1 = vivi1|wi0,j0 |vi .

As usual, let V = limi vi . Then V is a minimal aperiodic infinite rank-1 word.
Define a map g from XV to 2Z as follows. For x ∈ XV , if k is a part of an expected

occurrence of v1 in x, then set g(x)(k) = x(k); if not, let k′ be the starting position of
the next expected occurrence of v1 in x, and set g(x)(k) = wi0,j0(|wi0,j0 | + k − k′). Let
Z = g(XV ). Then (Z, σ) is a subshift and g is a factor map. By our definition,
Ln+2n1(Z) = Ln+2n1(W) = Ln+2n1(XW).

For x ∈ Z and k ∈ Z, define h(x)(k) = �(x�[k − n1, k + n1]). Let Y = h(Z). Then
(Y , σ) is a subshift and h is a factor map. By our definition,Ln(Y ) = Ln(X). It also follows
that there exists y ∈ Y such that y does not have a period t for any t ≤ |wi0,1| + |wi0,2|.

By [28, Theorem 1.5], the maximal equicontinuous factor of XV is a finite cycle of
length p, where p is the maximum such that for sufficiently large i, p divides both |vi | and
|vi | + |wi0,j0 |. It follows that p is a factor of |wi0,j0 |. However, since Y, a factor of XV ,
contains an element which does not have a period t for any t ≤ |wi0,j0 |, we conclude that
Y is an infinite set. By the main theorem of [29], any non-trivial factor of XV is conjugate
to XV . Thus, Y is conjugate to XV . This finishes the proof of the main conclusion of the
theorem.

Suppose (X, σ) is totally transitive. We define W, {wi,j }i≥0,1≤j≤2, n1, i0, and
i1 as before. We claim that |wi0,1| and |wi0,2| are relatively prime. To see this, let
a = gcd(|wi0,1|, |wi0,2|) and assume a > 1. Then by property (2), the set of all x ∈ XW
such that there exists an expected occurrence of wi0,1 or wi0,2 starting at some multiple
of a is a clopen, σa-invariant, proper subset of X, which contradicts the assumption that
(X, σ) is totally transitive.

Let p = |wi0,j0 | and q = |wi0,3−j0 |. Since p, q are relatively prime, we can find a
positive integer m such that |wi0,j0wi1,1| + (m+ 1)p and p − q are relatively prime. We
inductively define a rank-1 generating sequence as follows. First let

v1 = wi0,j0wi1,1(wi0,j0)
m.

For i ≥ 1, if vi has been defined such that |vi | + p and |vi | + q are relatively prime, then
let vi+1 be defined to satisfy the following properties:

(i) vi+1 is built from vi and the spacer parameters are only selected from {p, q};
(ii) for any 0 ≤ j < i, there exist k1 < k2 such that k2 − k1 − j is a multiple of i, and

k1, k2 are the starting positions of expected occurrences of vi in vi+1;
(iii) |vi+1| + p and |vi+1| + q are relatively prime.
Let V = limi vi . Then V is a minimal aperiodic infinite rank-1 word. By property (ii),
(XV , σ) is totally transitive. The rest of the argument is identical to the above proof.
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COROLLARY 7.3. The set of all minimal subshifts conjugate to a rank-1 subshift is dense
in T ′

2 and T T ′
2.

Proof. By [40, Theorems 1.3 and 1.4], a generic subshift in T ′
2 or T T ′

2 is minimal and has
topological rank 2. Thus, the conclusion follows from Theorem 7.2.

THEOREM 7.4. The set of all minimal subshifts conjugate to a rank-1 subshift is not
generic in either S ′

2, T ′
2 , or T T ′

2. Moreover, it is not Gδ in either T ′
2 or T T ′

2.

Proof. By [40, Corollary 4.9], the set of all minimal subshifts is nowhere dense in S ′
2.

By [40, Theorem 1.3], a generic subshift in T ′
2 is a regular Toeplitz subshift which

factors onto the universal odometer. In contrast, by [28, Theorem 1.5], the maximal
equicontinuous factor of a rank-1 subshift is finite. Hence, the set of all minimal subshifts
conjugate to a rank-1 subshift is not generic in T ′

2 . Since it is dense in T ′
2 by Corollary 7.3,

it is not a Gδ in T ′
2 .

By [40, Theorem 1.4], a generic subshift in T T ′
2 is topologically mixing. In contrast,

by [28, Theorem 1.3], a minimal rank-1 subshift is never topologically mixing. Hence, the
set of all minimal subshifts conjugate to a rank-1 subshift is not generic in T T ′

2. Since it
is dense in T T ′

2 by Corollary 7.3, it is not a Gδ in T T ′
2.

THEOREM 7.5. The set of all minimal subshifts conjugate to a subshift of symbolic rank
≤ 2 is generic in T ′

2 and T T ′
2.

Proof. By [40, Theorems 1.3 and 1.4], a generic subshift in T ′
2 or T T ′

2 is minimal and has
topological rank 2. Thus, the conclusion follows from Theorem 6.9.

8. Factors of subshifts of finite symbolic rank
By results of [19, 31], and our Corollary 6.8 and Theorem 6.9, a Cantor system that is a
factor of a minimal subshift of finite symbolic rank is conjugate to a minimal subshift of
finite symbolic rank.

In this final section of the paper, we prove some further results about factors of minimal
subshifts of finite symbolic rank, and in particular about odometer factors and non-Cantor
factors of minimal subshifts of finite symbolic rank. In the following, we first show that
for any N ≥ 1, there exist minimal subshifts of finite symbolic rank which are not factors
of minimal subshifts of symbolic rank ≤ N .

LEMMA 8.1. For any N ≥ 1, there exist m > N and a good rank-m construction with
associated rank-m generating sequence {vi,j }i≥0,1≤j≤m such that the following hold for all
i ≥ 1:

(i) for any 1 ≤ j1, j2 ≤ m with j1 	= j2, vi,j1 is not a subword of vi,j2;
(ii) for any 1 ≤ j ≤ m, there is a unique building of vi+1,j from {vi,1, . . . , vi,m} whose

spacer parameter is bounded by 0;
(iii) there is a positive integer � ≥ 1 such that, given any two finite sequences

(j1, j2, . . . , j�) and (j ′
1, j ′

2, . . . , j ′
�) of elements of {1, 2, . . . , m}, there is at most

one element w of
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{vi,j vi,j ′ : 1 ≤ j , j ′ ≤ m} ∪ {vi,j : 1 ≤ j ≤ m}
such that

vi,j1vi,j2 · · · vi,j�wvi,j ′
1
vi,j ′

2
· · · vi,j ′

�

is a subword of V � limn vn,1;
(iv) XV is minimal and ranksymb(XV ) ≥ N .

Proof. Let (X, T ) be a minimal Cantor system whose topological rank is K < ∞, where
K ≥ 8N2. By Theorem 6.9, there exist k ≤ K and a proper rank-k construction of an
infinite word W such that (XW , σ) is conjugate to (X, T ). It also follows from the proof of
Theorem 6.9 that the spacer parameter of W is bounded by 1. Let m = 2k. By the proof of
Proposition 6.4, there exists an infinite word V with a good rank-m construction such that
XW is a factor ofXV . Moreover, the spacer parameter of V is also bounded by 1 and soXV
is minimal. By analyzing the proof of Proposition 6.4, we can see that this construction
satisfies properties (i), (ii), and (iii). In fact, properties (i) and (ii) are explicit from the
proof. For property (iii), we can take � to be larger than the lengths of all buildings of
vi+1,j from {vi,1, . . . , vi,m} for 1 ≤ j ≤ m. Then property (iii) follows from the argument
for the goodness of the construction in the proof of Proposition 6.4.

It remains to verify that ranksymb(XV ) ≥ N . Suppose ranksymb(XV ) = n. Then
by Corollary 6.8, we have ranktop(XV , σ) ≤ 8n2. By [19], K = ranktop(X, T ) =
ranktop(XW , σ) ≤ ranktop(XV , σ) ≤ 8n2. Since K ≥ 8N2, we have n ≥ N .

PROPOSITION 8.2. For any N ≥ 1, there exists a minimal subshift XV which is not a
factor of any minimal subshift of symbolic rank ≤ N . In particular, XV is not conjugate to
any minimal subshift of symbolic rank ≤ N .

Proof. By Lemma 8.1, there is m > 4N2 + 1 and we have an infinite word V which has
a good rank-m construction with associated rank-m generating sequence {vi,j }i≥0,1≤j≤m
satisfying properties (i), (ii), and (iii) in Lemma 8.1, so that XV is minimal and
ranksymb(XV ) ≥ 4N2 + 1. Assume toward a contradiction that n ≤ N andW ′ has a proper
rank-n construction with bounded spacer parameter such that XV is a factor of XW ′ .

By Proposition 6.4, we have an infinite word W which has a good rank-2n construction
with associated rank-2n generating sequence {wp,q}p≥0,1≤q≤2n such that XW is minimal
and XW ′ is a factor of XW . Let f be a factor map from (XW , σ) to (XV , σ).

Let k1 be a positive integer such that 1k1 is not a subword of W. Let k2 be a positive
integer such that for any x, y ∈ XW and k ∈ Z, whenever x�[k − k2, k + k2] = y�[k −
k2, k + k2], we have f (x)(k) = f (y)(k). Let r ≥ 1 so that min1≤j≤m |vr ,j | � k1 + 2k2.
Let � ≥ 1 be given by property (iii) in Lemma 8.1, that is, for any two finite sequences
(j1, j2, . . . , j�) and (j ′

1, j ′
2, . . . , j ′

�) of elements of {1, 2, . . . , m}, there is at most one
element w of

{vr ,j vr ,j ′ : 1 ≤ j , j ′ ≤ m} ∪ {vr ,j : 1 ≤ j ≤ m}
such that

vr ,j1vr ,j2 · · · vr ,j�wvr ,j ′
1
vr ,j ′

2
· · · vr ,j ′

�
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is a subword of V. We can also find s0 ≥ 1 so that

min1≤q≤2n |ws0,q | − 2k2

max1≤j≤m |vr ,j | > �+ 2.

We claim that for any s ≥ s0, 1 ≤ q, q ′ ≤ 2n, a ≥ 0, and x ∈ XW , if ws,q1aws,q ′
occurs in x, where the demonstrated occurrences of ws,q and ws,q ′ are expected, then
a is determined by q and q ′ only (and in particular a does not depend on x). To see
this, let k be the starting position of the assumed occurrence of ws,q1aws,q ′ in x, and
let k′ be the starting position of the demonstrated occurrence of ws,q ′ . Then f (x)�[k +
k2, k + |ws,q | − k2 − 1] and f (x)�[k′ + k2, k′ + |ws,q ′ | − k2 − 1] are determined only by
ws,q and ws,q ′ by our assumption, and since s ≥ s0, each of them contains a subword of
the form vr ,j1vr ,j2 · · · vr ,j� . Since a < k1 and min1≤j≤m |vr ,j | � k1 + 2k2, we get that
f (x)�[k + k2, k′ + |ws,q ′ | − k2 − 1] contains a subword of the form

vr ,j1vr ,j2 · · · vr ,j�wvr ,j ′
1
vr ,j ′

2
· · · vr ,j ′

�
,

where f (x)�[k + k2, k + |ws,q | − k2 − 1] contains the part vr ,j1 · · · vr ,j� , f (x)�[k′ +
k2, k′ + |ws,q ′ − k2 − 1] contains the part vr ,j ′

1
· · · vr ,j ′

�
, and w is either of the form vr ,j

for some 1 ≤ j ≤ m or of the form vr ,j vr ,j ′ for 1 ≤ j , j ′ ≤ m. By our assumption, there
is a unique such w, which implies that there is a unique a by considering |w|.

By telescoping, we may assume that the claim holds for any s ≥ 1. We may also assume
that |w1,q | � 2k2 + k1 + k0 for 1 ≤ q ≤ 2n, where k0 is such that 1k0 is not a subword of
V. For any finite word u, let ũ ∈ F be the unique subword of u such that u = 1aũ1b for
some non-negative integers a, b. Now we define a set Ts of finite words in F for all s ≥ 0
as follows. For any s ≥ 1 and 1 ≤ q, q ′ ≤ 2n, if there are x ∈ XW , k ∈ Z, and a ≥ 0 such
that the word ws,q1aws,q ′ occurs in x, where the demonstrated occurrences of ws,q and
ws,q ′ are expected, then define a word us,q,q ′ = ũ, where u = f (x)�[k + k2, k + |ws,q | +
a + k2 − 1]. Let Ts be the set of all us,q,q ′ thus obtained for s ≥ 1 and 1 ≤ q, q ′ ≤ 2n.
Let T0 = {0}. Then the sequence {Ts}s≥0 satisfies the hypotheses of Proposition 5.1; in
particular, every element of Ts+1 is built from Ts . Also, |Ts | ≤ 4n2. By Proposition 5.1, we
obtain a rank-4n2 construction of an infinite word V ′. Since each us,q,q ′ is a subword of V,
we have that XV ′ ⊆ XV . By the minimality of XV , we have XV ′ = XV , and thus XV has
symbolic rank ≤ 4n2 ≤ 4N2, which contradicts ranksymb(XV ) ≥ 4N2 + 1.

In a sense, we separate the topological rank (or alphabet rank) complexity of a subshift
into two parts: symbolic rank and spacer parameters. This proposition together with
Proposition 6.11 shows that both of these two parts are non-trivial.

Next we show that an infinite subshift factor of a minimal subshift of finite symbolic
rank is not just conjugate to a subshift of finite symbolic rank—it is itself a subshift of finite
symbolic rank. This is a technical improvement of the result we mentioned at the beginning
of this section. The proof of this result is similar to the one for the above proposition.

THEOREM 8.3. Let X be minimal subshift of finite symbolic rank and Y be an infinite
subshift that is a factor of X. Then Y has finite symbolic rank, that is, there is an infinite
word V with a finite rank construction such that Y = XV .
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Proof. By Proposition 6.4, we may assume that X = XW where W has a good rank-n
construction for some n ≥ 2, with associated rank-n generating sequence {wp,q}p≥0,1≤q≤n.
Let f be a factor map from (XW , σ) to (Y , σ).

Let k1 be a positive integer such that 1k1 is not a subword of W. Let k2 be a positive
integer such that for any x, y ∈ XW and k ∈ Z, whenever x�[k − k2, k + k2] = y�[k −
k2, k + k2], we have f (x)(k) = f (y)(k). Here, Y is an infinite minimal subshift, let k3

be a positive integer such that 1k3 is not a subword of x for any x ∈ Y . Without loss of
generality, we may assume |w1,q | � 2k2 + k1 + k3 for all 1 ≤ q ≤ n.

Similar to the above proof, for each p ≥ 1, if the word wp,q1swp,q ′ occurs in some
x ∈ XW at position k ∈ Z, where the demonstrated occurrences of wp,q and wp,q ′ are
expected, we define a word up,q,q ′,s = ũ, where

u = f (x)�[k + k2, k + |ws,q | + s + k2 − 1].

Then it is clear that every y ∈ Y is built from

Tp = {up,q,q ′,s : 1 ≤ q, q ′ ≤ n, 0 ≤ s < k1}.
By Proposition 5.1, we obtain a rank-n2k1 construction of an infinite word V such that
XV ⊆ Y . By the minimality of Y, we must have XV = Y , and thus Y has finite symbolic
rank.

A curious example is when V is an infinite rank-1 word and ϕ : XV → Y is the
conjugacy map defined by the substitution 0 → 1 and 1 → 0. In general, Y is no longer a
rank-1 subshift but it has finite symbolic rank.

The above theorem has the following immediate corollary.

COROLLARY 8.4. Let n ≥ 2 and let X be a minimal subshift of topological rank n ≥ 2.
Then X has finite symbolic rank.

Proof. By Theorem 6.9, X is conjugate to a minimal subshift of finite symbolic rank. Thus,
X has finite symbolic rank by Theorem 8.3.

Next we show that any infinite odometer is the maximal equicontinuous factor of a
minimal subshift of symbolic rank 2. This is in contrast with the result in [28] that any
equicontinuous factor of a rank-1 subshift is finite.

We use the following fact, which is folklore.

LEMMA 8.5. Let (X, T ) and (Y , S) be topological dynamical systems, and let f be a
factor map from (X, T ) to (Y , S). Suppose (Y , S) is equicontinuous and suppose for
all x1, x2 ∈ X, if f (x1) = f (x2), then x1, x2 are proximal. Then (Y , S) is the maximal
equicontinuous factor of (X, T ).

THEOREM 8.6. For any infinite odometer (Y , S), there exists a minimal subshift XV of
symbolic rank 2 such that (Y , S) is the maximal equicontinuous factor of (XV , σ).

Proof. We inductively define two sequences {pi , qi}i≥0 of positive integers as follows. Let
p0 = q0 = 1. For i ≥ 0, let pi+1 = 2pi + 2qi and qi+1 = 2pi + qi . It is easy to see that
for any i ≥ 0, qi is odd and pi , qi are relatively prime.

https://doi.org/10.1017/etds.2024.45 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2024.45


40 S. Gao and R. Li

LetB = (W , E, �) be a simple Bratteli diagram associated to (Y , S) such that |Wi | = 1
and ai+1 � |Ei+1| > 1 for all i ≥ 0. By telescoping, we may assume ai � pi + qi for any
i ≥ 1. Consider the following proper rank-2 construction:

v0,1 = v0,2 = 0,
v1,1 = 0a112a10a1 , v1,2 = 0a11a10a1 ,

vi+1,1 = vi,1
ai+1vi,2

2ai+1vi,1
ai+1 , vi+1,2 = vi,1

ai+1vi,2
ai+1vi,1

ai+1 , for i ≥ 1.

It is easy to see that the subsequence {ik}k≥0 where i0 = 0 and ik = k + 1 for k ≥ 1 gives a
telescoped construction that is good and hence has unique readability. Also, for any n ≥ 1,
|vn,1| = pn

∏n
i=1 ai and |vn,2| = qn

∏n
i=1 ai . For notational simplicity, let An = ∏n

i=1 ai

for all n ≥ 1 and let A0 = 1. Let V = limn vn,1.
For each i ≥ 1, enumerate the elements of Ei in the �-increasing order as

ei,1, . . . , ei,ai . Define f : XV → XB by letting f (x)(i) = ei+1,j if there exists an
expected occurrence of vi+1,1 in x starting at position k ∈ Z such that for some � ∈ Z,
we have that 1 ≤ j ≤ ai+1 satisfies

(j − 1)Ai ≤ k + �Ai+1 < jAi .

Here f is well defined because |vi+1,1| and |vi+1,2| are both multiples of Ai+1, and thus for
any two expected occurrences of vi+1,1 in x, their starting positions differ by a multiple of
Ai+1. It is clear that f is a factor map from (XV , σ) to (XB , λB).

By Lemma 8.5, to complete the proof, it suffices to show that for any x, y ∈ XV , if
f (x) = f (y), then x, y are proximal. Toward a contradiction, assume x, y are not proximal
but f (x) = f (y). Thus, there exists n ≥ 1 such that no k ∈ Z is the starting position of
both an expected occurrence of vn,1 in x and one in y. Let n0 be the least such n.

However, from the assumption f (x) = f (y), we can verify by induction that for all
n ≥ 0, if k1 is the starting position of an expected occurrence of vn+1,1 or vn+1,2 in x and
k2 is the starting position of an expected occurrence of vn+1,1 or vn+1,2 in y, then k1 − k2

is a multiple of An+1.
We claim that there exist no k < h such that h− k = tAn0+1 for some 1 ≤ t < pn0+1, h

is the starting position of at least pn0+1 many consecutive expected occurrences of vn0+1,2

in x (or y), and k is the starting position of at least qn0+1 many consecutive expected
occurrences of vn0+1,1 in y (or x, respectively).

If not, then from the property that pn0+1 and qn0+1 are relatively prime, we can
get positive integers a < qn0+1 and b < pn0+1 such that t = apn0+1 − bqn0+1. Then
k + a|vn0+1,1| = h+ b|vn0+1,2|. This is the starting position of an expected occurrence
of vn0+1,1 in y (or x), while at the same time, it is also the starting position of an expected
occurrence of vn0+1,2 in x (or y, respectively). Thus, it is the starting position of an expected
occurrence of vn0,1 in both x and y, which contradicts our definition of n0.

Now let P be the (n0 + 2)th layer of the reading of x, that is, (k, j) ∈ P if and only
if there is an expected occurrence of vn0+2,j in x; let Q be the (n0 + 2)th layer of
the reading of y. Suppose (k, j) ∈ P , where j = 1 or 2. Consider the positions from
k + an0+2|vn0+1,1| to k + an0+2|vn0+1,1| + (3 − j)an0+2|vn0+1,2|. If one of these positions
is the starting position of an expected occurrence of vn0+2,1 or vn0+2,2 in y, then from
an0+2 � pn0+2 + qn0+2, we get a contradiction to the above claim. So these positions
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must be contained in the same expected occurrence of vn0+2,1 or vn0+2,2 in y, which gives
us a unique (k′, j ′) ∈ Q. It follows from the above claim and the assumption an0+2 >>

pn0+2 + qn0+2 that j ′ = j and |k − k′| < 1
4 |vn0+2,2|. Let m = k − k′. Applying this

to all (k, j) ∈ P , we obtain corresponding (k′, j) ∈ Q and m = k − k′. Clearly, m is
constant, which implies that y = σm(x) and that f (x) = f (y) is periodic, which is a
contradiction.

Finally, we consider non-Cantor factors of subshifts of finite symbolic rank. By a
combination of existing research, we can see that any irrational rotation is the maximal
equicontinuous factor of a minimal subshift of symbolic rank 2. In fact, the symbolic
rank-2 subshifts are generated by the Sturmian sequences that are symbolic representations
of irrational rotations (for details, see e.g., [3, §6.1.2]). In [27], it was shown that all
Sturmian sequences have a proper rank-2 construction. As noted in [12], it follows from
the work of [32] that for any irrational number 0 < α < 1, there is a Sturmian sequence Vα
and a factor map θ from (XVα , σ) to (T, +α) such that θ is injective on a comeager subset
of XVα . By a well-known criterion (e.g., [41, Proposition 1.1]), (T, +α) is the maximal
equicontinuous factor of (XVα , σ). Conversely, since any Sturmian sequence is Vα for
some irrational 0 < α < 1 (see e.g., [3, Theorem 6.4.22]), the maximal equicontinuous
factor of a subshift generated by a Sturmian sequence is an irrational rotation.
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