
XVI

The electroweak sector

Early studies of the weak interactions were confined to processes, like nuclear beta
decay and muon decay, which concern just the charged weak current. Starting from
the mid-1970s, the field of weak interaction phenomenology was broadened by
experiments involving neutral weak currents. The advent of collider experiments
made possible direct studies of the W± and Z0 gauge bosons themselves. This
chapter will first address the topic of low-energy neutral-current phenomenology
and then consider physical processes at the higher mass scales MW and MZ. To
conclude, we turn to the more theoretical topic of electroweak radiative corrections
and renormalization. Throughout, we shall keep our treatment at a relatively simple
introductory level.

XVI–1 Neutral weak phenomena at low energy

The words ‘low energy’ in the title of this section denote processes withQ2 � M2
Z.

We shall focus on three of these:

(1) deep-inelastic neutrino scattering (DIνS),
(2) atomic parity violation (APV),
(3) parity-violating (PV) Møller scattering.

In each case, the main finding is a determination of the weak mixing angle at the
kinematical scale μ=Q appropriate to that experiment. In this context, it is con-
venient to use a scale-dependent version of the weak mixing angle, such as the
MS quantity ŝ2

w(μ).
1 Then, we display in Fig. XVI–1 the dependence of ŝ2

w on Q2

found from both low-energy and high-energy studies. Fig. XVI–1, although not
yet reaching the iconic status of Fig. II–6 (which displays the asymptotic freedom

1 We employ the common abbreviations sw ≡ sin θw, cw ≡ cos θw and also employ ŝw for MS
renormalization. For convenience, we shall refer (admittedly loosely) to the quantity s2

w as the ‘weak
mixing angle’.
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Fig. XVI–1 Scale dependence of ŝ2
w, from [RPP 12] (used with permission).

property of QCD), has become an apt representation of this field. It has, indeed,
been a major achievement of low-energy neutral-current studies to verify (within
experimental uncertainties) the variation of ŝ2

w(μ) with scale μ expected from the
Standard Model.

One can use the renormalization group to ‘run’ each of the low-energy deter-
minations up to a standard reference scale, say μ=MZ, to provide the values
for ŝ2

w(MZ) shown in Table XVI–1 [KuMMS 13]. For comparison’s sake is also
included the quantity ŝ2

w(MZ) obtained by using an average of data from experi-
ments carried out directly at the Z0 scale, e.g., Z0 decays and cross-section asym-
metries, cf. Sect. XVI–2. At present, the high-energy determination is far more
accurate than the low-energy determination due to its dominance in statistics.

Neutral-current effective lagrangians

To provide a theoretical language for such low-energy experiments, let us identify
effective lagrangians for some neutral-current processes. Recall from Eq. (II–3.40)
that the neutral weak interaction between the gauge boson Z0 and a fermion f is
given at tree level by

Table XVI–1. Weak mixing angle from neutral-current
experiments

Experiment 〈Q2〉(GeV2) ŝ2
w(MZ)

DIνS 20 0.2356(16)
APV (in Cs) 5.8× 10−6 0.2383(20)
PV Møller 2.6× 10−2 0.2329(13)

Average at Z mass scale M2
Z � 8.3× 103 0.23125(016)
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L(f )ntl−wk = −
g2,0

2cw,0
Zμ f̄

(
g
(f )

v,0 γ
μ + g(f )a,0 γ

μγ5

)
f

g
(f )

v,0 = T
(f )

w3 − 2s2
w,0Q

(f )

el , g
(f )

a,0 = T
(f )

w3 , (1.1)

where we denote tree-level parameters with a ‘0’ subscript. Examples of individual
g
(f )

v,0 and g(f )a,0 appear in Eq. (II–3.41). To describe neutral-current interactions at
low energies, one forms an effective four-fermion lagrangian, akin to the Fermi
model of charged-current interactions. At tree level, the Z0-mediated interaction in
the low-energy limit is

L = −1

2

g2
2,0

4c2
w,0

∑
f,f ′

f
(
g
(f )

v,0 γ
μ + g(f )a,0 γ

μγ5

)
f

1

M2
Z,0

f
′ (
g
(f ′)
v,0 γμ + g(f

′)
a,0 γμγ5

)
f ′

= −ρ0
Gμ√

2

∑
f,f ′

f
(
g
(f )

v,0 γ
μ + g(f )a,0 γ

μγ5

)
f f

′ (
g
(f ′)
v,0 γμ + g(f

′)
a,0 γμγ5

)
f ′, (1.2)

where ρ0 is the tree-level rho parameter,

ρ0 ≡ 1

c2
w,0

M2
W,0

M2
Z,0

. (1.3)

Comparison of the second of the relations in Eq. (1.2) with Eq. (V–2.1) shows that
ρ0 governs the relative strengths of the neutral and charged weak-current effective
lagrangians. In the Standard Model, it has the tree-level value unity, ρ(SM)

0 = 1. The
reader might wonder – why include a quantity, ρ0, whose Standard Model value
is unity? There are actually two reasons: (i) although ρ(SM)

0 = 1, ρ0 is not unity in
general, e.g., alternative choices for Higgs structure can lead to different values for
ρ0 (cf. Prob. XV–1), and (ii) even in the Standard Model, electroweak corrections
will change its value away from unity (cf. Sect. XVI–6).

The set of low-energy neutral-current processes includes neutrino–electron,
neutrino–quark, and parity-violating electron–quark interactions. There is an effec-
tive lagrangian for each of these, two examples being

Lνq = −Gμ√
2
ν
γ

μ(1+ γ5)ν


[
ε
(α)
L qαγμ(1+ γ5)qα + ε(α)R qαγμ(1− γ5)qα

]
L(p.v.)eq = −Gμ√

2

[
Cα

1 eγ
μγ5e qαγμqα + Cα

2 eγ
μe qαγμγ5qα

]
, (1.4)

where the index α= u, d, . . . denotes quark flavor. Of course, contributions other
than neutral weak effects also enter, e.g., parity-conserving eq scattering experi-
ences the electromagnetic interaction.

In Eq. (1.4), we have implicitly included the effect of radiative corrections and
thus omit the subscript ‘0’. Table XVI–2 gives a compilation of the radiatively

https://doi.org/10.1017/9781009291033.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.017


XVI–1 Neutral weak phenomena at low energy 461

Table XVI–2. Radiatively corrected coefficients.

Coefficient General forma

ε
(u)
L ρνN

(
1
2 − 2

3κνNs
2
w

)
ε
(d)
L ρνN

(
− 1

2 + 1
3κνNs

2
w

)
ε
(u)
R ρνN

(
− 2

3κνNs
2
w

)
ε
(d)
R ρνN

(
1
3κνNs

2
w

)
Cu1 ρeq

(
− 1

2 + 4
3κeqs

2
w

)
Cd1 ρeq

(
1
2 − 2

3κeqs
2
w

)
aSmall additive terms are omitted.

corrected coefficients (with renormalization scheme left unspecified). The quan-
tities ρi and κi in Table XVI–2 reduce at tree level to unity, ρi,0= κi,0= 1. The
ρi are overall multiplicative factors and the κi multiply the weak mixing angle,
which itself has become renormalized, s2

w,0 → s2
w. The presence of such quantities

in the effective lagrangians can be traced back to the underlying neutral-current
couplings,

g
(f )

v,0 → g(f )v = √ρf
(
T
(f )

w3 − 2κf s
2
wQ

(f )

el

)
, g

(f )

a,0 → g(f )a = √ρf T (f )w3 , (1.5)

where, again, we leave the renormalization scheme unspecified. However, see
[MaS 80] for the introduction of MS renormalization to electroweak corrections.
The quantities ρi and κi will be discussed in more detail later in Sect. XVI–6.

Deep-inelastic neutrino scattering from isoscalar targets

In deep-inelastic scattering, one measures the ratios of neutral to charged-current
neutrino/antineutrino cross sections,

Rν ≡ σNC
νN /σ

CC
νN , Rν̄ ≡ σNC

ν̄N /σ
CC
ν̄N . (1.6)

Under the conditions of ‘deep-inelastic’ kinematics ([BaP 87]), theoretical calcula-
tions of Rν and Rν̄ are carried out in terms of quark, rather than hadronic, degrees
of freedom. It is plausible that by working with ratios like those in Eq. (1.6), theo-
retical uncertainites associated with hadron structure tend to cancel. At tree level,
Rν and Rν̄ are straightforwardly computed if scattering from an isoscalar target is
assumed and antiquark contributions are ignored. It is useful to express the ε(α)L,R

coefficients of Eq. (1.4) as
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g2
L ≡

(
ε
(u)
L

)2 +
(
ε
(d)
L

)2 � 1

2
− s2

w,0 +
5

9
(1+ r0) s

4
w,0,

g2
R ≡

(
ε
(u)
R

)2 +
(
ε
(d)
R

)2 � 5

9
s4

w,0. (1.7)

These quantities can be determined from the combination of neutrino and anti-
neutrino cross sections,

R± ≡ Rν ± rRν̄
1± r = g2

L ± g2
R, (1.8)

where r = 1/r̄ ≡ σCC
ν̄N /σ

CC
νN are measurable quantities with tree-level values

r0= r̄−1
0 = 3. The NuTeV experiment [Ze et al. 01] at Fermilab, carried out at an

average momentum-squared transfer 〈Q2〉= 〈−q2〉 � 20 GeV2, has yielded the
most precise determination to date,

g2
L = 0.3005± 0.0014, g2

R = 0.0310± 0.0011. (1.9)

This translates into a determination of the weak mixing angle, which lies nearly
3σ above the stated Standard Model prediction, a finding which has spurred much
discussion since then.

Atomic parity violation in cesium

The Z0-mediated electron–nucleus interaction, expressed here in the electron spin
space, contains a component which is parity-violating,

HPNC(r) = Gμ

2
√

2
Qwγ5ρnucl(r), (1.10)

where γ5 signals the presence of parity violation and ρnucl(r) reminds us that the
electron feels the effect only where the nuclear density is nonvanishing.2 The quan-
tity Qw is the ‘weak nuclear charge’ to which the electron couples, and is given to
lowest order by

Qw,0(N,Z) = −2
(
NuC

u
1,0 +NdC

d
1,0

) = Z
(
1− 4s2

w,0

)+N, (1.11)

where Z and N are, respectively, the nuclear proton and neutron number. The fact
that s2

w,0 � 0.25 suppresses the proton contribution, leaving the coupling of the
atomic electron to neutrons as dominant.

Consider the effect in atomic cesium, 138Ce. Because of the neutral weak-current
interaction, the single valence electron in cesium contains small admixtures of P
wave in its 6S (ground) and 7S (excited) states. We write these mixed states as |6S〉
2 The abbreviation ‘PNC’ stands for parity nonconservation.
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and |7S〉. As a consequence, there occurs a measurable parity-violating 7S → 6S
electric-dipole (E1) transition matrix element [NoMW 88],

Im EPNC = 〈7S〉|D|6S〉 ≡ Qw

N
kPNC, (1.12a)

where D is the electric-dipole operator and

kPNC ≡ N

Qw

∑
n

[〈7S|D|nP 〉〈nP |HPNC|6S〉
E6S − EnP + 〈7S|HPNC|nP 〉〈nP |D|6S〉

E7S − EnP
]
.

(1.12b)

The experiments involve finding the ratio of the PNC amplitude EPNC to the vec-
tor transition probability β. The most accurate results to date on the 6S → 7S tran-
sition are EPNC/β = 1.5935(56) mV cm−1 [BeCMRTWW 97] and β = 26.957(51)
a3

B [BeW 99]. However, interpretation of the PNC measurements requires evalu-
ating Eq. (1.12b) and this contains intractable aspects of the atomic many-body
problem. There has, however, been recent progress [PoBD 09] and the latest cal-
culation gives [DzBFR 12] EPNC= 0.08977(40)i(−Qw/N), implying the weak-
charge value

Qw(
138Ce) = −72.58(29)expt(32)thy, (1.13)

where the uncertainties refer respectively to statistical and theoretical contribu-
tions. This result lies about 1.5σ beneath the Standard Model prediction Q(SM)

w

(138Ce)=−73.23(2).

Polarized Møller scattering

Another experiment which has probed the weak mixing angle at a low-energy
scale is polarized Møller scattering [An et al. (SLAC E158 collab.) 05], where
we remind the reader that Møller scattering is the elastic scattering of electrons on
electrons. In SLAC E158, a 50 GeV beam of longitudinally polarized electrons was
scattered from an unpolarized fixed target. The parity-violating observable is the
asymmetry

Apv = σR − σL
σR + σL , (1.14)

where σR(L) is the cross section for incident right (left) polarized electrons. Rel-
evant kinematic variables are the center-of-mass-squared energy s= (p + p′)2,
the momentum transfer Q2=−q2=−(p − p′)2, and the ratio of the two, y ≡
Q2/s= (1 − cos θ)/2, where θ is the scattering angle in the center of mass. The
experiment was carried out with average values 〈Q2〉= 0.026 GeV2 and 〈y〉 � 0.6;
the tiny asymmetry Apv=−131(14)stat(10)sys × 10−9 was found.
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There are three parts to the theory analysis. First is the tree-level amplitude,
where the Møller scattering amplitude arises from t-channel and u-channel γ and
Z0 exchange diagrams. Parity violation is due to the interference of the electromag-
netic and weak neutral-current amplitudes. An approximate tree-level expression
for Apv which is valid for the conditions of the E158 experiment is

A(tree)
pv � GμQ

2

√
2πα

· 1− y
1+ y4 + (1− y)4

(
1− 4 sin2 θw,0

)
. (1.15)

The dependence on the weak mixing angle suppresses A(tree)
pv due to the proximity

of sin2 θw,0 to 1/4.
Next are the one-loop corrections, due mainly to the γ –Z0 propagator-mixing

terms induced by fermion and W -boson loop amplitudes [CzM 96]. These are
absorbed by the MS running weak mixing angle,

ŝ2
w(μ) = (1+�κ(μ)) ŝ2

w(MZ), (1.16a)

as parameterized by �κ(μ). In particular, one finds �κ(0) � 0.03, so that

1− 4 sin θ2
w � 0.075 =⇒ 1− κ(0)ŝ2

w(MZ) � 0.046. (1.16b)

The rather small (∼3%) effect of �κ(0) translates into a major (∼40%) change
in 1− 4 sin θ2

w! Finally comes the renormalization-group-improved analysis
[ErR-M 05]. This serves to ameliorate the dependence on large logarithms (ln(m2

f /

Q2) and ln(M2
W/Q

2) for fermion and W -boson loops respectively), which appear
in the one-loop amplitudes. This results in the improved determinations,

�κ(0) = 0.03232± 0.00029, ŝ2
w(0) = 0.23867± 0.00016. (1.17)

XVI–2 Measurements at the Z0 mass scale

The collection of resonances observed in eē collisions as a function of the total
center-of-mass energy is displayed in Fig. XVI–2. At the Z0 mass scale, it is the
weak interaction which dominates the physics in this reaction, with strong and elec-
tromagnetic effects merely supplying modest corrections. An enormous database
has been established at the Z0 factories with the LEP1 experiments at CERN and
the SLD collaboration at SLAC. There also exists data from pp̄ → f +f − mea-
sured at the Tevatron as well as that from pp → 
+
− + X taken by the LHC
detectors. These experiments have come to be analyzed in terms of a so-called
‘effective description’ wherein the renormalized vector and axial-vector couplings
of Eq. (1.5) are written as

ḡ(f )v = √ρf
(
T
(f )

w3 − 2s̄2
fQ

(f )

el

)
, ḡ(f )a = √ρf T (f )w3 , (2.1)
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Fig. XVI–2 Resonances in eē collisions.

where the superbars denote evaluation in the effective renormalization scheme
associated with the scaleμ=MZ. In this approach, the effective weak mixing angle
s̄f for fermion f is defined so as to absorb the κf factor in Eq. (1.5) [Sc et al. 06],

s̄2
f ≡ κf s

2
w, (2.2a)

and can be measured experimentally by

s̄2
f =

1

4

(
1− ḡ(f )v /ḡ(f )a

)
, (2.2b)

independent of the quantity κf .3

We shall discuss two kinds of measurements in the following: Z0 decay into
fermion–antifermion pairs, which is sensitive to (ḡ(f )v )2+(ḡ(f )a )2, and cross-section

3 Although both ρf and κf are both generally complex-valued, we shall tacitly use just the real part without
further comment.
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asymmetries in the reaction e−e+ → f f̄ at energy
√
s=MZ, which determine

the ratios ḡ(f )v /ḡ
(f )
a and thus lead to precise determinations of s̄2

f but not of the
individual couplings themselves. However, between the two kinds of experiments
a full determination of the couplings becomes possible. A comprehensive review
of Z0-related studies carried out at CERN and SLAC appears in [Sc et al. 06].

Decays of Z0 into fermion–antifermion pairs

Experiments at the LEP and SLD colliders have provided accurate determinations
of the Z0 mass and decay modes [Sc et al. 06]. To lowest order, the decay of a Z0

boson into a fermion–antifermion pair f f̄ can be conveniently expressed as

L(f f̄ )ntl =
(√

2GμM
2
Z

)1/2
Zμf̄ γμ

(
g(f )v + g(f )a γ5

)
f, (2.3)

where f = u, d, νe, e, . . . . Upon defining y ≡ m2/M2
Z for fermion mass m, we

obtain for the lowest-order transition rate to a pair f f̄ ,

�
(0)
Z0→f f̄

= Nc

6π

GμM
3
Z√

2

(
g(f )2v + g(f )2a

)√
1− 4y

[
1+ 2y

g
(f )2
v − 2g(f )2a

g
(f )2
v + g(f )2a

]

−→
y→0

Nc

6π

GμM
3
Z√

2

(
g(f )2v + g(f )2a

)
, (2.4a)

where Nc= 3 if f is a quark and unity otherwise. If the final-state fermions are
quarks, QCD-radiative corrections modify Eq. (2.4a) by a multiplicative factor
δQCD,

δQCD = 1+ αs
(
M2
W

)
π

+ 1.41

(
αs(M

2
W)

π

)2

+ · · · � 1.04, (2.4b)

where αs(M2
W) � 0.12 has been used in the above.

There exist also electroweak radiative effects, which we can take into account
by employing the effective weak coupling constants ḡ(f )v and ḡ

(f )
a of Eq. (2.1).

Upon including both strong and electroweak corrections, the tree-level relation of
Eq. (2.4a) is replaced (shown here in the limit of massless final-state fermions) by

�Z0→f f̄ = ηf
Nc

6π

GμM
3
Z√

2

(
ḡ(f )2v + ḡ(f )2a

)
, (2.5)

where ηf = δQCD if f is a quark and ηf = 1 otherwise.
Some Z0 decay-related quantities are listed in Table XVI–3. These results are

taken from [Sc et al. 06], but many others are provided in this source. Although
there will be some adjustments from more recent studies (e.g. see [RPP 12]), the
overall picture provided by [Sc et al. 06] bears testimony to an impressive advance
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Table XVI–3. Z0 decay [Sc et al. 06].

Measurablea Experiment Standard Model prediction

�eē 83.9± 0.1 84.00± 0.01
�inv 496.2± 8.8 501.66± 0.03
�bb̄ 377.3± 0.3 375.98± 0.03
�tot 2495.2± 2.3 2496.0± 0.2
ḡ
(
)2
v 0.0012± 0.0003 0.0011 → 0.0013
ḡ
(
)2
a 0.2492± 0.0012 0.2513 → 0.2518

aDecay widths are expressed in units of MeV.

in particle physics. One application, among many, of the Z0 decays is to use lep-
tonic modes to test the concept of lepton universality, and one finds

�μμ̄

�eē
= 1.0009± 0.0027,

�τ τ̄

�eē
= 1.0021± 0.0030, (2.6)

which is seen to be consistent with universality.

Asymmetries at the Z0 peak

For the reaction e−e+ → f f̄ carried out at the Z0 peak a natural variable is the
asymmetry parameter for fermion f ,

Af ≡ 2
ḡ
(f )
v ḡ

(f )
a

ḡ
(f )2
v + ḡ(f )2a

= 2
ḡ
(f )
v /ḡ

(f )
a

1+
(
ḡ
(f )2
v /ḡ

(f )2
a

) , (2.7)

which can be determined experimentally from angular distribution and/or polar-
ization data, as discussed below. In the case that the final-state fermion f is a
quark q, then it is hadrons which are detected and the final-state hadronic charge
asymmetry which is measured. It is to be understood that the measured data have
been corrected for contributions such as initial-state QED corrections, γ exchange,
γ –Z0 interference, etc., leaving asymmetries which are purely electroweak in ori-
gin. Finally, let the incident electron beam carry a polarization Pe but the positron
beam be unpolarized. For LEP1, the incident electron beam is unpolarized (Pe= 0),
whereas for SLC one has partial polarization (Pe � 0.75).

In the following, the symbols σF and σB refer to

σF = 2π
∫ 1

0
d cos θ

dσ

d�
, σB = 2π

∫ 0

−1
d cos θ

dσ

d�
, (2.8)

and σL, σR denote the cross section for an incident left-handed and right-handed
polarized electron. Then three types of asymmetry are:
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468 The electroweak sector

AFB ≡ σF − σB
σF + σB [forward–backward], (2.9a)

ALR ≡ σL − σR
σL + σR [left–right], (2.9b)

ALRFB ≡ (σF − σB)L − (σF − σB)R
(σF − σB)L + (σF − σB)R [left–right forward-backward], (2.9c)

and the relation of these to the asymmetry parameter of Eq. (2.7) is

A
(f )

FB =
3

4
Af

Ae + Pe

1+AePe

ALR = AePe A
(f )

FBLR =
3

4
Af . (2.10)

Yet another approach is to exploit the fact that final-state tau leptons themselves
carry a polarization Pτ , which affects the tau angular distribution as well as its FB
asymmetry P (τ )

FB . As such, the LEP1 experiments were able to extract the asymme-
try parameters Aτ and Ae via the polarization measurements

Aτ = −Pτ , Ae = −4

3
P (τ )

FB . (2.11)

The above set of asymmetries were the subject of much study for a number of
years. One interesting example is the high-precision measurement of ALR carried
out by the SLD collaboration [Ab et al. (SLD collab.) 00]. The left–right asym-
metry was measured from the e+e− production cross section by counting (mainly)
hadronic final states for each of the two longitudinal polarizations of the incident
electron beam at energies near the Z0 mass. Despite the emphasis on detecting
final-state hadrons, this measurement actually probes the asymmetry parameter of
the incident-state electrons,

ALR = 1− 4s̄2



1− 4s̄2

 + 8s̄2




, (2.12)

where we have assumed lepton universality in writing the weak mixing angle as
s̄2

 . The precision measurement of ALR then leads to the following determination

of s̄2

 ,

A
(e)
LR = 0.15138± 0.00216, s̄2


 = 0.23097± 0.00027. (2.13)

In summary, the collection of measurements taken at scale μ=MZ has, on the
whole, been in agreement with Standard Model expectations.

Let us conclude by commenting on just a few topics:

(1) Effective weak mixing angle s̄
: Adopting a Higgs mass value MH = 125 GeV,
the Standard Model prediction [ErS 13] s̄2


 = 0.23158 is consistent with the
experimental determination s̄2


 = 0.23153± 0.00016.
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(2) Unresolved issue: A long-standing item is the roughly 3σ difference between
the two most precise individual measurements s̄
= 0.23097 ± 0.00027
(via ALR from the SLD production cross sections discussed earlier) and
s̄2

 = 0.23221± 0.00029 (via AFB from the Z0 → bb̄ transition found at LEP).

Despite much discussion, the issue remains unresolved.
(3) Quantum corrections: The large collection of high-quality Z0 data has pro-

vided determinations which are sensitive to quantum corrections. For exam-
ple, the result g(
)a =−0.50125 ± 0.00026 (found in part by assuming lepton
universality) implies via Eq. (2.1) that ρ
= 1.005 ± 0.001. This differs from
the bare value ρ(tree)


 = 1.000 by 5σ and attests that quantum corrections have
indeed been probed. Some even more impressive examples appear in Sect. I of
[FeS 12].

Definitions of the weak mixing angle

Thus far in this chapter, we have made reference to three different versions of (and
notations for) the weak mixing angle,

Effective : s̄2
f On-shell : s2

w MS : ŝ2
w(μ). (2.14)

Since there is, in principle, an unlimited number of renormalization prescriptions
for a given quantity in quantum field theory, it is no surprise to come across the
three above usages in the literature (several others, not covered here, also exist).
Let us briefly consider their relation to each other, starting with the effective weak
angle for a lepton 
.

Given the definition for s̄2

 in Eq. (2.2b), it’s clear that this quantity is tied to the

ratio ḡ(
)v /ḡ(
)a as measured at the scale μ=MZ. The motivation for doing things
this way is a matter of convenience for the massive experimental effort by the Z0

factories – one reads off a basic quantity of the Standard Model directly in terms
of Z0-related data. The current precise determination, given earlier and repeated
here, of s̄2


 = 0.23153 ± 0.00016 attests to the success achieved by the Z0-factory
experimentalists in doing precision physics.

We have already seen (cf. Sect. II–1) how modified minimal subtraction (MS)
can be implemented in dimensional regularization for the electric charge e(q2),
and one proceeds accordingly for the weak mixing angle ŝ2

w(q
2) (or sw(q

2)MS) by
adopting the scale-dependent definition [Ma 79, MaS 81],

ŝ2
w

(
q2
) ≡ e2

(
q2
)

g2
2

(
q2
) . (2.15)

A fit to the current database yields the value appearing already in Table XVI–1,
viz., ŝ2

w(MZ)= 0.23125± 0.00016.
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The effective and MS descriptions of the weak mixing angle can be related
[GaS 94]. As pointed out in [GaS 94] there was, at the time of the LEP1 operation,
‘considerable confusion among theorists and experimentalists alike as to the pre-
cise conceptual and numerical relation between the two’. The analysis in [GaS 94]
established that

s̄2

 = Reκ̂
(MZ) ŝ

2
w(MZ) � 1.0012 ŝ2

w(MZ) � ŝ2
w(MZ)+ 0.0003. (2.16)

This is in accord with the individual values for s̄2

 and ŝ2

w(MZ) given above.
Finally, the on-shell weak mixing angle is defined in terms of the physical gauge-

boson masses,

s2
w ≡ 1−M2

W/M
2
Z. (2.17a)

Thus, the on-shell weak mixing angle can be experimentally determined directly
from MW and MZ. Inserting the gauge-boson mass values from Table I–1 into
Eq. (2.17a), one has

s2
w

∣∣
MW,MZ

= 0.2229± 0.0003. (2.17b)

The current uncertainty in s2
w

∣∣
MW,MZ

, about twice that in s̄2

 and ŝ2

w(MZ), is due
largely to theW± mass uncertainty, δMW = 15 MeV, compared to the much smaller
δMZ = 2.1 MeV. With the completion of the Tevatron data analysis, along with the
resumption of LHC operations, the precision gap between the direct on-shell deter-
mination and the alternative s̄2


 and ŝ2
w(MZ) schemes is expected to be narrowed.

Even so, the fact that the on-shell scheme contains some relatively large O(Gμm
2
t )

corrections (see Sect. XVI–6 for a discussion) not present in MS renormalization
lessens its appeal for use in electroweak perturbation theory.

Returning to the idea of scale-dependent (or running) quantities, consider the
possibility of relating gauge coupling constants ĝk (k= 1, 2, 3) in the MS scheme
at the Z0 scale with those of a ‘grand unified’ theory defined at an energy EGUT 

MZ. The so-called GUT scale signals the existence of a gauge group undergoing
spontaneous symmetry breaking to SU(3)c × SU(2)L × U(1)Y . The condition

ĝ1 = ĝ2 = ĝ3 (E = EGUT) (2.18)

leads to a prediction [GeQW 74] for the weak mixing angle at the scaleEGUT. In the
grand unified theory of SU(5) [GeG 74, La 81] and its supersymmetric extension
(SUSY–SU(5)), the MS weak mixing angle obeys

ŝ2
w(EGUT) = 3/8. (2.19)
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At the much lower energy scale μ=MZ, this value is reduced by a calculable
amount,4

ŝ2
w(MZ) ≡ s̄2

w =
3

8

[
1− C ᾱ

2π
ln
MX

MZ

+ · · ·
]
, (2.20)

where ᾱ ≡ α̂(MZ), MX is the mass scale of the superheavy gauge bosons, and C
is a constant which depends upon the number nH of Higgs doublets,

C =

⎧⎪⎨⎪⎩
110− nH

9
(SU(5))

30− nH
3

(SUSY–SU(5)).
(2.21)

The SU(5) extension of the Standard Model has nH = 1, whereas the minimal
supersymmetric model takes nH = 2.

The ‘bare-bones’ SU(5) model turns out to be unacceptable. It is well known to
give rise to an unacceptably short proton lifetime, and precision data indicate that
the three coupling constants of the Standard Model disagree with a single unifi-
cation point if evolved according to SU(5) [AmBF 91]. Interestingly, the SUSY
extension improves matters in both respects. The rate at which ŝ2

w(μ) ‘runs’ is
decreased due to contributions from supersymmetric partners (‘sparticles’) of the
known particles, and the unification scale is raised to a level (MX � 1016 GeV) con-
sistent with the observed proton stability. The unification condition of Eq. (2.18)
is better satisfied. Studies continue on whether supersymmetry breaking yields
insights regarding masses of the long-sought SUSY ‘sparticles’.

XVI–3 Some W± properties

We shall return to issues regarding the weak mixing angle and its several definitions
in Sect. XVI–4. Before that, however, we consider some aspects of W± physics.
The LEP2 (e+e−), the Tevatron (p̄p) and the LHC (pp), colliders have provided
copious W±-related data.

Decays of W± into fermions

The decay of a W -boson into a lepton and neutrino pair 
ν
 is governed by the
lagrangian,5

L(lept)
ch = − g2√

8
W+
μ ν
γ

μ(1+ γ5)
 + h.c. (3.1)

4 Actually, Eq. (2.20) represents a simplification in that (i) lowest-order estimates for the renormalization-
group coefficients are employed, (ii) supersymmetry-breaking effects are ignored, and (iii) the fact that
mt > MZ is also ignored.

5 Although we shall denote tree-level decay widths, cross sections, etc. with a zero superscript in this section,
for the sake of notational simplicity, we shall suppress the zero subscript for bare parameters.
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It is a straightforward exercise to compute the tree-level decay width,

�
(0)
W→ν



= g2
2

8

MW

6π
(1− x)

(
1− x

2
− x2

2

)
−→
x→0

1

6π

Gμ√
2
M3
W, (3.2)

where x ≡ m2

/M

2
W and we have employed Eq. (II–3.43). Including a small electro-

weak correction, we have �W→eνe � 0.226 GeV.
There exist also decays W → q(i)q(j) into quark modes (the superscripts i,

j = 1, 2, 3 are generation labels), induced by the lagrangian

L(qk)
ch = − g2√

8
W+
μ Vij q

(i)
k γ

μ(1+ γ5)q
(j)

k + h.c., (3.3)

where Vij is a CKM matrix element, and the index k labels color. The lowest-order
decay width for quark emission is∑

color

�
(0)
W→q(i)q(j)

= 1

2π

Gμ√
2
M3
W

∣∣Vij ∣∣2 [1− 2(x + x)+ (x − x)2]1/2
×
[

1− x + x
2

− (x − x)2
2

]
−→
x,x→0

1

2π

Gμ√
2
M3
W

∣∣Vij ∣∣2 , (3.4)

where x, x are mass ratios defined as above, and we assume that all emitted quarks
eventually convert to hadrons. Since the t quark is too massive to be a product ofW
decay, a sum over accessible quark flavors yields

∑
i,j

∣∣Vij ∣∣2 = 2. For decay into
quarks, these lowest-order partial decay widths are modified by δQCD, the QCD
factor of Eq. (2.4b) introduced in our earlier discussion of Z0 hadronic decays.

If all final-state masses are ignored, the predicted total width for W± decay into
fermions is

�
(tot)
W± = �

(had)
W± + �(lept)

W± � 2.093 GeV

(
MW(GeV)

80.385

)3

. (3.5)

An average of data [RPP 12] yields the value �(tot)
W± = 2.085± 0.042 GeV, which is

consistent with the prediction of Eq. (3.5). The current experimental uncertainty far
exceeds that from theory. In the limit of massless final-state particles, the branch-
ing ratio for decay into a lepton pair 
ν̄
 is (Br)
 � 1/9 (
= e, μ, τ), while
inclusive decay to a mode containing a positively charged quark q (q = u, c) gives
(Br)q � 1/3.

Triple-gauge couplings

The SU(2)× U(1) lagrangian of Eq. (II–3.10) and the SU(2) field strength tensor
of Eq. (II–3.11) alert us that there will be trilinear and quadrilinear couplings of the
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gauge bosons. We shall limit our discussion here to the so-called charged triple-
gauge couplings (TGCs). Upon using Eq. (II–3.30) to replace the neutral gauge
bosons Bμ,W 3

μ with the physical fields Aμ,Z0
μ, we can write an effective WWV

(V =Z0, γ ) lagrangian as6

LWWV = igWWV

[
gV1
(
W †
μνW

μ −WμνW
μ†
)
V ν + κVW †

μWνV
μν

+ i λV
M2
W

W †
ρμW

μ
ν V

νρ

]
, (3.6a)

whereWμν ≡ ∂μWν−∂νWμ, Vμν ≡ ∂μVν−∂νVμ and gWWV represents the coupling
strengths

gWWγ = −e, gWWZ0 = −e cot θw. (3.6b)

The above lagrangian is constrained to contain only terms which are invariant under
charge-conjugation (C), parity (P), and SU(2) × U(1) gauge transformations. In
the Standard Model, the individual couplings in Eq. (3.6a) become

gV1 = 1, κV = 1, λV = 0
(
V = Z0, γ

)
, (3.6c)

and are consistent with the following constraint of gauge invariance,

κZ = gZ1 − (κγ − 1) tan2 θw, λZ = λγ . (3.6d)

A recent review of LEP experiments gives [Sc et al. 13]

gZ1 = 0.984+0.018
−0.020, κγ = 0.982± 0.042, λγ = −0.022± 0.019, (3.7)

consistent with Standard Model expectations.
We can read off static electromagnetic properties of the W boson upon taking

V = γ . The decomposition in Eq. (3.6a) allows for the existence of a magnetic
dipole moment μW and an electric quadrupole moment qW ,

μW = e

2MW

(1+ κγ + λγ ), qW = − e

M2
W

(κγ − λγ ), (3.8a)

or to lowest order in the Standard Model (SM),

μSM
W = e/MW, qSM

W = e/M2
W . (3.8b)

A number of experimental studies of the TGCs, especially data from the LEP2
e+e−, the Tevatron p̄p, and the LHC pp colliders, has emphasized searching for
anomalous TGCs, often expressed in terms of the five quantities,

�gZ1 ≡ gZ1 − 1, �κZ ≡ κZ − 1, �κγ ≡ κγ − 1, λZ, λγ . (3.9)

6 Unlike TGCs with two W± bosons, purely neutral gauge-boson vertices are not present at tree level in the
Standard Model.
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These constitute anomalous behavior in that they vanish for the Standard Model
values in Eq. (3.6c). Currently, no experimental evidence exists for any of the
anomalous TGCs, for example

−0.038 < λZ < +0.031, −0.111 < �κγ < 0.142 [CMS],

−0.074 < λZ < +0.073, −0.135 < �κγ < 0.190 [ATLAS]. (3.10)

The status of recent bounds is indicated by the results the LHC detectors. ATLAS
and CMS will be performing further studies at higher energies and, even lacking
discovery of such effects, will supply ever more stringent bounds on anomalous
behavior.

We can expand the preceding discussion to incorporate possible violations of
parity and charge-conjugation invariance, for which an appropriate effective
lagrangian L̃WWV which does just this is

L̃WWV = gWWV

[
iκ̃VW

†
μWνṼ

μν + i λ̃V
M2
W

W †
αμW

μ
νṼ

να

+ gV4 W †
μWν (∂

μV ν + ∂νV μ)+ gV5 εμναβ
(
W †
μ∂αWν − ∂αW †

μ ·Wν

)
Vβ

]
.

(3.11)

Here, κ̃γ and λ̃γ are P -violating but C-invariant, whereas gV4 respects P but not
C and gV5 respects neither P nor C. In particular, the W boson could itself have
static properties which violate at least some of the discrete symmetries. For exam-
ple, an electric dipole moment dW or magnetic quadrupole moment q̃W would be
parameterized as

dW = e

2MW

(̃
κγ + λ̃γ

)
, q̃W = − e

M2
W

(̃
κγ − λ̃γ

)
. (3.12)

Limits on the neutron electric dipole moment can be used to place a bound on
the W electric dipole moment [MaQ 86], and an updated evaluation gives |dW | ≤
5× 10−21 e-cm.

XVI–4 The quantum electroweak lagrangian

In the following three sections, we shall give a simple description of how electro-
weak radiative corrections are calculated. We begin by quantizing the classical
electroweak lagrangian to obtain certain of its Feynman rules. We also expand on
earlier comments made in Sect. XVI–1 regarding on-shell renormalization.
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Classical electroweak theory of three fermion generations is defined by an
SU(2)L × U(1)Y gauge-invariant lagrangian,7

L(cl)
ew = L(cl)

ew

({
ψ
(f )

L,R

}
,Wμ, Bμ,� ; {gf }, g1, g2, λ, v

2
)
, (4.1)

where � is the Higgs doublet and the collection {gf } of Higgs–fermion coupling
constants is flavor-nondiagonal. With spontaneous symmetry breaking, all parti-
cles but the photon become massive and diagonalization of the neutral gauge-
boson mass matrix occurs in the basis of the photon Aμ and massive gauge-boson
Z0
μ fields, as given at tree level by Eq. (II–3.30). In addition, diagonalization of

the charged-fermion and neutrino mass matrices for the three-generation system
involves additional mixing angles and phases. The physical degrees of freedom of
the gauge and Higgs sectors become manifest in unitary gauge (cf. Sect. XV–1),

L(cl)
ew = L(cl)

ew

({
ψ(f )

}
,W±

μ , Z
0
μ,Aμ,H0 ; {mf },MW,MZ,MH, e

)
, (4.2)

where the fermion mixing parameters are included in the {mf }.

Gauge fixing and ghost fields in the electroweak sector

The quantum electroweak lagrangian L(qm)
ew will contain, in addition to the classical

lagrangian of Eq. (4.1), both gauge-fixing and ghost-field contributions,

L(qm)
ew = L(cl)

ew + L(g-f)
ew + L(gh)

ew . (4.3)

Mixing between gauge fields and unphysical Higgs fields occurs in the covariant
derivative of the Higgs doublet (cf. Eq. (II–3.18)),8

LHG =
∣∣∣∣(I
(
∂μ + i

2
g1Bμ

)
+ i

2
g2�τ · �Wμ

)
�

∣∣∣∣2 + · · ·
= i

g1

2
(∂μ�)†Bμ�+ i g2

2
(∂μ�)†�τ · �Wμ �+ h.c.+ · · · . (4.4)

One can arrange the gauge-fixing term to cancel such mixing contributions.
Expressing the complex Higgs doublet in terms of the physical fieldH0, unphysical
fields χ+, χ3, and the vacuum expectation value v as

� = 1√
2

( √
2χ+

H0 + iχ3 + v
)
, (4.5)

we write the gauge-fixing contribution in the form,

7 We have replaced the Higgs parameter μ2 by the equivalent quantity v2.
8 Mixing also occurs, of course, between the neutral gauge fields Bμ, W3

μ.
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L(g-f)
ew = − 1

2ξ+

∣∣∣∣∂μWμ
+ − ξ+g2v

2
χ+
∣∣∣∣2

− 1

2ξ3

(
∂μW

μ

3 −
ξ3g2v

2
χ3

)2

− 1

2ξ0

(
∂μB

μ + ξ0g1v

2
χ3

)2

. (4.6)

It is not hard to see that cancelation of the unwanted Higgs–gauge mixing terms
occurs for arbitrary values of the gauge-fixing parameters ξ+,3,0. Even with this
cancelation, there remain in L(g-f)

ew quadratic terms containing the unphysical Higgs
fields, and such terms will contribute to the propagators of these fields.

As explained in App. A–6, once the gauge fixing is specified as in Eq. (4.6), the
structure of the Faddeev–Popov lagrangian L(gh)

ew of ghost fields is determined. For
the electroweak sector, it turns out that there are four ghost fields,

L(gh)
ew = L(gh)

ew (cW, cB). (4.7)

These are associated with the four gauge fields Wμ, Bμ which appear in the original
SU(2)L × U(1)Y symmetric lagrangian.

A subset of electroweak Feynman rules

The full set of electroweak Feynman rules is rather lengthy and we refer the reader
to the detailed discussions in [BöHS 86, AoHKKM 82] or to the summary in
[Ho 90]. A few of the more useful rules, expressed in terms of bare parameters
are9

fermion W -boson vertex:

−i e

2
√

2sw

Vij
[
γμ(1+ γ5)

]
αβ

μ

αβ j i (4.8a)

fermion Z-boson vertex:

−i e

2swcw

[
γμ(g

(f )
v + g(f )a γ5)

]
αβ

μ

αβ (4.8b)

9 For notational simplicity, we suppress the zero subscript in the following discussion.
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W -boson propagator iD(W)
μν (q):

i
q2 −M2

W + iε
[
−gμν + qμqν(1− ξ+)

q2 − ξ+M2
W + iε

]
μ

q

ν (4.8c)

Z-boson propagator iD(Z)
μν (q):

i
q2 −M2

Z + iε
[
−gμν + qμqν(1− ξZ)

q2 − ξZM2
Z + iε

]
μ

q

ν (4.8d)

unphysical charged Higgs propagator i�(χ+)(q):

i

q2 − ξ+M2
W + iε

q
(4.8e)

In the above, (Vij ) is a matrix element for quark-mixing, g(f )(v,a) are given in Eq. (II–
3.41), and ξZ is defined by expressing the gauge fixing in the form of Eq. (4.6) but
using the physical neutral fields.

As seen in Eqs. (4.8c), (4.8e), each boson propagator is explicitly gauge-
dependent and, in particular, the propagator of the unphysical χ+ vanishes in the
ξ+→∞ limit of the unitary gauge. This is as expected, because only physical
degrees of freedom appear in unitary gauge. In fact, the absence of unphysical
degrees of freedom in unitary gauge would appear to be an appealing reason for
carrying out the computation of radiative corrections in this gauge. However, there
is a ‘hidden cost’. In unitary gauge, the W± propagator of Eq. (4.8c) becomes

iD(W)
μν (q)

∣∣∣∣
unitary

= i
−gμν + qμqν/M2

W

q2 −M2
W + iε

, (4.9)

and the high-energy behavior produced by the qμqν/M2
W term makes this a ques-

tionable choice for doing higher-order calculations. Instead, as the price for accept-
able high-energy behavior, many opt to accept the presence of unphysical fields.
One popular choice of gauge fixing is the ’t Hooft–Feynman gauge, defined by
setting all the gauge-fixing parameters equal to unity, ξi = 1. In this gauge, the
lowest-order propagators for the physical gauge bosons and unphysical Higgs and
ghost fields have poles at either M2

W or M2
Z. This condition can be maintained in

higher orders by a suitable renormalization of the gauge-fixing parameters.
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On-shell determination of electroweak parameters

The topic of electroweak radiative corrections to Standard Model quantities has
been well developed over many years of research and by now there exists an
impressively large literature. To focus our attention, there is one aspect that we
will particularly address in the following. Given that the largest mass parameter in
the Standard Model is that of the top quark, a natural question regards the effect
mt has on the set of electroweak corrections. The answer turns out to depend on
the renormalization prescription followed, its effect being largest in the so-called
on-shell scheme.

Two sets of electroweak parameters appear in the classical lagrangians of
Eqs. (4.1), (4.2),

classical parameter sets =
{
{gf }, g1, g2, λ, v

2 (Eq. (4.1)),

{mf },MW,MZ,MH, e (Eq. (4.2)).

Considered as bare (input) parameters to the quantum theory, these obey the simple
tree-level relations

MW,0 = v0
g2,0

2
, MZ,0 = v0

g2
1,0 + g2

2,0

2
, e−2

0 = g−2
1,0 + g−2

2,0,

MH,0 = v0

√
2λ0, mf,0 = v0

gf,0√
2
. (4.10)

At this stage, there are several (equivalent) expressions for the bare weak mixing
angle, e.g.,

s2
w,0 = 1− M2

W,0

M2
Z,0

or s2
w,0 =

g2
1,0

g2
1,0 + g2

2,0

. (4.11)

The second relation becomes Eq. (2.15) in the MS renormalization.
Radiative corrections will generally modify tree-level relations and, as a result,

necessitate a precise definition of the weak mixing angle. Following the analysis in
[Si 80], let us compare the parameter subsets (g1,0, g2,0, v

2
0) and (e0,MW,0,MZ,0).

Each of these bare quantities will experience a shift,

g1,0 = g1 − δg1, g2,0 = g2 − δg2, v2
0 = v2 − δv2,

e0 = e − δe, M2
W,0 = M2

W + δM2
W, M2

Z,0 = M2
Z + δM2

Z. (4.12)

In on-shell renormalization, the theory is specified in terms of e, MW , and MZ.
Moreover, the following relations are arranged to hold order by order,

e−2 = g−2
1 + g−2

2 , M2
W = v2g

2
2

4
, M2

Z = v2

(
g2

1 + g2
2

)
4

. (4.13)

These equations constrain the effects of radiative corrections upon the parameters.
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By differentiating the three relations in Eq. (4.13), one finds after a modest amount
of algebra the conditions,⎛⎜⎜⎜⎜⎝

δg2
1

g2
1

δg2
2

g2
2

δv2

v2

⎞⎟⎟⎟⎟⎠ =
⎛⎜⎜⎝
−1 1 1
c2

w
s2
w

− c2
w
s2
w

1
s2
w−c2

w
s2
w

c2
w
s2
w

−1

⎞⎟⎟⎠
⎛⎜⎜⎜⎜⎝
δM2

W

M2
W

δM2
Z

M2
Z

δe2

e2

⎞⎟⎟⎟⎟⎠ . (4.14)

Also in on-shell renormalization, one defines the weak mixing angle in terms of
the masses MW,MZ as in Eq. (2.17a). Since this relation is to be maintained to all
orders, the bare value s2

w,0 will be modified by shifts in the W and Z masses,

s2
w,0 = 1− M2

W,0

M2
Z,0

= 1− M2
W + δM2

W

M2
Z + δM2

Z

� s2
w

[
1− cot2 θw

(
δM2

W

M2
W

− δM2
Z

M2
Z

)]
. (4.15)

For any renormalizable field theory, it makes sense to express results in terms
of the most accurately measured quantities available. Thus, it is preferable in the
electroweak sector to replace MW by Gμ and work with a modified parameter set,

Physical parameter set =

⎧⎪⎨⎪⎩
α−1 = 137.035999173(35),

Gμ = 1.1663787(6)× 10−5 GeV−2,

MZ = 91.1876(21) GeV.

(4.16)

To accomplish this, the relationship Gμ = Gμ(α,MW,MZ, . . . ) can be used to
replace MW by Gμ.

XVI–5 Self-energies of the massive gauge bosons

It is is evident from Eq. (4.14) that the parameter shifts δe2, δM2
W and δM2

Z play an
important role in the study of electroweak radiative corrections. We have already
determined from our analysis of QED (cf. Eq. (II–1.30)) that

δe2

e2
= −�(0), (5.1)

where the photon vacuum polarization �(q2) appears in Eq. (II–1.26). In this sec-
tion, we shall compute the portion of δM2

W and δM2
Z arising from the fermionic va-

cuum polarization contributions to the W± and Z0 propagators. As a consequence,
we shall be able to reveal the presence of propagator contributions which scale as
O(Gμm

2
t ).
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The charged gauge bosons W±

The radiative correction experienced by aW± gauge boson propagating at momen-
tum q is expressed in terms of a self-energy function, �μν

ww(q
2),

�μν
ww

(
q2
) ≡ Aww

(
q2
)
gμν − Bww

(
q2
)
qμqν. (5.2)

(For notational simplicity in this subsection we denote W and Z boson subscripts
for the quantities �μν , A, and B in terms of lower-case Roman indices.) Although
a vector-boson propagator iDμν(q) generally contains terms proportional to gμν
and to qμqν , it will suffice to study just the gμν part. As indicated at the end of
Sect. II–3, the qμqν dependence is absent if the gauge boson couples to a con-
served current or will give rise to suppressed contributions if the external parti-
cles have small mass. Thus, we have for the W propagator in ’t Hooft–Feynman
gauge,

−igμν
q2 −M2

W,0

→ −igμν
q2 −M2

W,0

+ −igμα
q2 −M2

W,0

(−iAww(q
2)gαβ

) −igβν
q2 −M2

W,0

→ −igμν
q2 −M2

W,0 + Aww(q2)

= −igμν
q2 −M2

W + Aww(q2)− δM2
W

, (5.3)

where we have substituted for the bare W mass using Eq. (4.12).
Let us now calculate the loop contribution of a fermion–antifermion pair f1f̄2

to the self-energy Aww(q
2). We begin with

−i�αβ
ww(q

2)

∣∣∣∣
f1f̄2

= −(−ig2)
2ηf1f̄2

8

×
∫

d4p

(2π)4
Tr

[
γ α(1+ γ5)

i

�p −m1
γ β(1+ γ5)

i

�p −�q −m2

]
,

(5.4)

where ηf1f̄2
=Nc|Vf1f2 |2 for the case when the fermions are quarks. Aside from

the occurrence of the 1+γ5 chiral factor and the nondegeneracy in fermion masses
m1,m2, the above Feynman integral is identical to the photon vacuum polariza-
tion function of Eq. (II–1.20). It is thus straightforward to evaluate this quantity in
dimensional regularization, and we find for the gαβ component,
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A(f1f̄2)
ww (q2) = ηf1f̄2

g2
2

24π2

[
q2

{
2

ε
− γ

2
+ ln

√
4π

−3
∫ 1

0
dx x(1− x) ln

M2 − q2x(1− x)
μ2

}
−3

2

{
(m2

1 +m2
2)

[
2

ε
− γ

2
+ ln

√
4π

]
−
∫ 1

0
dx M2 ln

M2 − q2x(1− x)
μ2

}]
,

(5.5)

where M2 ≡ m2
1x + m2

2(1 − x). Since the W± boson is an unstable particle with
decay rate �W , the function Aww(q

2) is complex-valued, and we consider its real
and imaginary parts separately.

From Eq. (5.5), we see that Re Aww(q
2) is divergent. One can construct a finite

quantity Âww(q
2) by defining the field renormalization, Wμ,0= (ZW

2 )
1/2Wμ, and

constraining δM2
W and δZW

2 to cancel the ultraviolet divergence in Re Aww(q
2),

Âww
(
q2
) ≡ Aww

(
q2
)− δM2

W + δZW
2

(
q2 −M2

W

)
. (5.6)

It follows from Eq. (5.6) that the mass shift δM2
W is fixed by

δM2
W = Re Aww

(
M2
W

)
, (5.7)

and the f1f̄2 contribution to the field renormalization, which ensures that Âww

(M2
W)= 0 is

δZW
2 [f1f̄2] =

ηf1f̄2
g2

2

8π2

[
2

ε
− γ

2
+ ln

√
4π

]
. (5.8)

To obtain a relation for the imaginary part of the self-energy, we recall that insta-
bility in a propagating state of mass M is described by the replacement M →
M − i�/2. This produces the following modification of a propagator denominator,

1

q2 −M2
→ 1

q2 −M2 + iM�
, (5.9)

where we ignore the O(�2) term. Comparison with Eq. (5.5) then immediately
yields

Im Aww(M
2
W) = MW�W. (5.10)

We can use Eq. (5.6) to check this relation by setting q2=M2
W . If, for simplicity,

we neglect the masses of the fermion–antifermion pair f1f̄2, then the imaginary
part comes from the logarithm contained in the first of the integrals in Eq. (5.5),

Im
∫ 1

0
dx x(1− x) ln

−q2x(1− x)
μ2 − iε −→

q2=M2
W

−π
6
, (5.11)
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and we obtain

�W→f1f̄2
=

Im
[
A
(f1f̄2)
ww

(
M2
W

)]
MW

= ηf1f̄2

GμM
3
W

6
√

2π
, (5.12)

where we have substituted g2
2 = 4

√
2M2

WGμ. This agrees with the results of our
earlier decay width calculations for W decay in Sect. XVI–3.

The neutral gauge bosons Z0, γ

The system of neutral gauge bosons is treated analogously to the charged case
except that we must deal with a 2 × 2 propagator matrix, and the issue of parti-
cle mixing arises. Although the neutral channel was already diagonalized at tree
level (cf. Eq. (II–3.30)), interactions reintroduce nondiagonal propagator contri-
butions at higher orders. The gμν part of the neutral channel inverse propagator
D−1
[ntl]μν

(
q2
)
, diagonal at tree level,

D(0)−1
[ntl]μν

(
q2
) = igμν

(
q2 0
0 q2 −M2

Z,0

)
, (5.13)

has the renormalized form,

D(0)−1
[ntl]μν

(
q2
)→ D−1

[ntl]μν
(
q2
) = gμν

(
q2 + Âγ γ

(
q2
)

Âγ z
(
q2
)

Âγ z
(
q2
)

q2 −M2
Z + Âzz

(
q2
)) .
(5.14)

Upon taking the inverse, we obtain for the individual neutral boson renormalized
propagators,

Dμν
γγ

(
q2
) = −igμν

q2 + Âγ γ
(
q2
)− Â2

γ z

(
q2
) / (

q2 −M2
Z + Â2

zz

(
q2
)) ,

Dμν
zz

(
q2
) = −igμν

q2 −M2
Z + Âzz

(
q2
)− Â2

γ z

(
q2
) / (

q2 + Â2
γ γ

(
q2
)) ,

Dμν
γ z

(
q2
) = igμνÂγ z

(
q2
)[

q2 + Âγ γ
(
q2
)] [

q2 −M2
Z + Â2

γ γ

(
q2
)]− Â2

γ z

(
q2
) . (5.15)

Observe that there is indeed a particle-mixing propagator, Dμν
γ z , proportional to the

the reduced self-energy Âγ z(q2). It might appear from Eq. (5.15) that Z0-photon
mixing gives rise to a photon mass contribution. However, one arranges as a renor-
malization condition that Âγ z(0)= 0, and the photon remains massless under elec-
troweak radiative corrections.
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If we consider only the vacuum-polarization loop contribution due to a fermion
of mass m, we obtain for the Z0 self-energy,

−i�αβ
zz

(
q2
) = Nc

(
ig2

2cw

)2 ∫
d4p

(2π)4
Nαβ(

p2 −m2
) (
(p − q)2 −m2

) , (5.16)

where m is the fermion mass, Nc is a quark color factor, and

Nαβ = g(f )2v Tr
[
γ α�pγ

β(�p −�q)+m2γ αγ β
]

+ g(f )2a Tr
[
γ α�pγ

β(�p −�q)−m2γ αγ β
]
. (5.17)

The quantities in Nαβ are just those expected from the coupling of fermion f to
the neutral weak current. We then obtain, using dimensional regularization,

A(f f̄ )zz (q2) = g2
2Nc

16π2c2
w

[
2q2(g

(f )2
v + g(f )2a )

3

{
2

ε
− γ

2
+ ln

√
4π

−3
∫ 1

0
dx x(1− x) ln

m2 − q2x(1− x)
μ2

}
+4m2g(f )2a

{
2

ε
− γ

2
+ ln

√
4π − 1

2

∫ 1

0
dx ln

m2 − q2x(1− x)
μ2

}]
.

(5.18)

It is also easy to demonstrate that the photon–Z0 self-energy A(f f̄ )γ z is propor-
tional to A(f f̄ )γ γ for the case of a charged-fermion loop contribution,

A
(f f̄ )
γ z

(
q2
) = g

(f )
v

2cwswQf

A
(f f̄ )
γ γ

(
q2
)
, (5.19)

where Qf is the electric charge of the fermion.

XVI–6 Examples of electroweak radiative corrections

All electroweak amplitudes will be affected by radiative corrections. We have
already pointed out our interest in potentially large contributions arising from the
heavy masses mt and MH . We shall find leading corrections which are quadratic
in the top-quark mass (O(Gμm

2
t )).

10 To begin this section, we consider corrections
to the coefficients ρf and κf of Eq. (1.5), followed by an analysis of the quantum
correction known as �r , and finally the Z → bb̄ vertex correction. A historical
overview of electroweak corrections appears in [FeS 12], and a thorough state-of-
the-art presentation is given by Erler and Langacker in [RPP 12].

10 Recall from Chap. XV that corrections at leading order are only logarithmic in the Higgs mass
(O(ln[M2

H
/M2

Z
])).
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W+ W+ Z0 Z0

t

b

(a) (b)

t

t

Fig. XVI–3 Top-quark corrections to the (a) W±, (b) Z0 propagators.

The O(Gμm2
t ) contribution to 
ρ

Contributions to ρf and κf can be classified as either independent of the external
fermions (universal ) or explicitly dependent on the fermion flavor f (nonuniver-
sal). Recalling that at tree level these quantities reduce to unity, we have

ρf = 1+�ρ + (�ρ)(f )nonuniv, κf = 1+�κ + (�κ)(f )nonuniv, (6.1)

where �ρ and �κ denote universal pieces. It should be apparent that W±- and
Z0-propagator corrections, like those in Fig. XVI–3, occur independent of the
external fermions and are thus ‘universal’. Nonuniversal effects have been found
to be small (i.e. subdominant) except for the Z0 → b̄b vertex. The universal
effects are of special interest because they turn out to be the primary source of
O(Gμm

2
t ) radiative corrections [Ve 77a, ChFH 78]. As such, in the following we

shall approximate

�ρ = (�ρ)t + · · · , �κ = c2
w

s2
w

(�ρ)t + · · · , (6.2)

where

(�ρ)t = 3Gμm
2
t

8π2
√

2
� 0.00942×

( mt

173.4 GeV

)2
. (6.3)

Observe in Eq. (6.2) that �κ is proportional to �ρ. This is a result of the Standard
Model; in general, these quantities are independent.

The quantity �ρ can be defined as a correction to the rho parameter of Eq. (1.3),

ρ0 = 1

c2
w,0

· DZ(q
2 = 0)

DW(q2 = 0)

ρ0 +�ρ = M2
Z + δM2

Z

M2
W + δM2

W

·
(−M2

Z − δM2
Z + Azz(0)

)−1(−M2
W − δM2

W + Aww(0)
)−1 (6.4)

or

�ρ = Azz(0)

M2
Z

− Aww(0)

M2
W

. (6.5)
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Observe that �ρ is finite since the singular terms in Eqs. (5.5), (5.18) cancel. If we
set m1=mt and m2=mb in Eq. (5.5) and include both t-quark and b-quark loops
in Eq. (5.18), a simple calculation reveals that �ρ= 0 in the limit that mt =mb.
However, the leading term in the small mb limit gives

(�ρ)t = g2
2Nc

16π2M2
W

∫ 1

0
dx

[
m2
t

2
ln
m2
t

μ2
− xm2

t ln
xm2

t

μ2

]
+ · · ·

= g2
2Nc

64π2

m2
t

M2
W

+ · · · . (6.6)

Substitution of Nc= 3 and Gμ/
√

2= g2
2/8M

2
W yields the result shown in

Eqs. (6.2), (6.3).
This quadratic dependence on the heavy-top-quark mass is in striking contrast

with the behavior observed for the photon self-energy (cf. Eq. (II–1.26)). In the
heavy-fermion limit, the photon vacuum polarization exhibits instead the decoup-
ling result O(m−2

t ). The reason for this difference is that QED is a vector theory,
whereas the charged and neutral weak interactions are chiral. Indeed, one can show
(cf. Prob. XVI–2) that the decoupling expected of a vector interaction results when
left-handed and right-handed self-energies are averaged. However, equally impor-
tant is the fact that as mt grows while mb is kept fixed, the weak doublet is being
split in mass. Thus, decoupling of the top quark in the large mt limit should not
be expected because if we were to integrate out the top quark, we would no longer
have a renormalizable theory – the remaining low-energy theory would have an
incomplete weak doublet. Early contributions to this subject appear in [Ve 77b]
and [ChFH 78]. As noted above, if both members of the doublet are taken to be
equally heavy (mt =mb →∞), there would exist no quadratic dependence on the
heavy-quark mass, and the decoupling theorem (cf. Sect. IV–2) would be satisfied.
It is the large splitting in the weak doublet which leads to the observable violation
of decoupling.

Even though two different renormalization schemes must give the same final set
of results, intermediate details will generally differ. For example, the leading mt

behaviors for the coefficients ρf and κf of Eq. (1.5) are [RPP 12],

on-shell : ρf ∼ 1+ (�ρ)t + · · · κf ∼ 1+ c2
w

s2
w

(�ρ)t + · · ·
(MS) : ρ̂f ∼ 1+ · · · κ̂f ∼ 1+ · · · , (6.7)

where (�ρ)t is defined in Eq. (6.3).11

11 The case f = b is special; the leading behaviors are ρ̂f ∼ 1− 4(�ρ)t /3 and κ̂f ∼ 1+ 2(�ρ)t /3.
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(a)

e
μ μ μ μ

(b) (c) (d)

W W W
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W

νμ νμ νμ νμ

νe

e
e e

νe
νe νe

Fig. XVI–4 (a)–(b) Vertex, (c) propagator, and (d) mass-shift counterterm cor-
rections to muon decay.

The O(Gμm2
t ) contribution to 
r

The quantity �r describes the effect of electroweak corrections on the leading
order relation which defines the muon decay constant. In particular, the tree-level
relation of Eq. (II–3.43) becomes modified by the radiative corrections of
Fig. XVI–4 [Si 80, BuJ 89],

Gμ,0√
2
= g2

2,0

8M2
W,0

→ Gμ√
2
= g2

2

8M2
W

[1+�r]. (6.8a)

It is to be understood in Eq. (6.8a) that ‘Gμ’ is determined from the muon lifetime
with the photonic corrections described in Sect. V–2 already taken into account.
Thus, �r contains only the remaining electroweak effects.

To trace the origin of the quantum correction, we observe first the effect of the
W± self-energy on the bare relation in Eq. (6.8a),

Gμ√
2
= −g

2
2,0

8

1

q2 −M2
W,0 + Aww(0)

� g2
2,0

8M2
W,0

[
1+ Aww(0)

M2
W

+ · · ·
]
, (6.8b)

where we have taken q2 � 0. Next, we replace the bare parameters g2
2,0 and M2

W,0

by their physical forms as in Eq. (4.12). Comparison with Eq. (6.8a) directly yields

�r = δM2
W − Aww(0)

M2
W

− δg2
2

g2
2

. (6.9)

Upon using Eq. (4.14) for δg2
2, we can rewrite Eq. (6.9) as

�r = −δe
2

e2
− c2

w

s2
w

[
δM2

Z

M2
Z

− δM2
W

M2
W

]
+ Aww(0)− δM2

W

M2
W

. (6.10)

Recalling that theW± andZ0 mass shifts can be related to the self-energy functions
Aww(M

2
W) and Azz(M

2
Z), it should be clear that Eq. (6.9) expresses �r entirely

in terms of calculable quantities.12 Although each of the terms in Eq. (6.10) is

12 There are additional radiative corrections, such as the ‘box’ diagrams, which we shall not discuss.
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divergent, the overall combination is finite. A number of rearrangements and alge-
braic steps can be used to isolate the leading contributions, and one finds

�r = �α +�rw + (�r)rem, (6.11)

where

�α ≡ α
(
M2
Z

)− α
α

� �̂
(
M2
Z

)
, and �rw = −c

2
w

s2
w

�ρ. (6.12)

�ρ is given by Eqs. (6.5)–(6.6), and (�r)rem contains smaller finite contributions.
The largest contribution to �r is �α, the shift in the fine-structure constant.

Although we have previously expressed the variation in α(q2) in terms of fermion
masses (cf. Eq. (II–1.38)), the difficulty in precisely determining quark masses
would appear to undermine an accurate evaluation of �α. However, one can use
dispersion relations to relate the hadronic contribution to the vacuum polarization,
�̂had(q

2), directly to cross-section data. Recalling Prob. V–2, we have

�
μν

had(q
2) = ie2

∫
d4x eiq·x〈0|T (Jμem(x)J

ν
em(0))|0〉

= (qμqν − q2gμν
)
�had

(
q2
)
. (6.13)

The imaginary part of �had(q
2) is expressible in terms of cross-section data evalu-

ated at invariant energy q2,

Im �had
(
q2
) = α

3
R
(
q2
)

with R
(
q2
) ≡ σ(eē→ hadrons)

σ (eē→ μμ̄)
. (6.14)

Thus, we obtain a dispersion relation for the subtracted quantity �̂had(q
2),

�̂had
(
q2
) ≡ �had

(
q2
)−�had(0)

= αq2

3π

[∫ s0

4m2
π

+
∫ ∞

s0

]
ds

R(s)

s(s − q2 − iε) , (6.15)

where s0 denotes the point at which data become unavailable. For energies
above s0, a perturbative representation is used to approximate R(s). The result of
Eq. (6.15), when added to the lepton contributions, implies a value for α−1(M2

Z)

[DaHMZ 11],13

α−1
(
M2
Z

) = 128.952± 0.014. (6.16)

Some feeling for the magnitudes of ‘�r’ corrections is given in the following
(the numerical values have been taken from [KuMMS 13]):

13 There are minor differences in various evaluations cited in the literature, depending on how the perturbative
estimate is performed or on the particular renormalization scheme.
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(a) (b)
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Fig. XVI–5 Top-quark corrections to the Z0bb̄ vertex.

�r = 1− πα√
2GμM

2
W

(
1−M2

W/M
2
Z

) = 0.0350(9),

�r̂w = 1− πα√
2GμM

2
W Ŝ

2
w(MZ)

= 0.0699(7)(4),

�r̂ = 1− πα√
2GμM

2
ZĈ

2
w(MZ)Ŝ2

w(MZ)
= 0.0598(4). (6.17)

The above relations, although exact at tree level (the ‘�r = 0’ limit), lead to the
different values shown away from this limit. As before in this chapter, the quantities
ŝ2

w(MZ) and ĉ2
w(MZ) are defined in MS renormalization and evaluated at scaleMZ.

In order to obtain the above form for �r , we have replaced [1+�r] in Eq. (6.8a)
by 1/[1−�r], which is valid in our first-order analysis.

The Z → bb̄ vertex correction

The preceding analyses of �ρ and �r could very well be carried out for any other
electroweak observable. In most cases, we would again find important O(Gμm

2
t )

radiative corrections. Thus, for example, the Z0 width for decay into lepton 


(
= e, μ, τ ) has the form

�Z0→

̄=�(0)Z0→

̄
[1+ (�ρ)t + · · · ] , (6.18)

and grows quadratically with increasing mt [AkBYR 86]. The origin of this effect,
the one-loop t t̄ contribution to the Z0 propagator, is identical to that discussed
earlier.

Interestingly, however, a more complete calculation reveals a slight decrease to
occur in the decay rate �Z0→bb̄ as mt grows. This is because, although the decay
amplitude contains a (universal) propagator contribution proportional to (�ρ)t , an
even larger effect, the vertex correction of Fig. XVI–5, contributes with opposite
sign [AkBYR 86, DjKZ 90],14

14 Due to cancelations, the vertex correction turns out not to affect asymmetry phenomena, such as the b-quark

forward–backward asymmetry A(b)
FB

.
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�Z0→bb̄ = �
(0)
Z0→bb̄

[
1+ 19

13

(
(�ρ)t +

(
�v(b)

)
t

)+ · · · ] , (6.19)

where the Z0bb̄ vertex correction is given by

(�v(b))t = −20

19
(�ρ)t − 130

57

α

π
ln
m2
t

M2
Z

. (6.20)

The dd̄, ss̄ modes also contain virtual t-quark vertex corrections, but they are
greatly suppressed by the tiny accompanying CKM factors |Vti|2 (i= d, s). Recall-
ing the characterization given in Sect. XVI–1 of radiative corrections as either ‘uni-
versal’ or ‘nonuniversal’, one may interpet the Z0bb̄ effect as a nonuniversal term
which contributes as

(�ρ)
(b)
nonuniv = −2(�κ)(b)nonuniv = −

4

3
�ρ − α

4πs2
w

(
8

3
+ 1

6c2
w

)
ln
m2
t

M2
W

. (6.21)

Although O(m2
t ) corrections are the most important, O(ln(m2

t /M
2
Z) logarithmic

dependence has been included in Eq. (6.20) because it has a nonnegligible numer-
ical impact.

Precision tests and New Physics

In precision electroweak tests, about 20 (mainly W± or Z0) observables are fit
to Standard Model predictions (e.g. see [Ba et al. (Gfitter group) 12, RPP 12]).
Such tests are based on the availability of high-quality data (with precision at the
1% level or better), multi-loop theoretical Standard Model predictions, and sophis-
ticated software packages.15 In view of the LHC discovery regarding the Higgs
boson, the list of detected Standard Model particles is now complete. Consequently,
there will be, more than ever, an emphasis on using precision tests to probe contri-
butions from beyond the Standard Model.

As was noted ever since the first electroweak corrections were calculated (e.g.
[Ve 77a]), physics associated with a large-energy scale  should affect the gauge-
boson self-energies−i�i

μν(q) (i= γ γ, γ z,WW,ZZ). In particular, the−i�i
μν(q)

could contain loop corrections (sometimes referred to as oblique corrections) from

15 Let us describe just a few of these. The Zfitter collaboration, begun in 1985 ([AkARR 13]), established a
FORTRAN library of Standard Model predictions for e+e− → f f (+γ ′s) at energies

√
s= 20 → 150 GeV

using the on-shell renormalization scheme. The LEP electroweak working group LEPEWWG was founded
in 1993 to perform fits of LEP and Tevatron data, particularly of Z-pole observables such as the effective
weak mixing angle s̄2

f
of Eqs. (2.2b),(2.14), using Zfitter in part as input. A more recent effort using on-shell

renormalization to perform electroweak global fits is the Gfitter group. The Global Analysis of Particle
Properties (GAPP) software is employed by the Particle Data Group [Er 00]. This is a special purpose
FORTRAN package, which performs calculations and fitting procedures and utilizes MS renormalization,
Finally, the Heavy Flavor Averaging Group provides updates to world averages of heavy-flavor quantities.
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‘new’ particles. For2 
 q2, one would expect rapid convergence of an expansion
for −i�i

μν(q) in powers of q2/2, yielding the following effective low-energy
description,

−i�i
μν(q) = gμν

(
Ai + q2A′i

)+ · · · . (6.22)

This description involves eight free parameters,Aγγ , . . . , A′zz. However, the condi-
tions �γγ (0)=�γ z(0)= 0 reduce this number to six. An additional three parame-
ters can be absorbed into the renormalization of α,Gμ,MZ, which experience the
shifts [BaFGH 90],

δα

α
=−A′γ γ ,

δGμ

Gμ

= Aww,
δM2

Z

M2
Z

= −Azz

M2
Z

− A′zz. (6.23)

The three remaining parameters may be chosen to be quantities known as S, T ,U
and defined as [PeT 90] (we employ MS renormalization here [RPP 12])

α̂ (MZ)

4ŝ2
Zĉ

2
Z

S ≡
[
A(NP)

zz

(
M2
Z

)− A(NP)
zz (0)

M2
Z

− ĉ2
Z − ŝ2

Z

ŝ2
Zĉ

2
Z

A(NP)
zγ (0)

M2
Z

− A(NP)
γ γ (0)

M2
Z

]
,

α̂(MZ)T ≡
[
A(NP)

ww (0)

M2
W

− A(NP)
zz (0)

M2
Z

]
,

α̂(MZ)

4ŝ2
Z

(S + U) ≡
[
A(NP)

ww

(
M2
W

)− A(NP)
ww (0)

M2
W

− ĉZ

ŝZ

A(NP)
zγ (0)

M2
Z

− A(NP)
γ γ (0)

M2
Z

]
,

(6.24)

where the superscript (NP) refers to contributions only from New Physics. Clearly,
these S, T ,U parameters are defined so as to vanish in the limit of only Stan-
dard Model physics. If nonzero, they would appear as new contributions to various
observables, e.g., [

M
(expt)
Z

M
(SM)
Z

]2

= 1− α̂(MZ)T

1−GμM
(SM)2
Z S/(2

√
2π)

,

[
M

(expt)
W

M
(SM)
W

]2

= 1

1−GμM
(SM)2
W (S + U)/(2√2π)

,

[
M

(SM)
Z

M
(expt)
Z

]3

· �
(expt)
Z

�
(SM)
Z

= 1

1− α̂(MZ)T
, (6.25)

all of which compare the experimental value with the Standard Model (SM) predic-
tion. In this way, bounds are placed on the New Physics parameters and the results
found in [RPP 12] are16

16 The range of Higgs-boson masses 115.5 < MH (GeV) < 127 was used as input.

https://doi.org/10.1017/9781009291033.017 Published online by Cambridge University Press

https://doi.org/10.1017/9781009291033.017


XVI–6 Examples of electroweak radiative corrections 491

S = 0.00+0.11
−0.10, T = 0.02+0.11

−0,12, U = 0.08± 0.11, (6.26)

and are consistent with Standard Model expectations. At present, the precision
electroweak fits do not yet display evidence for effects beyond those predicted by
the Standard Model.

The literature contains several other possible New Physics parameterizations.
For example, if the scale of New Physics is not much larger than the Standard
Model weak scale, then parameters X, Y, V,W will, in principle, contribute to the
fitting procedure [BuGKLM 94, BaPRS 04]. However, their determination requires
data at energies higher than the scale set by the Z-boson mass and so, e.g., in the
work of [Ba et al. (Gfitter group) 12], the quantities X, Y, V,W are set equal to
zero.

As we have emphasized throughout this book (e.g. Sect. IV–9), the effects of
heavy particles can be analyzed theoretically by using effective lagrangians and the
preceding analysis can be expressed naturally in this language (e.g. see [Sk 10]).
These must respect the SU(2)L × U(1)Y gauge symmetry, but may or may not
include the extra custodial SU(2)L × SU(2)R invariance of the Higgs sector with
doublet Higgs fields. There will be a tower of such operators, beginning with those
of dimension-six. However, not all dimension-six operators are relevant to elec-
troweak phenomenology. Examples of these are

(
H †H

)3
and H †HDμH

†DμH ,
the point being that processes having Higgs bosons as external states are presently
experimentally inaccessible. Instead, we consider the two operators.17

OS ≡ H †σ iHF
i
μνB

μν, OT ≡
∣∣H †DμH

∣∣2, (6.27)

where Bμν , F i
μν are, respectively, the field strength tensors defined in Eqs. (II–

3.11), (II–3.12). These operators, together with the usual Standard Model
lagrangian LSM, can be added together to form

L = LSM + aSOS + aTOT . (6.28)

The New Physics coefficients aS and aT will each carry units of inverse squared-
energy and the Higgs fields in Eq. (6.27) will each contribute a factor of the
symmetry-breaking energy v, so that in this approach the S, T parameters will
obey

S ∝ aS v
2, T ∝ aT v

2, (6.29)

and we leave evaluation of the proportionality factors to an exercise at the end of
the chapter. Although we do not survey New Physics models in this book, a large
variety is discussed in [Sk 10, RPP 12, Ba et al. 12], among others.

17 It turns out that associated with the parameter U will be a dimension-eight operator.
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Problems

(1) Tree-level coefficients in effective lagrangians
(a) Using the simplest quark–parton description of protons and neutrons as

uud and ddu composites, reproduce the content of the tree-level expres-
sions of Eq. (1.7) by determining the quantities Rν,0 and Rν̄,0 for scattering
from an isoscalar target. It might be helpful to first refer to a summary of
parton phenomenology, e.g., as in [RPP 12], for guidance. Suppose a neu-
trino deep-inelastic experiment reports Rν = 0.3072 ± 0.0032. Infer from
this a central value and an error estimate for the tree-level quantity s2

w,0.

(b) Likewise, reproduce the tree-level expressions for the coefficients C(u,d)
1,0 of

Eq. (1.11), and infer a value for s2
w,0 assuming the value Qw=−69.4 ±

1.55± 3.8 for the weak nuclear charge.
(2) Power-law radiative corrections

(a) Verify the statement that if mt =mb → ∞, there is no quadratic mass
dependence in the calculation of �ρ.

(b) From the combination of Dirac matrices appearing in Eq. (5.4), it is evident
that the self-energy amplitude has a ‘left–left’ (LL) chiral structure. To see
how this affects the result, repeat the analysis of Eqs. (5.4), (5.5) except
now employing a ‘left–right’ (LR) chiral structure.

(c) By averaging the LL and LR self-energies and passing to the limit m1=
m2 → m, reproduce the gαβ part of the photon self-energy of Eq. (II–1.26).

(d) If we had a purely left-handed U(1) theory, the vacuum polarization would
grow with m2

t as mt →∞. How can this be consistent with the decoupling
theorem?

(3) Effective field theory and the S,T parameters
Determine the proportionality factors which were not provided in Eq. (6.29).
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