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Abstract

It is a plausible speculation that conventional choices in outcome measures might influence
the results of meta-analyses. We test that speculation by simulating data from trials on anti-
depressants. We vary real drug effectiveness while modulating conventional values for
outcome measures. We had previously shown that one conventional choice used in meta-
analyses of antidepressants falls in a narrow range of values that maximize estimates of
effectiveness. Our present analysis investigates why this phenomenon occurs. Moreover,
our results suggest the superiority of absolute outcome measures over relative measures.
This research program can be extended to test numerous other aspects of clinical research.

1. Introduction
An outcome measure is used to analyze data from trials and is a quantitative assess-
ment of the strength of a causal relation. The choice of outcome measure can influ-
ence one’s inferences, such as how discordant data are between trials and how strong
the tested causal relation is (Sprenger and Stegenga 2017). Here, we demonstrate that
fine-grained conventional choices about a particular outcome measure can have a
dramatic impact on estimates of the effectiveness of interventions.

This present article is part of a larger research program developing an innovative
method that has not been widely used in the philosophy of science. We simulate
patient-level data from trials on a particular class of drugs while varying features
of the simulated research context, such as the real effectiveness of the drugs, the
number of subjects in each trial, and in the present work, the conventional features
of an outcome measure. We use simulations in the spirit of Mayo-Wilson and Zollman
(2021), who argue that simulations are like thought experiments in philosophy and
indeed are often superior to thought experiments.1

© The Author(s), 2022. Published by Cambridge University Press on behalf of the Philosophy of Science Association. This
is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided
the original article is properly cited.

1 Simulations have become an important tool in philosophy, testing a wide range of topics in episte-
mology, philosophy of science, and other domains; for a sample of this approach, see Zollman (2007),
O’Connor (2015), Romero (2016), and Kummerfeld and Zollman (2015). However, we are not aware of
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A widely used outcome measure in meta-analyses is the responder odds ratio, which
is defined as the ratio of the odds of being a “responder” in the drug group divided by
the odds of being a responder in the placebo group. A responder is a subject whose
symptoms drop below a threshold c. In trials and meta-analyses of antidepressants,
c is typically 50% of a subject’s pretrial symptom severity. Symptom severity in anti-
depressant trials is measured with various scales; one common scale is the Hamilton
Depression Rating Scale (we will refer to this as the H scale, with corresponding H
scores), a 50-point scale in which higher scores represent greater symptom severity.
So, if you are a subject in a trial and your H score at the start of the trial is 26, and it is
12 at the end of the trial, you would be deemed a responder. A responder odds ratio of
greater than 1 implies that a drug is effective; conversely, a responder odds ratio of
close to 1 suggests that the drug is relatively ineffective.

An inference from a particular value of a responder odds ratio to a claim that a
drug is effective is dubious, and although establishing this point is not our main objec-
tive, we give an argument for this as well. Our main objective is to show that this
commonly used value for c falls within a range that maximizes the responder odds
ratio and to explain this phenomenon. If other values for c were used in meta-
analyses of antidepressants, it is very likely that lower values of the responder odds
ratio would be found.

A brief thought experiment is suggestive. Based on past trial data, we know that
subjects start trials with an average H score of about 24, subjects in the drug group
end trials with an average H score of about 11, and subjects in the placebo group end
trials with an average H score of about 14. If c were very low—say, 5%—then few
subjects in either the drug group or the placebo group would be deemed responders,
and thus the responder odds ratio would be close to 1, and the drug would be deemed
ineffective. Conversely, if c were very high—say, 95%—then many subjects in both
groups would be deemed responders, and thus again the responder odds ratio would
be close to 1, and thus again the drug would be deemed ineffective. A c value of 50%
looks to be roughly in a “sweet range” to maximize the responder odds ratio.

One way to test these suggestions would be to get patient-level data from trials on
antidepressants and then compute the responder odds ratio while varying c. However,
save few exceptions, no one has access to these data. Even the latest and biggest meta-
analyses get access only to group-level summaries of trial data (Cipriani et al. 2018).

Our approach gets around the problem of data access. Moreover, our approach
allows us to test counterfactuals, such as scenarios in which the tested drugs are very
effective or ineffective, and scenarios in which a different measurement scale is used.
Tabatabaei Ghomi and Stegenga (forthcoming) show that setting c around 50% indeed
nearly maximizes the responder odds ratio and thereby maximizes the estimate of
drug effectiveness, and other values of c give lower values for the responder odds
ratio. These results are consistent with previous work, such as Hadzi-Pavlovic
(2009). In the present article, we explore the reasons for this phenomenon.

work in the philosophy of science in which data from trials are simulated to test meta-level hypotheses
about research. Some articles in the field of statistics have simulated trial data of antidepressants
(Chevance et al. 2019; Landin et al. 2000; Santen et al. 2009), but the questions posed by those researchers
and, consequently, their methods are quite different from ours.
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Here is another way of thinking about our thought experiment mentioned earlier.
For a causal relation evaluated in a trial with data generated by a particular measur-
ing instrument, there is a sweet range for c which minimizes the proportion of sub-
jects deemed responders in the placebo group and maximizes the proportion of
subjects deemed responders in the drug group, thereby maximizing the responder
odds ratio (for similar suggestions, see Ragland 1992).

Now consider another thought experiment. Suppose we modify the H scale by add-
ing questions that are irrelevant to the causal relation under investigation and that
add the same score to all subjects, such as “Are you human?” and “Is your body com-
posed of at least five atoms?” This increases the total possible H score without chang-
ing the absolute difference in mean scores between the drug and placebo groups. The
sweet range for c that maximizes the responder odds ratio will correspondingly
increase. We evaluate this via our simulation approach, and we confirm our
speculation.

Another objective of this article is to enter the recent debate between some phi-
losophers, who argue that absolute outcome measures are informative while relative
outcome measures are misleading, and other philosophers, who argue that both abso-
lute and relative outcome measures can be informative. The responder odds ratio is
an example of a relative outcome measure that is misleading and uninformative about
the real effectiveness of interventions.

2. Methods
Our simulation approach was initially presented in another article (Tabatabaei Ghomi
and Stegenga, forthcoming). We briefly reiterate it here, adding details particular to
this article.

2.1 Modeling responders
OR is the odds of being a “responder” in the drug group (Od) divided by the odds of
being a responder in the placebo group (Op). The odds of being a responder in the
placebo or the drug group equals the number of responders divided by the number
of nonresponders in each group:

OR � Od
Op

Og �
Rg
�� ��

g
�� �� � Rg

�� �� ; g 2 d; p
� �

;

where Rg is the set of responders in the drug (g � d) or the placebo (g � p) group, and
Rg
�� �� and g

�� �� are the sizes of Rg and g respectively.
A subject i in group g counts as a responder (i 2 Rg) if their H score after treatment

(Ha
i ) is less than or equal to a fraction c of their H score before treatment (Hb

i ):

Rg � 8i 2 g j H
a
i

Hb
i

≤ c
� �

:

A drug is deemed effective if the lower 95% confidence interval of OR is higher than
1 (Bland 2015).
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2.2 Simulating patient data
We used a random generator to generate patient data before and after treatment
with drug or placebo based on the parameters that we calculated from published
meta-analyses of trials on antidepressants. Our parameter estimates were based
on one of the most recent and most comprehensive meta-analyses of antidepres-
sants (Cipriani et al. 2018). Because the absolute values of these parameters are
central to this article, in this section we provide some details of how we estimated
them.

The most frequently used scale was the 17-question H scale, used in 537 out of
1,199 parameters reported in the supplementary material of Cipriani et al. (2018).
After excluding reports with missing data, we ended up with 105 parameter values
for the placebo and 337 values for various drugs (drug values were combined,
regardless of drug identity). We calculated both the simple and the weighted aver-
ages (by the number of participants in each study) of the parameter values
(weighting had a negligible impact). Because Cipriani et al. (2018) report standard
deviations only after treatment, we used Hieronymus et al. (2016) to obtain the
standard deviations of the placebo and drug groups before treatment. The other
distribution parameter values reported by Hieronymus et al. (2016) were close to
the values we calculated and so cross-validated our results. The calculated values
are reported in table 1.

We simulated trials of various sizes, from 100 to 500 subjects (equally distributed
between the drug and placebo groups; the size of each group is denoted by n). In our
previous study, we varied drug effectiveness, indicated by the after-treatment mean
H score in the drug group (ma

d). For each combination of values for ma
d (seven values,

from 9 to 15) and n (nine values, from 50 to 250), we repeated the simulation 5,000
times (thereby generating data for 315,000 trials in total). In the present study, we
fixed the drug effectiveness to ma

d � 11 (estimated from meta-analyses), but we var-
ied the H scale as described in the following section, resulting in different absolute
values for mean H scores in the drug and placebo groups before and after

Table 1. Parameters Used in Simulations

Parameter Calculated
Used for
Simulation

Mean H score in placebo group before treatment, mb
p 23.5 (unweighted: 23.3) 24

Mean H score in drug group before treatment, mb
d 24.0 (unweighted: 23.8) 24

Mean H score in placebo group after treatment, ma
p 14.2 (unweighted: 14.6) 14

Mean H score in drug group after treatment, ma
d 11.3 (unweighted: 11.5) 11

Standard deviation (SD) of H score in placebo group
before treatment, sbp

3.5 3.5

SD of H score in drug group before treatment, sbd 3.5 3.5

SD of H score in placebo group after treatment, sap 7.9 (unweighted: 7.98) 7.9

SD of H score in drug group after treatment, sad 7.4 (unweighted: 7.3) 7.4
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treatment.2 We repeated the simulation 5,000 times for each combination of n and
H scale (thereby generating data for 225,000 trials in total).

2.3 Adjusting measurement scale
We simulated data using multiple versions of the H scale. The base scale is H50, the
17-question scale commonly used in real trials, with a total of 50 points. The mean values
reported in table 1 are based on this scale. We adjusted this scale by adding a number of
irrelevant questions for which all subjects would answer affirmatively, generating a scale
with a total of 57 points (H57), 67 points (H67), 88 points (H88), and 151 points (H151).
Section 3 explains why we used these particular scales. These additional questions shift
mb

d,m
a
d,m

b
p andma

p up by a fixed value equivalent to the number of added questions with-
out changing the absolute difference between the means of the placebo and drug groups.
For each scale, we assessed the effect of varying c on the difference in the number of
responders in the placebo and drug groups, the lower 95% confidence interval of OR,
and the probability of concluding that a drug is effective.

3. Results and discussion

3.1 The sweet range
The probability of concluding that a drug is effective under various combinations of n,
ma

d and c is displayed in figure 1; this was one of the main results of Tabatabaei Ghomi

Figure 1. The probability of concluding that a drug is effective under various combinations of sample size
(n), real drug effectiveness (ma

d), and conventional threshold for definition of responder (c).

2 There is a hard lower cutoff on the randomly generated data: H scores cannot be lower than zero.
This can result in distributions with averages slightly higher than the ma

d used for random generation,
especially with lower ma

d values. See Tabatabaei Ghomi and Stegenga (forthcoming) for more technical
details.
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and Stegenga (forthcoming), and we reproduce it here to lay the grounds for the
remainder of our results. We begin by noting three features of figure 1. First, as
the effectiveness of the drug decreases from ma

d � 9 to ma
d � 15, the probability of

concluding that a drug is effective decreases, as expected. Second, the probability
of finding a drug to be effective increases by increasing the number of participants,
which is a result of the increased power of larger trials. Third, and most relevant to
our present interest, the influence of the (arbitrary and conventional) value of c on
inferences of effectiveness is abundantly clear.

We observe three key features of the influence of c on the probability of concluding
that a drug is effective. First, as mentioned earlier, c � 50% nearly maximizes the
probability of concluding that a drug is effective. Second, the range of c with a high
probability of concluding that a drug is effective narrows as we go toward less effec-
tive drugs (higherma

d). And third, the optimum range of c for concluding that a drug is
effective shifts slightly to the right as we go toward less effective drugs. In Tabatabaei
Ghomi and Stegenga (forthcoming), we noted these phenomena but did not explain
them. Here, we provide an explanation for these phenomena, thereby articulating the
source of a systematic bias in some trials and meta-analyses.

There is a “sweet range” for c that minimizes the proportion of subjects deemed
responders in the placebo group and maximizes the proportion of subjects deemed
responders in the drug group, thereby maximizing the lower confidence interval of
the responder odds ratio; this can be formally represented as follows:

ma
d

mb
d

< c <
ma

p

mb
p

sweet range
� �

:

Here is why the sweet range is the case. Recall that an individual patient in the drug or
placebo group is deemed a responder if the ratio of her H score after treatment over
her H score before treatment (Ha

i =H
b
i ) falls below c. A c value that on average satisfies

this criterion for patients in the drug group but not for the patients in the placebo
group increases the difference between the number of responders in the two groups
and thus increases the OR. c values within the sweet range have this property.3

When using H17, on average the mean H score before treatment is 24, and the
mean H score after treatment is 14 and 11 for the placebo and drug groups, respec-
tively. Coincidently, these values are such that c � 50% falls within the sweet range:

11
24

� 0:45 < c � 0:5 <
14
24

� 0:58:

This is why we see, in figure 1, the probability of deeming a drug to be effective clus-
tered in a range bounding c= 0.5.4

As drugs become less effective, ma
d increases, and consequently, the lower bound

of the sweet range approaches the upper bound. This explains the dome shape of
figure 1, in which a progressively smaller range of c values has a high chance of
finding less effective drugs to be effective. Also, as the effectiveness of drugs

3 The maximizing c value is within the sweet range, and other values within the range on either side of
the maximizing c result in a relatively high, but less than maximum, OR:

4 The lower bound of the sweet range found in the simulation may be slightly higher than 11=24
because of the technical point mentioned in footnote 2.
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decreases to that of placebo (ma
d ! ma

p), the lower bound of the sweet range
increases so much that c � 0:5 falls out of the sweet range, and higher values of
c are within the range. This explains the slight shift toward higher values of c at
the peak of the inverse dome.

These are, in part, numerical consequences of the arbitrary range of scores of H17.
Were the H scale designed differently, assigning different absolute values to patients,
c � 0:5 would not have been within the sweet range. To show this, we repeated the
simulations, this time with our hypothetical H scales with additional irrelevant ques-
tions. Although the drug effectiveness is fixed in these simulations (and consequently,
the absolute mean difference between drug and placebo H scores is fixed), the abso-
lute value that each H scale assigns to patients shifts, and consequently, the absolute
values of mean H scores in both the drug and placebo groups differ between scales.

We chose the particular adjustments to the H scale such that the following values
of c fall within the sweet range:

H50 ⇒ c ≈ 50%
H57 ⇒ c ≈ 60%
H67 ⇒ c ≈ 70%
H88 ⇒ c ≈ 80%
H151 ⇒ c ≈ 90%

Figure 2 shows the average difference between the number of responders in the
placebo and drug groups in the simulations of trials with 500 subjects. The results in
other trial sizes are similar (save small stochastic fluctuations) and so are not shown.
The average difference between the number of responders in the placebo and the
drug groups maximizes approximately at 50%, 60%, 70%, 80%, and 90% for H17,

Figure 2. Difference in the number of responders between the drug and placebo groups.
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H57, H67, H88, and H151, respectively. This maximum difference, in turn, maximizes
the lower 95% confidence interval of OR (figure 3) and, consequently, the probability
of concluding that the drug is effective (figure 4). Figures 3 and 4 also clearly visualize
the concept of the sweet range (the spread of the darkest red tone). This result shows
that were the H scales designed differently, some drugs that were deemed effective by
the OR would have been deemed ineffective based on exactly the same data.

3.2 Superiority of absolute outcome measures
Our results emphasize the superiority of absolute measures, such as the difference in
mean H score reduction between the drug and placebo groups, compared with rela-
tive measures, such as OR. The analyses with the newly created H scales show that the
value of the OR is sensitive to arbitrary changes to the H scales, whereas the absolute
mean H score reduction is not sensitive to such changes. Choose a particular c on the
x-axis of figure 3, and move up the corresponding column; as the H scale changes, so
does the probability of concluding that a drug is effective based on OR. Yet this is an
undesirable feature of an outcome measure. Recall that the questions that were added
to the newly formed H scales are, by stipulation, totally irrelevant to that which is
being measured (namely, severity of depression symptoms).

A plausible desideratum for an outcome measure is that if an outcome measure is
used to summarize the same data from a trial generated from two measurement
scales that are identical in every respect relevant to the causal relation under inves-
tigation and differ only in ways causally unrelated to the causal relation, then the
outcome measure should report the same value. For example, if you measure the tem-
perature today at lunchtime and then at dinnertime using a blue Celsius thermometer

Figure 3. Average lower 95% confidence interval of OR under combinations of various H scales and c values.
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and a red Celsius thermometer, you should expect to compute the same lunch–dinner
temperature difference with both thermometers because the color of the thermom-
eters is causally irrelevant to measuring temperature. The difference in the mean
reduction in symptom severity between the drug and placebo groups satisfies this
desideratum (because the mean H scores for both the drug group and the placebo
group scale up identically when changing the H scale, the mean difference between
the groups remains the same). As we have seen in figure 3, the responder odds ratio
does not satisfy this desideratum.

In general, the responder odds ratio involves a loss of information because the
definition of responder does not include the magnitude of change in symptom sever-
ity for a subject. Consider a hypothetical weight-loss drug and a trial in which a
responder is defined as anyone who loses at least a nonzero amount of weight.
Suppose that in the trial of the drug, there were 100 subjects in each of the drug
and placebo groups, and in the drug group, 75 subjects lost 10 grams, yet 25 subjects
gained 5 kilograms, and in the placebo group, 50 subjects lost 10 grams, and 50 subjects
gained 10 grams; this drug would have a responder odds ratio of 3 in favor of weight
loss, even though it caused virtually no weight loss in most subjects and caused sub-
stantial weight gain in a large proportion of subjects. For reasons such as this, statis-
tician Stephen Senn claims that measures such as the responder odds ratio are “liable
to be extravagantly interpreted” (Senn 2003, 239).

Although some philosophers have argued that both absolute and relative measures
should be reported on the presumed grounds that both are informative (e.g., Hoefer
and Krauss 2021), our analysis here supports those who have argued that reporting
relative measures can be misleading. Stegenga and Kenna (2017) and Sprenger and

Figure 4. Probability of finding the same drug to be effective under combinations of various H scales and
c values.
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Stegenga (2017) argue for the superiority of absolute outcome measures for binary
outcomes, and our argument here extends this to continuous outcome measures.

4. Conclusion
Our results show that the conventional choice of c � 50% in the responder odds ratio
is in a range that maximizes estimates of the effectiveness of antidepressants. The
dependence of the probability of concluding that a drug is effective on the choice
of c indicates the problem with this arbitrary measure. We further offer an explana-
tion for where this “sweet range” comes from, along with other nuances related to
this sweet range.

In what is probably the most significant meta-analysis of antidepressants to date,
the 95% lower confidence interval of the odds ratio for antidepressants was estimated
to be between 1.37 and 2.13, with many dugs showing values around 1.6 (Cipriani et al.
2018). This might strike you as rather modest. Yet, we hope to have demonstrated
how uninformative such a measure is about the real effectiveness of the drugs.
Moreover, we have shown that this value depends on a conventional choice for c,
and other choices for c would entail even lower values for the responder odds ratio.
It is a happy coincidence for those who wish to substantiate the putative effectiveness
of antidepressants that the commonly used value of c in meta-analyses of antidepres-
sants is tuned to the commonly used measurement scale and actual facts about sub-
jects in trials of antidepressants such that the responder odds ratio is nearly
maximized.

Our method deployed here is an example of a possible way to evaluate speculative
hypotheses about research practices and can be extended to other domains.
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