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Abstract. A maximal symmetry group is a group of isomorphisms of a three-
dimensional hyperbolic manifold of maximal order in relation to the volume of the
manifold. In this paper we determine all maximal symmetry groups of the types
PSL(2, q) and PGL(2, q). Depending on the prime p there are one or two such groups
with q = pk and k always equals 1, 2 or 4.
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1. Maximal symmetry groups of hyperbolic three-manifolds. An orientable n-
dimensional hyperbolic manifold is a quotient space M = �n/K , where K is some
torsion-free discrete subgroup of Iso+(�n), the group of orientation-preserving
isometries of n-dimensional hyperbolic space. For each n there is an upper bound on
the quotient |Iso+(M)|

vol(M) taken over all hyperbolic n-manifolds and this bound is attained
for certain manifolds M. For dimension n higher than three this is a consequence of
the fact that the set of volumes is discrete ([12]).

For n = 2 there is a well known theorem by Hurwitz which states that any
compact Riemann surface of genus g ≥ 2 has at most 84(g − 1) orientation preserving
automorphisms. The groups of orientation preserving automorphisms of maximal
order 84(g − 1) are called Hurwitz groups. There has been a lot of research into finding
out if certain groups are Hurwitz. One interesting result in this context is the following
theorem which can be found in [7]:

THEOREM 1. The simple group PSL(2, q) is Hurwitz precisely when q equals 7, or
some prime p congruent to ±1 modulo 7, or p3 for some prime p congruent to ±2 or ±3
modulo 7.

In this paper we will study the 3-dimensional analogue of Hurwitz groups, that is,
groups that are automorphism groups of hyperbolic 3-manifolds for which the quotient
|Iso+(M)|

vol(M) is maximal among all such manifolds. We will call such groups maximal
symmetry groups of hyperbolic 3-manifolds, and prove a result analogous to the one
mentioned above.

Let us first examine the quotient |Iso+(M)|
vol(M) for a manifold M = �n/K . Now the

isometry group Iso+(M) is isomorphic to N/K where N is the normaliser of K in
Iso+(�n), and with O defined by

O = �n/N ∼= (�n/K)/(N/K) ∼= M/Iso+(M),
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it is clear that vol(O) = vol(M)/|Iso+(M)|, and hence that |Iso+(M)|
vol(M) is maximal precisely

when O = �n/N is of minimal volume. Note that O depends only on the normaliser
N(K) of K in Iso+(�n) and not on the subgroup K itself.

Now assume that we have among all orientable n-dimensional orbifolds found
one of minimal volume, say O1 = �n/N1. Then the manifolds with maximal symmetry
group are those of the form �n/K with N(K) = N1. Note that if N1 ⊆ N(K) then
we must have N1 = N(K), because otherwise O′ = �n/N(K) would have smaller
volume than O1, contrary to our assumption. Consequently, N1 = N(K) if and
only if N1 ⊆ N(K), that is, if K is a normal subgroup of N1. This leads us to
study normal torsion-free subgroups K of N1 and the corresponding quotients
N1/K ∼= Iso+(�n/K) = Aut(�n/K).

In the case n = 2 the smallest orientable orbifold is the Hurwitz orbifold O1 =
�2/�(2, 3, 7), where �(2, 3, 7) is the orientation preserving subgroup of the group of
reflections in the sides of a triangle in the hyperbolic plane with angles π/2, π/3 and
π/7. Since the area of the hyperbolic triangle is π (1 − 1/2 − 1/3 − 1/7) = π/42, the
area of the fundamental domain of O1 is π/21. Now the area of a Riemann surface S
of genus g ≥ 2 is 4π (g − 1), and so it follows that

|Aut(S)| = |Iso+(S)| ≤ vol(S)/vol(01) = 84(g − 1),

with equality if and only if S = �2/K where K is a normal torsion-free subgroup of
�(2, 3, 7).

From the presentation

�(2, 3, 7) = 〈x, y|x2 = y3 = (xy)7 = 1〉,

of the triangle group it is clear that its abelianisation is trivial, in other words the
group is perfect. It follows that all Hurwitz groups, being quotients of �(2, 3, 7),
also are perfect. In particular, since [PGL(2, q), PGL(2, q)] = PSL(2, q), we do not
have any Hurwitz groups of the type PGL(2, q) unless q is a power of two so that
PGL(2, q) = PSL(2, q) and PSL(2, q) is Hurwitz. Thus all projective linear groups that
are Hurwitz are those mentioned in Theorem 1.

Recently it has been shown that the discrete subgroup of Iso(�3) of smallest co-
volume is the normaliser �̃ of the [3, 5, 3]-Coxeter group (described in detail in the next
section). This was achieved in a series of papers by Martin and Gehring ([4], [5], [2] and
[3]) together with analyses of some special cases most of which can be found in [9] and
[10]. We will therefore study quotients of �, the orientation-preserving subgroup of �̃,
by normal torsion-free subgroups since these quotients will correspond to maximal
symmetry groups in the 3-dimensional case. In [1] we proved the existence of infinitely
many maximal symmetry groups of certain types. Concerning projective linear groups
we obtained the following result:

THEOREM 2. For each prime p there is some power q = pk such that either PSL(2, q)
or PGL(2, q) is a maximal symmetry group.

It should be noted that the existence of infinitely many maximal symmetry groups
of type PSL(2, q) also is a special case of an earlier result in [6] stating that for any
hyperbolic three-manifold �3/K , the fundamental group K has an infinite number of
quotients of the type PSL(2, Fp), Fp a field of prime cardinality.
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In this paper we will make a more detailed study of which groups of the types
PSL(2, q) and PGL(2, q) are maximal symmetry groups. The full answer to this
question is given by Theorem 10.

This problem has been studied before in [11] where a partial answer was obtained
stating exactly for which q ≡ 1 modulo 10 at least one of the groups PSL(2, q) or
PGL(2, q) is a maximal symmetry group. In this special case our results agree with
those of Paoluzzi. (For a detailed comparison see the remark after Theorem 10.)

2. The extended [3, 5, 3] Coxeter group. In the following let C be the [3, 5, 3]
Coxeter group, that is the group generated by four elements a, b, c and d subject to the
defining relations

a2 = b2 = c2 = d2 = (ab)3 = (bc)5 = (cd)3 = (ac)2 = (ad)2 = (bd)2 = 1.

This group C can be interpreted as a group of hyperbolic isometries, generated by
reflections in the faces of a hyperbolic tetrahedron in which the angle between two faces
equals π/m where m is the order of the product of the reflections in the corresponding
faces. Thus C is generated by the reflections in the faces of a tetrahedron having two
faces intersecting at an angle π

5 , each intersecting another face at an angle π
3 , and all

other angles being π
2 .

The symmetry of the tetrahedron (which is naturally exhibited also in the Dynkin
diagram of the Coxeter group) indicates that we can find some hyperbolic isometry
that preserves the tetrahedron. It is not hard to see that such an isometry is given by a
rotation interchanging the faces a and d and the faces b and c. (By abuse of notation
we denote a face by the same letter as the reflection in that face – although it should
always be clear from the context what we mean – and in the same way we use the letter
denoting a hyperbolic rotation also to denote the axis of that rotation.) Extending our
group by adding that rotation as a fifth generator, which we denote by t, gives us the
following finitely-presented group:

�̃ = 〈 a, b, c, d, t | a2 = b2 = c2 = d2 = t2 = atdt = btct

= (ab)3 = (ac)2 = (ad)2 = (bc)5 = (bd)2 = (cd)3 = 1 〉.

From this presentation it is not difficult to derive a presentation for the orientation
preserving subgroup � generated by x = ac, y = ad, z = ab and t:

� = 〈 x, y, z, t | x2 = y2 = z3 = t2 = (yz)2 = (xz)5

= (xy)3 = (ty)2 = txtz2y = tztxy = 1 〉.

We will also use an alternative presentation of this group which has the advantage
of containing only two generators. Expressed in u = ty, v = z and w = (uv)2(uv2)2 we
get the following presentation of � (see [8])

� = 〈u, v|u2 = v3 = w5 = (v2w2)2 = 1〉. (1)

This group is now known to be the discrete subgroup of Iso+(�3) of smallest
co-volume [2]. Its torsion-free subgroups act fixed pointfreely on hyperbolic 3-space,
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and therefore give rise to 3-manifolds with maximal symmetry group. We will therefore
examine which projective linear groups can be obtained as quotients of � by torsion-
free subgroups.

3. Torsion subgroups. As we have seen the problem of finding maximal symmetry
groups boils down to finding quotients of the finitely presented group � by normal,
torsion-free subgroups. Next we will demonstrate that the subgroup we divide out
always is torsion-free unless the quotient is trivial or cyclic of order two. To do this
we will use a description of the torsion elements of � derived in [1], which says that a
subgroup H of � is torsion-free if and only if none of its elements are conjugate to any
element in the set

S = {ab, ac, ad, bc, abac, bd, abad, cd, t, adt}.

If g ∈ � and H = 〈g〉 this result says that g is a torsion element if and only if some
power of g is conjugate to some element of S. We use this fact in the proof of the
following lemma:

LEMMA 3. Let � be the group with presentation (1). Then all normal subgroups of �

of index more than two are torsion-free.

Proof. Assume that N is a normal subgroup of � containing a torsion element n.
We have that � = F/R, where F is the free group on two generators and R the normal
closure of the relators in the presentation (1) of �. Then N = F1/R for some normal
subgroup F1 of F . Some power of n = f1R is conjugate to some element sR of S and
N being normal we must have that sr ∈ F1 for some r ∈ R. Expressing each element of
S in x, y, z and t we obtain the set {x, y, z, t, z2x, zx, z2y, zy, xy, yt}. In each case it is
easy to see that including sr in F1 ⊆ F we get a subgroup of F of index one or two and
consequently [� : N] = [F : F1] ≤ 2. This shows that dividing out a normal subgroup
with torsion elements the quotient can only have order one or two. �

4. Homomorphisms from � into projective linear groups.

LEMMA 4. There exists a non-trivial homomorphism from � into PSL(2, q) if and
only if the polynomial g(s) = s8 − 6s6 + 12s4 − 9s2 + 1 has a zero in Fq. Let s1, s2, . . . , sk

be the zeroes of g in Fq. All such homomorphisms up to conjugacy in PSL(2, q) are given
by

u �→
[

δ ε

si + ε − δ −δ

]
v �→

[
1 1

−1 0

]

where, in the case char(Fq) �= 2, for each si we can choose ε as any element with −3ε2 −
4siε − 4 a square α2 and then δ as one of the two values ε±α

2 . For each si there is at least
one ε satisfying this condition. If char(Fq) = 2 the above mapping with ε = 0 and δ = 1
gives a homomorphism.

Note. The necessity part of this proof can be found in [8]. We repeat it here for
the sake of completeness and because some of the arguments are used also in the
sufficiency part of the proof.

https://doi.org/10.1017/S001708950700393X Published online by Cambridge University Press

https://doi.org/10.1017/S001708950700393X


PROJECTIVE LINEAR GROUPS 87

Proof. We first prove that g must have a root in Fq for a non-trivial homomorphism
from � into PSL(2, q) to exist. Assume that φ is such a homomorphism and let U
and V be representatives of φ(u) and φ(v) in SL(2, q) chosen such that U2 = −I
and V3 = −I . This is always possible since V3 = ±I and we may replace V by −V
in the case V3 = I and U2 = −I always holds for matrices of determinant one and
projective order two. Having defined U and V we can define W as we defined w in the
presentation (1). We will repeatedly use the identity tr(XY ) = tr(X)tr(Y ) − tr(XY−1),
which holds in SL(2, K) for any field K in order to express the traces of the images of
the relators of � in terms of s = trace(UV ). We have that t = trace([U, V ]) = s2 − 1
and trace(W ) = (s2 − 1)(s2 − 2) = t(t − 1). Moreover

tr(V−1W 2) = trace(W )(trace(W ) − 1) − 1 = t4 − 2t3 + t − 1.

(For details see section 4.7.2 in [8]). Now φ is a homomorphism so φ(v−1w2) = V−1W 2

must have projective order two or equivalently h(t) = t4 − 2t3 + t − 1 must be zero. We
have that h(t) = h(s2 − 1) = s8 − 6s6 + 12s4 − 9s2 + 1 = g(s) so it follows that s, the
trace of φ(uv) (up to sign) must be a root of g(s) lying in Fq. Letting s1, s2, . . . , sk be
the roots of g in Fq we can now proceed to construct all possible homomorphisms into
PSL(2, q). Fix a root s = sj and assume that φ(uv) has trace s. Now all elements of
order three in PSL(2, q) are conjugate so we may assume that

v �→ V =
[

1 1
−1 0

]
.

The matrix φ(u) is of projective order two and hence of the form

U =
[
δ ε

ϕ −δ

]
.

Using s = trace(UV ) = δ − ε + ϕ to substitute for ϕ the condition det(U) = 1 becomes
δ2 − εδ + sε + ε2 + 1 = 0. First note that if char(Fq) = 2 then δ = 1, ε = 0 is a solution
for every root si. Assuming that char(Fq) �= 2 this equation has the solutions δ = ε±α

2
if −3ε2 − 4sε − 4 is a square with square root α and no solutions otherwise. Hence the
existence of solutions depends on the choice of ε, but for any expression aε2 + bε + c,
a, b, c ∈ Fq there is some ε ∈ Fq that makes it a square. This can be seen simply by
noting that there are q−1

2 non-squares in Fq and aε2 + bε + c assumes at least q+1
2

different values. It now remains to check that the image of φ satisfies the relations
of �. By the above computations we know that trace(V−1W ) = s8 − 6s6 + 12s4 −
9s2 + 1 = 0 so that (V−1W )2 = 1. Moreover trace(W ) = (s2 − 2)(s2 − 1) and a simple
computation shows that trace(W )4 − 3trace(W )2 + 1 = g(s)2 + (2s4 − 6s2 + 4)g(s) =
0. Now a matrix with determinant one is of projective order five if and only if its trace
t satisfies t4 − 3t2 + 1 = 0. This shows that W is of order five and hence completes the
proof. �

5. The images of the homomorphisms. Since finding the PSL(2, q) and
PGL(2, q) that are maximal symmetry groups is equivalent to finding all surjective
homomorphisms � → PSL(2, q) and � → PGL(2, q) ⊂ PSL(2, q2) we need a way
to find the images of the homomorphisms constructed in the above lemma. A very
straightforward description of the subgroup generated by two given elements of
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PSL(2, q) is given in the article [7] by Macbeath. Using his results we get the following
theorem:

THEOREM 5. Let p be a prime and assume that g(s) = s8 − 6s6 + 12s4 − 9s2 + 1
factorises into g1g2 · · · gk in Fp(s). Then PGL(2, pm) is a maximal symmetry group if and
only if there is a factor gi that is an even polynomial in s of degree 2m and PSL(2, pm) is
a maximal symmetry group if and only if g has a factor of degree m which is not an even
polynomial.

Proof. By MacBeath’s results a subgroup of PSL(2, K) generated by two elements
U and V is determined by the triple

(α, β, γ ) = (trace(U), trace(V ), trace(UV ))

of elements in K . He classifies the triples into four different types: singular, exceptional,
irregular and normal, according to the kind of group U and V generate. If U and V
are images of a homomorphism from � into some PSL(2, q) we know by Lemma 4
that (α, β, γ ) = (0, 1, s) where s is a zero of g. A triple is singular if the quadratic form
x2 + y2 + z2 + αyz + βzx + γ xy splits into linear factors in the algebraic closure of
Fq. Now x2 + y2 + z2 + zx + sxy cannot be factorised as (x + ay + bz)(x + cy + dz)
over any field since eliminating c and d from the equations obtained by equating the
coefficients gives the system a(s − a) = 1, b(1 − b) = 1, b(s − a) + a(1 − b) = 0. This
implies that s2 = 3 contradicting the fact that s is a zero of g. All exceptional triples
are listed in Macbeath’s article and the only ones starting with 0, 1 are (0, 1, 1), (0, 1, t)
where t2 = 2 (which is equivalent to t being the trace of a matrix of projective order
four), and (0, 1, t) where t4 − 3t2 + 1 = 0 (which is equivalent to t being the trace of
a matrix of projective order five). Now s cannot satisfy s2 = 2 or s4 − 3s2 + 1 = 0 so
our triple is not exceptional. Triples that are neither singular nor exceptional are either
irregular or normal. They are called irregular if the subfield K of Fq generated by the
elements of the triple is a quadratic extention of a field K0 and K0 contains one element
of the triple while the other two either are zero or elements r ∈ K\K0 with r2 ∈ K0.
Clearly our triple (0, 1, s) is irregular exactly when K = Fp(s) is a quadratic extension
of K0 = Fp(s2) which in turn is equivalent to the minimal polynomial of s over Fp being
even. The main conclusion in Macbeath’s article is that the subgroup generated by U
and V is PSL(2, K) if the corresponding triple of traces is normal and PGL(2, K0) if
the triple is irregular. The statement in our theorem now follows from this fact. �

By the above theorem the powers m that make PSL(2, pm) or PGL(2, pm) a maximal
symmetry group are determined by the factorisation of g modulo p. Let us look at the
factorisation for some small primes p to see which symmetry groups we get.

We will now try to describe the degrees occurring in the factorisation of g(s) in
terms of the prime we factorise modulo. One fact that is striking looking at the table
is that g always factorises into two polynomials of degree four, which in some cases
can be factorised further into factors of degree one or two. Let us first deal with the
simplest case which is primes congruent to ±1 modulo 10.

In the proof we will use the Legendre symbol so let us recall that for any odd
prime p the Legendre symbol, ( a

p ), which is defined for any a not divisible by p, equals
1 when a is a quadratic residue modulo p and −1 otherwise. We also recall that three
basic properties of the Legendre symbol are multiplicativity, ( ab

p ) = ( a
p )( b

p ), quadratic

reciprocity, ( p
q )( q

p ) = (−1)
1
4 (p−1)(q−1), and Eulers criterion, ( a

p ) ≡ a
1
2 (p−1)(mod p).
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PROPOSITION 6. If p is a prime congruent to ±1 modulo 10 then g(s) = s8 − 6s6 +
12s4 − 9s2 + 1 has a factorisation (s4 − 3s2 + α1)(s4 − 3s2 + α2) where α1 = 3+√

5
2 and

α2 = α1 = 3−√
5

2 . If βk = 9 − 4αk is a square then the factor containing αk factorises into
a product of two even polynomials. In case 6 + 2

√
βk is not a square these polynomials

are irreducible and otherwise they can be further decomposed into four linear factors. If
βk is not a square the factor containing αk is a product of two irreducible polynomials of
degree two that are not even.

Proof. Assume that p is a prime congruent to ±1 modulo 10. Then(
5
p

)
=

(p
5

)
≡ p2 ≡ 1(mod 5) (2)

so 5 is a quadratic residue modulo p. This shows that α1 and α2 are elements of Fp and
hence gives the factorisation into two factors of degree four. Let us now examine such a
factor gk(s) = s4 − 3s2 + αk. A factorisation into two even polynomials (s2 + a)(s2 + b)
is possible if and only if the system a + b = −3, ab = αk has a solution or equivalently

βk = 9 − 4αk is a square. Moreover it is easy to verify that the roots of gk are ±
√

6±2
√

βk

2
and hence the possibility of further factorisation depends on whether 6 + 2

√
βk and

6 − 2
√

βk are squares. These two numbers are squares simultaneously because

(
6 + 2

√
βk

p

) (
6 − 2

√
βk

p

)
=

(
36 − 4βk

p

)
=

(
16αk

p

)
=

(
αk

p

)
= 1.

The last equality holds because whenever p is congruent to ±1 modulo 10 PSL(2, p)
is of order divisible by five and hence has an element of order five. The trace condition
for an element of PSL(2, p) to be of order five is t4 − 3t2 + 1 = 0. Let γ be such a trace.
Then γ 2 equals either α1 or α2 showing that at least one of them is a square. However
their product is one so again we can conclude from their Legendre symbols that they
are squares simultaneously, which in this case means that they both are squares. This
concludes the case where βk is a quadratic residue modulo p. Let us now assume that
it is not. Then it is clear that gk has no roots in Fp so all we can hope for is to write
gk as a product of two factors of degree two. On the other hand this is always possible
because we will see that all we need is that one of the numbers 5 − 2αk and 1 + 2αk is
a square. That this is the case is clear from the computation:(

5 − 2αk

p

) (
1 + 2αk

p

)
=

(
9 − 4αk

p

)
=

(
βk

p

)
= −1.

If 5 − 2αk is a square δ2 we get the factorisation gk = (s2 + δs + 1 − αk)(s2 − δs +
1 − αk) and if 1 + 2αk equals δ2 we can factorise gk as (s2 + δs − 1 + αk)(s2 − δs −
1 + αk). It is straightforward to verify that δ never equals zero in either of these two
factorisations which shows that the factors are not even polynomials. This concludes
the proof of the lemma. �

COROLLARY 7. Let p be a prime congruent to ±1 modulo 10 and let βk be defined as
in Proposition 6. Further let γk = 6 + 2

√
βk in the case βk is a square. Then all maximal

symmetry groups of type PSL(2, pk) or PGL(2, pk) are given by:
• PSL(2, p2) if no βk is a square.
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• PSL(2, p2) and PSL(2, p) if exactly one βk is a square and the corresponding γk

is a square.
• PSL(2, p2) and PGL(2, p) if exactly one βk is a square and the corresponding γk

is not a square.
• PSL(2, p) if both βk and both γk are squares.
• PSL(2, p) and PGL(2, p) if both βk and exactly one γk are squares.
• PGL(2, p) if both βk but no γk are squares.

Proof. This is an immediate consequence of Theorem 5 and Proposition 6. �
REMARK. All the six cases in the corollary occur. Instances of primes exemplifying

each case are given by 31, 29, 11, 229, 59 and 269 in that order.
Let us now move on to the case where p is not congruent to ±1 modulo 10.

PROPOSITION 8. Let p be a prime not congruent to ±1 modulo 10. Then g(s) is a
product of two irreducible polynomials of degree four unless both the conditions

1. p ≡ 1 modulo 4
2. p ≡ 1, 3, 4, 5, 9 modulo 11

are satisfied in which case we have a factorisation into four non-even irreducible
polynomials of degree two. When we have irreducible factors of degree four they are
even when only the second condition is satisfied and otherwise non-even.

REMARK. For odd primes the conditions (1) and (2) can be expressed in terms of
the Legendre symbols (−1

p

)
,

(−11
p

)
,

(
11
p

)

and as we will see the value of these Legendre symbols determine the existence of
different types of factorisations of g. Computing the Legendre symbols above we find
that (−1

p

)
= (−1)

p−1
2

equals one if and only if (1) holds. Also, we have that(−11
p

)
=

(−1
p

) (
11
p

)
=

( p
11

)
≡ p5 modulo 11 (3)

and the latter expression is one exactly when condition (2) is satisfied. The last of our
Legendre symbols can be computed from the ones already examined, because(

11
p

)
=

(−11
p

)

if (1) holds and (
11
p

)
= −

(−11
p

)

if (1) does not hold. Consequently 11 is a quadratic residue if either both or none of
the conditions (1) and (2) hold.
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Table 1. Maximal symmetry groups PSL(2, pm) and PGL(2, pm) for small primes p.

Prime Factorisation of g(s) Maximal symmetry groups

2 (s4 + s + 1)2 PSL(2, 24)
3 (s4 + s2 + 2)(s4 + 2s2 + 2) PGL(2, 32)
5 (s2 + 2s + 3)2(s2 + 3s + 3)2 PSL(2, 52)
7 (s4 + 2s3 + 6s2 + 2s + 6)(s4 + 5s3 + 6s2 + 5s + 6) PSL(2, 74)

11 (s2 + 4)2(s2 + 3s + 3)(s2 + 8s + 3) PSL(2, 112), PGL(2, 11)
13 (s4 + s3 + 4s2 + s + 12)(s4 + 12s3 + 4s2 + 12s + 12) PSL(2, 134)
17 (s4 + 8s3 + 12s2 + 6s + 16)(s4 + 9s3 + 12s2 + 11s + 16) PSL(2, 174)
19 (s2 + 7)(s2 + 9)(s2 + 7s + 4)(s2 + 12s + 4) PSL(2, 192), PGL(2, 19)
23 (s4 + 8s2 + 11)(s4 + 9s2 + 21) PGL(2, 232)
29 (s + 2)(s + 12)(s + 17)(s + 27)(s2 + 7s + 23)(s2 + 22s + 23) PSL(2, 29), PSL(2, 292)
31 (s2 + 14s + 19)(s2 + 15s + 18)(s2 + 16s + 18)(s2 + 17s + 19) PSL(2, 312)
37 (s2 + s + 15)(s2 + 5s + 32)(s2 + 32s + 32)(s2 + 36s + 15) PSL(2, 372)
41 (s2 + 14)(s2 + 24)(s2 + 14s + 35)(s2 + 27s + 35) PSL(2, 412), PGL(2, 41)
43 (s4 + 3s3 + 23s2 + 7s + 42)(s4 + 40s3 + 23s2 + 36s + 42) PSL(2, 434)
47 (s4 + 10s2 + 43)(s4 + 31s2 + 35) PGL(2, 472)
53 (s2 + 14s + 31)(s2 + 22s + 41)(s2 + 31s + 41)(s2 + 39s + 31) PSL(2, 532)
59 (s + 10)(s + 27)(s + 32)(s + 49)(s2 + 21)(s2 + 35) PSL(2, 59), PGL(2, 59)
61 (s2 + 21)(s2 + 37)(s2 + 10s + 18)(s2 + 51s + 18) PSL(2, 612), PGL(2, 61)
67 (s4 + 16s2 + 53)(s4 + 45s2 + 43) PGL(2, 672)
71 (s + 11)(s + 33)(s + 38)(s + 60)(s2 + 25)(s2 + 43) PSL(2, 71), PGL(2, 71)
73 (s4 + 13s3 + 45s2 + 24s + 72)(s4 + 60s3 + 45s2 + 49s + 72) PSL(2, 734)
79 (s2 + 4)(s2 + 72)(s2 + 38s + 49)(s2 + 41s + 49) PSL(2, 792), PGL(2, 79)
83 (s4 + 38s3 + 55s2 + 56s + 82)(s4 + 45s3 + 55s2 + 27s + 82) PSL(2, 834)
89 (s2 + 28s + 79)(s2 + 33s + 9)(s2 + 56s + 9)(s2 + 61s + 79) PSL(2, 892)
97 (s2 + 21s + 66)(s2 + 36s + 72)(s2 + 61s + 72)(s2 + 76s + 66) PSL(2, 972)

Proof. Throughout this proof we will assume that p is a prime �≡ ±1 modulo 10.
For p = 2, 5 the result is clear from the factorisations given in table 1. For the rest of
the proof we will assume that p �= 2, 5. Let us first note that g(s) = s8 − 6s6 + 12s4 −
9s2 + 1 has no zeroes in Fp because if t is a zero then (2t4 − 6t2 + 3)2 = 5. Now this is
a contradiction because it follows from the computation (2) that 5 is a square in Fp for
an odd prime p �= 5 if and only if p ≡ ±1 modulo 10.

Now for each prime p we will find a factorisation as a product of two polynomials
of order four and then analyse which of these can be broken down further into factors
of order two. We will look at three different cases depending on the residue of p modulo
4 and 11.

First assume that p ≡ 1 modulo 4. In this case −1 is a square in Fp so we may use
the field elements 4 + 2

√−1 and 4 − 2
√−1 in our factorisation. Noting that

(
4 + 2

√−1
p

)(
4 − 2

√−1
p

)
=

(
20
p

)
=

(
5
p

)
= −1

it is clear that exactly one of these two elements is a square. Denoting that element by
α we obtain the factorisation

g(s) =
(

s4 + √
αs3 +

(
α

2
− 3

)
s2 +

√
α

2

(
α

2
− 5

)
s − 1

)(
s4 − √

αs3 +
(

α

2
− 3

)
s2

−
√

α

2

(
α

2
− 5

)
s − 1

)
. (4)
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Next we look at the case when −11 is a quadratic residue modulo p. Then(
6 + 2

√−11
p

) (
6 − 2

√−11
p

)
=

(
80
p

)
=

(
5
p

)
= −1

and in a similar manner as above we denote the element among 6 + 2
√−11 and

6 − 2
√−11 which is a square by β and then obtain the factorisation:

g(s) =
(

s4 +
(

− 3 −
√

β

2

)
s2 + β

8
+ 3

√
β

4
+ 3

2

)(
s4 +

(
− 3 +

√
β

2

)
s2

+ β

8
− 3

√
β

4
+ 3

2

)
. (5)

Finally we consider the case when 11 is a square. Then we have that(
8 + 2

√
11

p

) (
8 − 2

√
11

p

)
=

(
20
p

)
=

(
5
p

)
= −1

and letting γ be the element of 8 + 2
√

11 and 8 − 2
√

11 that is a square we can again
factorise g:(

s4 + √
γ s3 +

(
γ

2
− 3

)
s2 +

√
γ

2

(
γ

2
− 7

)
s − 1

)(
s4 − √

γ s3 +
(

γ

2
− 3

)
s2

−
√

γ

2

(
γ

2
− 7

)
s − 1

)
. (6)

We have now found three factorisations of g, one that is possible when p is
congruent to 1 modulo 4, one that is possible when −11 is a square in Fp and one
that occurs when 11 is a square in Fp. Noting that(−11

p

)
=

(−1
p

)(
11
p

)
= (−1)

p−1
2

(
11
p

)

it is clear that at least one of these factorisations is always possible because if p is not
congruent to 1 modulo 4, then exactly one of the numbers 11 and −11 is a quadratic
residue modulo p.

Since we have no roots, and hence no linear factors, this leaves us with the following
possibilities: either g is a product of two irreducible polynomials of degree four or g is
the product of two polynomials of order four, at least one of which can be decomposed
into two irreducible factors of degree two. In the first case let g(s) = f (s)h(s). Then
g(s) = g(−s) = f (−s)h(−s) is another factorisation and from uniqueness either f and
h are even or f (s) = h(−s). In the second case it follows from the fact that g(s) = g(−s)
that the order two factors can be paired together to form even polynomials of order
four so that g is a product of two even polynomials of order four. Altogether we have
shown that any decomposition of g into factors of degree four is either a product
f (s)f (−s) or a product f (s)h(s) of even polynomials.

From this fact we will show that there are no other decompositions of g into two
factors of degree four than the ones of the three types given above. Let us start with
the case of even factors. Having a factorisation g(s) = (s4 + as2 + b)(s4 + cs2 + d) is
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equivalent to the system of equations:⎧⎪⎪⎨
⎪⎪⎩

a + c = −6
b + d + ac = 12
ad + bc = −9
bd = 1

(7)

being satisfied. Substituting for c and d using the first and last equation we get two
equations in a and b. After the substitution we subtract a times the second equation
from the third equation which results in

−9 + 6b + 2ab − 12a − 6a2 − a3 = 0.

Now if a = −3 we must have a = c = −3 and b + d = 3, bd = 1, which implies that
(b − d)2 = (b + d)2 − 4bd = 5 contradicting that 5 is not a square in Fp. If a �= −3 we
must have that b = a2+3a+3

2 and substituting into one of the two equations in a and b we
find that a(a4 + 12a3 + 51a2 + 90a + 59) = 0. There is no solution of (7) with a = 0.
Hence we must have

(4(a + 3)2 − 6)2

4
= 4(a4 + 12a3 + 51a2 + 90a + 59) − 11 = −11

so −11 is a square and (a + 3)2 = 3±√−11
2 if we let

√−11 denote one of the square
roots. It follows that our factorisation is exactly (5) given above.

Now for the factorisations of type g(s) = f (s)f (−s). Similar to the above case we
consider the system of equations:⎧⎪⎪⎨

⎪⎪⎩
2b − a2 = −6
2d − 2ac + b2 = 12
2bd − c2 = −9
d2 = 1

arising from the identity g(s) = (s4 + as3 + bs2 + cs + d)(s4 − as3 + bs2 − cs + d). The
possible values of d are ±1 but for d = 1 we obtain the system of equations:⎧⎨

⎩
2b − a2 = −6
−2ac + b2 = 10
2b − c2 = −9.

(8)

Squaring the second equation we get 4a2c2 = b4 − 20b2 + 100 and solving for a2 and c2

in the first and third equation respectively 4a2c2 = 4(2b + 6)(2b + 9) = 16b2 + 120b +
216. It is easily verified that no solution of (8) has b = −3, so it follows that

(b2 − 8)2

(2b + 6)2
= b4 − 16b2 + 64

4b2 + 24b + 36
= 20b2 + 120b + 180

4b2 + 24b + 36
= 5

contradictory to our assumption about p we find that 5 is a square in Fp. Hence we
only need to consider solutions with d = −1, or equivalently solutions to the system:⎧⎨

⎩
2b − a2 = −6
−2ac + b2 = 14
2b + c2 = 9.
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Equating 4a2c2 obtained from the second and from the first and third equation
respectively in the same fashion as before now results in the equation

0 = (14 − b2)2 − 4(2b + 6)(9 − 2b) = ((b − 1)2 − 11)((b + 1)2 + 1).

Substituting the four possible values of b into the equations we obtain exactly the
factorisations (4) and (6).

This shows that (4), (5) and (6) are all the factorisations into two factors of degree
four.

Next we will argue that essentially two situations are at hand here. Either exactly
one of the threes types of factorisations into factors of degree four occur, and in
that case the factors are irreducible, or more than one of them occur and then the
factorisation of g into irreducibles is a product of four polynomials of degree two. The
argument is as follows:

Assume that g has a factorisation of non-even type, that is of the form (4) or (6)
given above. Then either g(s) = f (s)f (−s) is a product of irreducible polynomials or they
both factorise further since if f (s) = h(s)k(s) then f (−s) = h(−s)k(−s). (As before we
know that all factors are either degree four or two from the non-existence of zeroes.)
Now the second case occurs if and only if there also is a factorisation of g of even
type because h(s)h(−s) and k(s)k(−s) are even and the other direction is clear from the
uniqueness of factorisation and the above comment that all irreducible factors are of the
same degree. The remaining case to deal with is when there is only an even factorisation
of g. We want to show that the factors are irreducible. From the form of (5) the factors
only differ by the choice of a square root of β so if one factor can be decomposed
we obtain a decomposition of the other factor by applying the field automorphism√

β �→ −√
β. However, if we have such a decomposition g(s) = f (s)f (−s)h(s)h(−s)

then k1(s) = f (s)h(s), k2(s) = f (−s)h(−s) gives a factorisation g(s) = k1(s)k2(s) of non-
even type, contradicting our assumption. We can now conclude that the decomposition
of g into irreducible polynomials is a product of two factors of degree four if only one
of the factorisations (4), (5) and (6) occur and the factors are even or not according to
which one it is. Otherwise g is a product of four irreducibles of degree two. This occurs
exactly when more than one of the three factorisations is possible and the degree two
factors are always non-even since at least one of the factorisations of degree four is non-
even. From the remark after the proposition it is clear that the conditions for existence
of the different types of factorisations can be reformulated as in the proposition: If
both (1) and (2) are satisfied all three factorisations are possible, if (1) but not (2) holds
only (4) occurs, if (1) does not hold but (2) does only (5) applies and if none of the
conditions hold true we only have a factorisation of type (6). This concludes the proof
of our proposition. �

COROLLARY 9. Let p be a prime with p �≡ ±1 modulo 10. Then all maximal symmetry
groups of type PSL(2, pk) or PGL(2, pk) are given by:

• PSL(2, p2) if p ≡ 1 modulo 4 and p ≡ 1, 3, 4, 5 or 9 modulo 11.
• PGL(2, p2) if p ≡ 3 modulo 4 and p ≡ 1, 3, 4, 5 or 9 modulo 11.
• PSL(2, p4) otherwise.

Proof. This is an immediate result of combining the above proposition with
Theorem 5. �
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This completes the investigation of maximal symmetry groups of the types
PSL(2, pk) and PGL(2, pk). For easy reference we collect our results in the following
theorem:

THEOREM 10. Let p be a prime. In the case p ≡ ±1 modulo 10 we consider the
element of Fp given by β1 = 3 − 2

√
5, β2 = 3 + 2

√
5 and γk = 6 + 2

√
βk whenever βk

is a square in Fp. Then the following is a list of all maximal symmetry groups of type
PSL(2, pk) or PGL(2, pk):

• PSL(2, p) if p ≡ ±1 modulo 10 and some γk exists and is a square.
• PSL(2, p2) if p ≡ ±1 modulo 10 and some βk is not a square or⎧⎨

⎩
p �≡ ±1 modulo 10
p ≡ 1 modulo 4
p ≡ 1, 3, 4, 5, 9 modulo 11.

• PSL(2, p4) if {
p �≡ ±1 modulo 10
p ≡ 2, 6, 7, 8, 10 modulo 11.

• PGL(2, p) if p ≡ ±1 modulo 10 and for some k βk is a square but γk is not.
• PGL(2, p2) if ⎧⎨

⎩
p �≡ ±1 modulo 10
p ≡ 3 modulo 4
p ≡ 1, 3, 4, 5, 9 modulo 11.

REMARK. In [11] the author proves that for prime powers q ≡ 1 modulo 10 every
homomorphism with torsion-free kernel from the orientation preserving subgroup
C0 of C onto PSL(2, q) extends to a homomorphism with torsion-free kernel from
� onto either PSL(2, q) or PGL(2, q). Conversely the restriction to C0 of such a
homomorphism φ has an image of index one or two in Im(φ) and since PSL(2, q) has
no subgroups of index two and it is shown in [11] that there are no surjections from C0

onto PGL(2, q) every projective quotient of � must arise from a projective quotient of
C0 in this way. Paoluzzi then classifies all surjections from C0 onto groups PSL(2, q)
and in the case with q ≡ 1 modulo 10 the result is as follows:

• PSL(2, p) if p ≡ 1 modulo 10 and 3 + 2
√

5 or 3 − 2
√

5 is a square in Fp

• PSL(2, p2) if p ≡ ±1 modulo 10 and 3 + 2
√

5 or 3 − 2
√

5 is not a square in Fp2

• PSL(2, p4) if p ≡ ±3 modulo 10 and 3 + 2
√

5 or 3 − 2
√

5 is not a square in Fp2 .
It is clear that the first two results agree with those given in Theorem 10. To see that

the results concerning fourth powers of p agree we need to show that for primes p with
p4 ≡ 1 modulo 10 the two conditions agree. First note that for such primes p ≡ ±3
is equivalent to p �≡ ±1 modulo 10 so it remains to show that when this is the case
then 3 + 2

√
5 or 3 − 2

√
5 is not a square in Fp2 exactly when p ≡ 2, 6, 7, 8, 10 modulo

11. From (3) the latter condition is equivalent to −11 not being a quadratic residue
modulo p. If both 3 + 2

√
5 and 3 − 2

√
5 are squares then so is their product −11. On the

other hand, if −11 is a square then 3 + 2
√

5 is the square of a + b
√

5 where b = 1/a
and b2 equals one of the numbers 3±√−11

10 . (The product of the Legendre symbols
equals the Legendre symbol of 5 which is −1 for the primes considered so there is
such a b.)
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