INTERSECTIONS OF m-CONVEX SETS

MARILYN BREEN

1. Introduction. Let S be a subset of some linear topological space. The set S is said to be m-convex, $m \geqq 2$, if and only if for every m-member subset of S, at least one of the $\binom{m}{2}$ line segments determined by these points lies in S. A point x in S is called a point of local convexity of S if and only if there is some neighborhood N of x such that if $y, z \in N \cap S$, then $[y, z] \subseteq S$. If S fails to be locally convex at some point q in S, then q is called a point of local nonconvexity (lnc point) of S.
Several interesting decomposition theorems have been obtained for closed m-convex sets in the plane (Valentine [9], Stamey and Marr [6], Breen and Kay [2]). However, little work has been done on the problem of characterizing intersections of m-convex subsets of a set. Similar characterizations have been accomplished for intersections of maximal starshaped subsets of set S, where S is compact, simply connected and planar (Hare and Kenelly [3]), and for maximal L_{n} subsets of S (Sparks [5]). Also, for S a subset of an arbitrary linear topological space, Tattersall [7] has obtained conditions under which the intersection of all maximal m-convex subsets of S will be exactly the kernel of S. Unfortunately, in general such an intersection will not even be an m-convex set. Thus the purpose of this paper is to obtain conditions under which an intersection of m-convex subsets will be again m-convex. There are two main results: the first concerns 3 -convex sets in R^{d}; the second, m-convex sets in the plane.

The following familiar terminology will be used: For points x, y in S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. Points x_{1}, \ldots, x_{n} in S are visually independent via S if and only if for $1 \leqq i<$ $j \leqq n, x_{i}$ does not see x_{j} via S. Throughout the paper, conv S, aff S, cl S, bdry S, int S, rel int S, and ker S will be used to denote the convex hull, affine hull, closure, boundary, interior, relative interior, and kernel, respectively, of the set S. Also, if S is convex, $\operatorname{dim} S$ will denote the dimension of S.
2. Intersections of 3-convex sets in R^{d}. We begin with a series of preliminary lemmas.

Lemma 1. Let M be a closed m-convex subset of some linear topological space, and let Q denote the set of lnc points of M. Then $M=\operatorname{cl}(M \sim Q)$.

Proof. Let $x \in M$ and let N be an arbitrary neighborhood of x to show that N contains points in $M \sim Q$. Assume on the contrary that $N \cap M \subseteq Q$ to

Received November 19, 1974.
obtain a contradiction. Select points y_{1}, z_{1} in $N \cap M$ such that $\left[y_{1}, z_{1}\right] \nsubseteq M$. Furthermore, since M is closed, we may select some neighborhood N_{1} of y_{1}, $N_{1} \subseteq N$, such that no point of $N_{1} \cap M$ sees z_{1} via M. Now $y_{1} \in N \cap M \subseteq Q$, so we may select y_{2}, z_{2} in $N_{1} \cap M$ such that $\left[y_{2}, z_{2}\right] \nsubseteq M$. Continuing, by an obvious induction we may select a visually independent set $\left\{z_{n}\right\}$, contradicting the m-convexity of M. Our assumption is false, N contains points in $M \sim Q$, and $M \subseteq \operatorname{cl}(M \sim Q)$. The reverse inclusion is obvious and the lemma is proved.

Lemma 2. Let M be a closed m-convex set in R^{d}, where $d=\operatorname{dim}$ aff M, and let Q denote the set of lnc points of M. If $M \sim Q$ is connected, then $M=\operatorname{cl}($ int $M)$.

Proof. Let $x \in M$ and let N be any neighborhood of x to show that N contains points interior to M. By Lemma $1, x \in \mathrm{cl}(M \sim Q)$, so we may select y in $N \cap(M \sim Q)$. Choose a neighborhood N_{1} of y such that $N_{1} \subseteq N$ and $C \equiv N_{1} \cap M$ is convex.

We assert that $\operatorname{dim} C=d$. Otherwise, there would be points of M not in aff C, and since $M=\operatorname{cl}(M \sim Q)$, we could select z in $M \sim Q$ such that $z \notin$ aff C. Since $M \sim Q$ is connected and locally convex, it is polygonally connected, and there would be a path λ in $M \sim Q$ from y to z. However, (aff $C) \cap \mathrm{cl}(M \sim$ aff $C) \subseteq Q$, so λ would contain a point of Q, impossible. Thus $\operatorname{dim} C=d$, and any point in $N \cap$ int $C \neq \emptyset$ will be interior to M, finishing the argument.

Lemma 3. If $M=\operatorname{cl}($ int $M)$, dim aff $M=d$, and the set Q of lnc points of M lies in ker M, then either conv Q contains an interior point of M or Q is convex.

Proof. Since $Q \subseteq$ ker M, clearly conv $Q \subseteq M$. If conv $Q \cap$ int $M \neq \emptyset$, there is nothing to prove, so assume that conv $Q \subseteq$ bdry M. Then dim conv $Q \leqq d-1$.

We will show that Q is a convex subset of M. Suppose, on the contrary, that there is some z in conv $Q \sim Q$. It is easy to see that Q is closed, so conv $Q \sim Q$ is open in conv Q, and z may be selected in rel int conv Q. Using the fact that $z \notin Q$, select a neighborhood N of z for which $N \cap M$ is convex. Then since $z \in$ bdry M, there is a hyperplane H supporting $N \cap M$ at z, with $N \cap M$ in $\mathrm{cl}\left(H_{1}\right)$ (where H_{1}, H_{2} denote distinct open halfspaces determined by H). Since $z \in \operatorname{ker} M$, clearly no point of M lies in H_{2}. Also, since $z \in$ rel int conv Q, Q must lie in H. (Otherwise, z would lie in (conv $Q) \cap H \subseteq$ rel bdry conv Q.) Therefore, for p, q in $M \sim H,[z, p] \cup[z, q] \subseteq M$, no lnc point of M lies in conv $\{z, p, q\}$, so by a lemma of Valentine [8, Corollary 1], conv $\{z, p, q\} \subseteq$ M and $[p, q] \subseteq M \sim H$. Hence $M \sim H$ is convex, and since $M \subseteq \operatorname{cl}\left(H_{1}\right)$, the set $\mathrm{cl}(M \sim H)=\mathrm{cl}($ int $M)=M$ is convex. But this implies that $Q=\emptyset$, a contradiction. Thus Q must be convex, completing the proof.

Lemma 4. Let M be a closed 3-convex set in R^{d}, where $d=\operatorname{dim}$ aff M, and let Q
denote the set of lnc points of M. If $M \sim Q$ is connected and Q lies in a hyperplane, then M is a union of two convex sets.

Proof. By Lemma 2, $M=\mathrm{cl}($ int M). Also, since M is 3-convex, it is easy to show that $Q \subseteq \operatorname{ker} M$, so by Lemma 3, either conv Q contains an interior point of M or Q is convex.

Suppose, for the moment, that $w \in \operatorname{conv} Q \cap$ int $M \neq \emptyset$. For H a hyperplane containing Q, with H_{1} and H_{2} the corresponding open halfspaces, we assert that $\operatorname{cl}\left(M \cap H_{1}\right), \operatorname{cl}\left(M \cap H_{2}\right)$ are convex sets whose union is M : If x, y are in $M \cap H_{1}$, then $[x, w] \cup[w, y] \subseteq M$, no lnc point of M can be in conv $\{x, y, w\}$, so by Valentine's lemma, conv $\{x, y, w\} \subseteq M$ and $[x, y] \subseteq H_{1} \cap M$. Hence $H_{1} \cap M$ is convex, as is $\operatorname{cl}\left(H_{1} \cap M\right)$. Similarly $\operatorname{cl}\left(H_{2} \cap M\right)$ is convex, and since $M=\mathrm{cl}($ int $M)$, clearly

$$
M=\operatorname{cl}\left(H_{1} \cap M\right) \cup \operatorname{cl}\left(H_{2} \cap M\right)
$$

the desired result.
In case conv $Q \cap \operatorname{int} M=\emptyset$, then Q must be convex by Lemma 3 . We will show that Q satisfies the definition of essential given in [1, Definition 1]. Precisely, if $q \in Q$ and N is any convex neighborhood of q, we assert that $(N \cap M) \sim Q$ is connected: Let r, s belong to (int $M) \cap N$. Since $M \sim Q$ is connected and $M=\mathrm{cl}$ (int M), by standard arguments, int M is connected. Also, int M is locally convex and hence polygonally connected, so there is a polygonal path λ in int M from r to s. Let T denote a neighborhood of λ, $T \subseteq$ int M. Since $q \in Q \subseteq$ ker $M, \operatorname{conv}(T \cup\{q\}) \subseteq M$, and $\operatorname{conv}(T \cup\{q\})$ contains a path λ^{\prime} in (int M) $\cap N$ from r to s. Thus (int M) $\cap N$ is polygonally connected and hence connected. Since

$$
(\text { int } M) \cap N \subseteq(M \cap N) \sim Q \subseteq \operatorname{cl}[(\operatorname{int} M) \cap N]
$$

it follows that $(M \cap N) \sim Q$ is also connected, and the assertion is proved. Therefore, we may apply arguments given in [1, Theorem 3] to conclude that M is a union of two convex sets, finishing the proof of the lemma.

Theorem 1. Let S be a closed subset of R^{k}, and assume that S contains all triangles whose boundaries lie in S. Let \mathscr{M} denote any collection of closed 3-convex subsets of S such that for M in \mathscr{M} and Q_{M} the corresponding set of lnc points of M, each member of Q_{M} is an lnc point for $S \cap$ aff Q_{M} and $M \sim Q_{M}$ is connected. Then

$$
\cap\{M: M \in \mathscr{M}\} \equiv \cap \mathscr{M}
$$

is 3-convex.
Proof. Let M belong to \mathscr{M}, let dim aff $M=d$, and let $Q_{M}=Q$ denote the set of lnc points of M. Since M is 3 -convex, $Q \subseteq$ ker M. We will show that if $x, y \in M$ and $[x, y] \subseteq S$, then $[x, y] \subseteq M$. There are three cases to consider.

Case 1. In case int conv $Q \neq \emptyset$ (as a subset of the d-dimensional space aff M), then select $w \in \operatorname{int} \operatorname{conv} Q$ and let N be a d-dimensional neighborhood of z for which $N \subseteq \operatorname{conv} Q$. Since conv $Q \subseteq$ ker $M, \operatorname{conv}(N \cup\{x\}) \subseteq M$ and $\operatorname{conv}(N \cup\{y\}) \subseteq M$. Therefore, since S contains all triangles whose boundaries lie in $S, \operatorname{conv}(N \cup[x, y]) \subseteq S$, and $(\operatorname{conv}\{x, y, w\}) \sim[x, y]$ can contain no lnc point of $S \cap$ aff Q. Hence ($\operatorname{conv}\{x, y, w\}) \sim[x, y]$ can contain no lnc point of $M,[w, x] \cup[w, y] \subseteq M$, and by a generalization of Valentine's lemma, $\operatorname{conv}\{x, y, w\} \subseteq M$ and $[x, y] \subseteq M$.

Case 2. Assume that int conv $Q=\emptyset$ and that conv Q contains an interior point of M. Then clearly we may select a point w in (rel int conv Q) \cap int M. Unfortunately, there are three subcases to consider, depending upon whether x, y belong to aff Q :

Case 2a. If $x, y \notin$ aff Q, then no point of (w, x] is in aff Q, and to each point of $(w, x]$ we may associate a convex neighborhood disjoint from aff Q. Also, since $w \in$ int M, there is some neighborhood of w disjoint from Q. Hence by using a compactness argument, we may select a convex cylinder about $[w, x]$ disjoint from Q. Finally, let N_{x} be a convex neighborhood of w contained in the cylinder, $N_{x} \subseteq M$. For z in $N_{x},[z, w] \cup[w, x] \subseteq M$, clearly no lnc point of M lies in $\operatorname{conv}\{z, w, x\}$, so again by Valentine's lemma, $[z, x] \subseteq M$. Thus $\operatorname{conv}\left(N_{x} \cup\{x\}\right) \subseteq M$. Repeating the argument for y, we obtain a neighborhood N_{y} of w with $\operatorname{conv}\left(N_{y} \cup\{y\}\right) \subseteq M$. Then $N=N_{x} \cap N_{y}$ is a neighborhood of w with $\operatorname{conv}(N \cup\{x\}) \subseteq M$ and $\operatorname{conv}(N \cup\{y\}) \subseteq M$. By repeating an argument used in Case $1, \operatorname{conv}\{x, y, w\}$ contains no lnc point of M and $[x, y] \subseteq M$, the desired result.

Case 2 b . If both x and y are in aff Q, then consider the set $M_{0} \equiv M \cap$ aff Q as a subset of the flat aff Q. Since $w \in$ rel int conv Q, w is interior to ker M_{0}, and we may select a neighborhood N of w in aff Q for which $N \subseteq \operatorname{ker} M_{0}$. Repeating the argument in Case 1, $(\operatorname{conv}\{x, y, w\}) \sim[x, y]$ can contain no lnc point of $S \cap$ aff Q and hence no lnc point of M, so $[x, y] \subseteq M$.

Case 2 c . In case exactly one of x and y, say y, is in aff Q, then use the argument in Lemma 4 to write M as a union of the convex sets $M_{1} \equiv \operatorname{cl}\left(M \cap H_{1}\right)$ and $M_{2} \equiv \operatorname{cl}\left(M \cap H_{2}\right)$, where H_{1} and H_{2} are open halfspaces determined by a hyperplane H, with $Q \subseteq H$. Since $w \in($ rel int conv $Q) \cap$ int M, w is in $M_{1} \cap M_{2}$, and if N is a convex neighborhood of w in M, then $N \cap H_{1} \neq \emptyset$, $N \cap H_{2} \neq \emptyset$, and $N \cap H \subseteq M_{1} \cap M_{2}$.

If both x and y lie in M_{1} (or M_{2}), the argument is complete. Otherwise, without loss of generality, assume that $x \in M_{1}, y \in M_{2}$. The convex cone C at x emanating through $N \cap H$ necessarily contains some point z in $N \cap H_{2}$, and $[x, z] \subseteq M$. We may select a neighborhood N^{\prime} of z with $N^{\prime} \subseteq C \cap N \cap H_{2}$. Then for z^{\prime} in $N^{\prime},[x, z] \cup\left[z, z^{\prime}\right] \subseteq M$, there are no lnc points of M in $C \cap H$ and hence no lnc points of M in conv $\left\{x, z, z^{\prime}\right\}$, so again by Valentine's lemma, $\left[x, z^{\prime}\right] \subseteq M$. Thus $\operatorname{conv}\left(N^{\prime} \cup\{x\}\right) \subseteq M$. Since $N^{\prime} \subseteq M_{2}$ and $y \in M_{2}$, $\operatorname{conv}\left(N^{\prime} \cup\{y\}\right) \subseteq M$. Repeating an argument from Case $1,(\operatorname{conv}\{x, y, z\}) \sim$ $[x, y]$ contains no lnc point of M and $[x, y] \subseteq M$, finishing the proof of Case 2.

Case 3. Finally, consider the case in which conv $Q \cap$ int $M=\emptyset$. By Lemma $2, M=\mathrm{cl}($ int $M)$, and by an earlier remark, $Q \subseteq$ ker M. Hence we may use Lemma 3 to conclude that Q is convex. By remarks in the proof of Lemma 4, we may apply arguments given in [1, Theorem 3] to conclude that M is a union of two convex sets $\mathrm{cl}\left(M \cap H_{1}\right)$ and $\operatorname{cl}\left(M \cap H_{2}\right)$, where H_{1} and H_{2} are distinct open halfspaces determined by an appropriate hyperplane H, and $Q \subseteq H$. By [1, Lemma 4], int $M \sim$ aff Q is connected, so clearly $(H \cap$ int M) \sim aff $Q \neq \emptyset$. Then by adapting an argument in [1, Theorem 3], for w any point in $(H \cap \operatorname{int} M) \sim$ aff Q, w is in ker M.

We assert that there is some neighborhood N of w for which $\operatorname{conv}(N \cup\{x\})$ $\subseteq M:$ If $x \in M \sim H$ or if $x \in(M \cap$ aff $Q) \sim Q$, then $[w, x)$ contains no member of aff $Q, x \notin Q$, and we may employ an argument used in Case 2a to select an appropriate neighborhood N of w. If $x \in(M \cap H) \sim$ aff Q, then by an argument in [1, Theorem 3], x is in ker M; thus any neighborhood N of w in M has the required property. A similar result holds if $x \in Q \subseteq \operatorname{ker} M$, and the assertion is proved. A parallel statement holds for y, and an argument from Case 1 may be used to show that $[x, y] \subseteq M$, finishing Case 3 and completing this portion of the proof.

The remaining steps are easy. For points x, y, z in $\cap \mathscr{M}$, since every member of \mathscr{M} is 3 -convex, at least one of the corresponding segments, say $[x, y]$, lies in S. But then by our previous argument, $[x, y]$ lies in every M in $\mathscr{M}, \cap \mathscr{M}$ is again 3 -convex, and Theorem 1 is proved.

It is interesting to notice that if $M \sim Q$ is not connected or if members of Q are not lnc points of S, then the result in Theorem 1 fails, as later examples will reveal.
3. Intersections of m-convex sets. The following result is an analogue of Theorem 1 for m-convex sets in the plane.

Theorem 2. Let S be a closed, simply connected subset of the plane. Let \mathscr{M} be any collection of closed m-convex subsets of S such that for M in \mathscr{M} and Q_{M} the corresponding set of lnc points of M, each member of Q_{M} is an lnc point of S and $M \sim Q_{M}$ is connected. Then $\cap \mathscr{M}$ is again an m-convex set.

Proof. Let M belong to \mathscr{M} with $Q_{M} \equiv Q$ the corresponding set of lnc points of M. As in the proof of Theorem 1 , we will show that if x and y are points of M with $[x, y] \subseteq S$, then $[x, y] \subseteq M$.

By [4, Lemma 2], M is locally starshaped, so there is a neighborhood N of x such that x sees each point of $N \cap M$ via M. Also, by Lemma $2, M=$ $\mathrm{cl}\left(\right.$ int M), so we may choose a point x_{0} in $N \cap$ int M and a corresponding neighborhood N^{\prime} of x_{0}, with $N^{\prime} \subseteq N \cap$ int M. Then $\operatorname{conv}\left(N^{\prime} \cup\{x\}\right) \subseteq M$ and $\left[x_{0}, x\right) \subseteq$ int M. Using a parallel argument select y_{0} with $\left[y_{0}, y\right) \subseteq$ int M. Clearly $x_{0}, y_{0} \in M \sim Q$. Since $M \sim Q$ is connected and locally convex, it is polygonally connected, and there is a polygonal path in $M \sim Q$ from x_{0} to y_{0}.

Moreover, since $\left[x_{0}, x\right) \cup\left[y_{0}, y\right) \subseteq M \sim Q$, there is a polygonal path λ in M from x to y, with $\lambda \sim\{x, y\} \subseteq M \sim Q$. Let

$$
x=t_{0}, t_{1}, \ldots, t_{k}=y
$$

denote the consecutive vertices of λ, and assume that λ has been selected so that k is minimal for all such paths in M.

For the moment, assume that λ contains no point of (x, y). Now if $k \geqq 3$, then using the fact that S is simply connected, for some pair of adjacent segments $\left[t_{i-1}, t_{i}\right]$ and $\left[t_{i}, t_{i+1}\right]$,

$$
\left(\text { int } \operatorname{conv}\left\{t_{i-1}, t_{i}, t_{i+1}\right\}\right) \cup\left(t_{i-1}, t_{i+1}\right)
$$

contains no lnc point of S (and hence no lnc point of M). Furthermore, since x and y are the only points of λ which might lie in $Q,\left(t_{i-1}, t_{i}\right] \cup\left[t_{i}, t_{i+1}\right)$ contains no lnc point of M, so by a generalization of Valentine's lemma, $\operatorname{conv}\left\{t_{i-1}, t_{i}, t_{i+1}\right\} \subseteq M$. However, then $\left[t_{i-1}, t_{i+1}\right] \subseteq M$, and x and y are the only points of $\left[t_{i-1}, t_{i+1}\right]$ which might lie in Q. (Clearly $\left[t_{i-1}, t_{i+1}\right] \cap Q \neq \emptyset$ only if $i=1$ and $x \in Q$ or if $i=k-1$ and $y \in Q$.) Letting λ^{\prime} denote the path having vertices $t_{0}, \ldots, t_{i-1}, t_{i+1}, \ldots, t_{k}, \lambda^{\prime} \sim\{x, y\} \subseteq M \sim Q$ and λ^{\prime} has length $k-1$, contradicting the minimality of k. Hence $k \leqq 2$. Similarly, if $k=2$, then $\left[t_{0}, t_{1}\right] \cup\left[t_{1}, t_{2}\right] \subseteq M$, there is no lnc point of M in $\left(\operatorname{conv}\left\{t_{0}, t_{1}, t_{2}\right\}\right)$ $\sim\left[t_{0}, t_{2}\right]$, so again by Valentine's lemma, conv $\left\{t_{0}, t_{1}, t_{2}\right\} \subseteq M$ and $\left[t_{0}, t_{2}\right]=$ $[x, y] \subseteq M$, the desired result. Of course if $k=1$, then $\lambda=[x, y] \subseteq M$.

In case λ contains points of (x, y), the argument above may be adapted suitably for subsets of λ having only their endpoints x^{\prime}, y^{\prime} on $[x, y]$ to show that $\left[x^{\prime}, y^{\prime}\right] \subseteq M$. Then again $[x, y] \subseteq M$, and this portion of the argument is complete.

Finally, for any m points in $\cap \mathscr{M}$, at least one of the corresponding segments must lie in S. Then by the argument above, this segment lies in every member of \mathscr{M}, and $\cap \mathscr{M}$ is an m-convex set, finishing the proof of the theorem.

The following example shows that the results in Theorems 1 and 2 fail without the requirement that $M \sim Q$ be connected for $M \in \mathscr{M}$.

Example 1. Let S denote the simply connected set in Figure 1, A and B the indicated vertical strips, C and D the horizontal ones. Then $A \cup B$, $C \cup D$ are 3 -convex subsets of S having no lnc points, yet their intersection is not 3-convex.

Furthermore, the results of Theorems 1 and 2 require that members of Q be lnc points of S, as Example 2 reveals.

Example 2. Let S denote the simply connected set in Figure $2, P=$ $\operatorname{conv}\left\{p_{i}: 1 \leqq i \leqq 4\right\}, R=\operatorname{conv}\left\{r_{i}: 1 \leqq i \leqq 4\right\}, M_{R}=\operatorname{cl}(R \sim \operatorname{conv}\{a, b, c\})$, $M_{P}=\mathrm{cl}(P \sim \operatorname{conv}\{x, y, z\})$. Then M_{R} and M_{P} are 3-convex, but the lnc points b and y are not lnc points of S, and $M_{1} \cap M_{2}$ is not 3 -convex.

The final result concerns maximal m-convex subsets of a set.

Figure 1

Figure 2

Theorem 3. Let S be a closed subset of R^{d}, int $\operatorname{ker} S \neq \emptyset$, with Q the set of lnc points of S. Let \mathscr{N} denote the collection of all maximal m-convex subsets of S, and let \mathscr{M} denote any subcollection of \mathscr{N} such that for M in \mathscr{M}, the lnc points of M are in Q. Then $\cap \mathscr{M}$ is m-convex.

Proof. By an obvious use of Zorn's lemma, it is easy to show that every m-convex subset of S lies in a maximal m-convex subset of S, so the collection \mathscr{N} is not empty. Also, since S is closed, each member of \mathscr{N} is closed. Further, it is not hard to prove that if $M \in \mathscr{N}$ and $s \in \operatorname{ker} S$, then $s M \equiv$ $\cup\{[s, t]: t$ in $M\}$ is m-convex. Hence $M=s M, s \in \operatorname{ker} M$, and $\operatorname{ker} S \subseteq$ $\cap \mathscr{N} \subseteq \cap \mathscr{M}$.

If $\mathscr{M}=\emptyset$, there is nothing to prove. Otherwise, let M belong to \mathscr{M}, and let $x, y \in \cap \mathscr{M}$ with $[x, y] \subseteq S$. Then for any $z \in$ int $\operatorname{ker} S \subseteq \operatorname{ker} M$ and any neighborhood N of z with $N \subseteq \operatorname{ker} S$, $\operatorname{conv}(N \cup[x, y]) \subseteq S$. Hence using techniques employed in the proof of Theorem $1,[x, y] \subseteq M$, and $\cap \mathscr{M}$ is m-convex.

In conclusion, we note that the maximality of members of \mathscr{M} in Theorem 3 may be replaced by the following requirement: For each M in \mathscr{M}, ker M contains a point in int ker S.

References

1. Marilyn Breen, Points of local nonconvexity and finite unions of convex sets, Can. J. Math. 27 (1975), 376-383.
2. Marilyn Breen and David C. Kay, General decomposition theorems for m-convex sets in the plane, submitted to Israel J. Math.
3. W. R. Hare and John W. Kenelly, Intersections of maximal starshaped sets, Proc. Amer. Math. Soc. 19 (1968), 1299-1302.
4. David C. Kay and Merle D. Guay, Convexity and a certain property P_{m}, Israel J. Math. 8 (1970), 39-52.
5. Arthur G. Sparks, Intersections of maximal L_{n} sets, Proc. Amer. Math. Soc. 24 (1970), 245-250.
6. W. L. Stamey and J. M. Marr, Unions of two convex sets, Can. J. Math. 15 (1963), 152-156.
7. J. J. Tattersall, On the intersection of maximal m-convex subsets, Israel J. Math. 16 (1963), 300-305.
8. F. A. Valentine, Local convexity and L_{n} sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.
9. - A three point convexity property, Pacific J. Math. 7 (1957), 1227-1235.

University of Oklahoma, Norman, Oklahoma

