INTERSECTIONS OF *m*-CONVEX SETS

MARILYN BREEN

1. Introduction. Let S be a subset of some linear topological space. The set S is said to be *m*-convex, $m \ge 2$, if and only if for every *m*-member subset of S, at least one of the $\binom{m}{2}$ line segments determined by these points lies in S. A point x in S is called a *point of local convexity* of S if and only if there is some neighborhood N of x such that if $y, z \in N \cap S$, then $[y, z] \subseteq S$. If S fails to be locally convex at some point q in S, then q is called a *point of local nonconvexity* (lnc point) of S.

Several interesting decomposition theorems have been obtained for closed m-convex sets in the plane (Valentine [9], Stamey and Marr [6], Breen and Kay [2]). However, little work has been done on the problem of characterizing intersections of m-convex subsets of a set. Similar characterizations have been accomplished for intersections of maximal starshaped subsets of set S, where S is compact, simply connected and planar (Hare and Kenelly [3]), and for maximal L_n subsets of S (Sparks [5]). Also, for S a subset of an arbitrary linear topological space, Tattersall [7] has obtained conditions under which the intersection of all maximal m-convex subsets of S will be exactly the kernel of S. Unfortunately, in general such an intersection will not even be an m-convex set. Thus the purpose of this paper is to obtain conditions under which an intersection of m-convex subsets will be again m-convex. There are two main results: the first concerns 3-convex sets in R^d ; the second, m-convex sets in the plane.

The following familiar terminology will be used: For points x, y in S, we say x sees y via S if and only if the corresponding segment [x, y] lies in S. Points x_1, \ldots, x_n in S are visually independent via S if and only if for $1 \leq i < j \leq n, x_i$ does not see x_j via S. Throughout the paper, conv S, aff S, cl S, bdry S, int S, rel int S, and ker S will be used to denote the convex hull, affine hull, closure, boundary, interior, relative interior, and kernel, respectively, of the set S. Also, if S is convex, dim S will denote the dimension of S.

2. Intersections of 3-convex sets in R^{d} . We begin with a series of preliminary lemmas.

LEMMA 1. Let M be a closed m-convex subset of some linear topological space, and let Q denote the set of lnc points of M. Then $M = cl(M \sim Q)$.

Proof. Let $x \in M$ and let N be an arbitrary neighborhood of x to show that N contains points in $M \sim Q$. Assume on the contrary that $N \cap M \subseteq Q$ to

Received November 19, 1974.

M-CONVEX SETS

obtain a contradiction. Select points y_1, z_1 in $N \cap M$ such that $[y_1, z_1] \not\subseteq M$. Furthermore, since M is closed, we may select some neighborhood N_1 of y_1 , $N_1 \subseteq N$, such that no point of $N_1 \cap M$ sees z_1 via M. Now $y_1 \in N \cap M \subseteq Q$, so we may select y_2, z_2 in $N_1 \cap M$ such that $[y_2, z_2] \not\subseteq M$. Continuing, by an obvious induction we may select a visually independent set $\{z_n\}$, contradicting the *m*-convexity of M. Our assumption is false, N contains points in $M \sim Q$, and $M \subseteq cl(M \sim Q)$. The reverse inclusion is obvious and the lemma is proved.

LEMMA 2. Let M be a closed m-convex set in \mathbb{R}^d , where $d = \dim \operatorname{aff} M$, and let Q denote the set of lnc points of M. If $M \sim Q$ is connected, then $M = \operatorname{cl}(\operatorname{int} M)$.

Proof. Let $x \in M$ and let N be any neighborhood of x to show that N contains points interior to M. By Lemma 1, $x \in cl(M \sim Q)$, so we may select y in $N \cap (M \sim Q)$. Choose a neighborhood N_1 of y such that $N_1 \subseteq N$ and $C \equiv N_1 \cap M$ is convex.

We assert that dim C = d. Otherwise, there would be points of M not in aff C, and since $M = cl(M \sim Q)$, we could select z in $M \sim Q$ such that $z \notin aff C$. Since $M \sim Q$ is connected and locally convex, it is polygonally connected, and there would be a path λ in $M \sim Q$ from y to z. However, (aff $C) \cap cl(M \sim aff C) \subseteq Q$, so λ would contain a point of Q, impossible. Thus dim C = d, and any point in $N \cap$ int $C \neq \emptyset$ will be interior to M, finishing the argument.

LEMMA 3. If M = cl(int M), dim aff M = d, and the set Q of lnc points of M lies in ker M, then either conv Q contains an interior point of M or Q is convex.

Proof. Since $Q \subseteq \ker M$, clearly conv $Q \subseteq M$. If conv $Q \cap \operatorname{int} M \neq \emptyset$, there is nothing to prove, so assume that conv $Q \subseteq \operatorname{bdry} M$. Then dim conv $Q \leq d-1$.

We will show that Q is a convex subset of M. Suppose, on the contrary, that there is some z in conv $Q \sim Q$. It is easy to see that Q is closed, so conv $Q \sim Q$ is open in conv Q, and z may be selected in rel int conv Q. Using the fact that $z \notin Q$, select a neighborhood N of z for which $N \cap M$ is convex. Then since $z \in$ bdry M, there is a hyperplane H supporting $N \cap M$ at z, with $N \cap M$ in $cl(H_1)$ (where H_1, H_2 denote distinct open halfspaces determined by H). Since $z \in \ker M$, clearly no point of M lies in H_2 . Also, since $z \in$ rel int conv Q, Q must lie in H. (Otherwise, z would lie in (conv Q) $\cap H \subseteq$ rel bdry conv Q.) Therefore, for p, q in $M \sim H$, $[z, p] \cup [z, q] \subseteq M$, no lnc point of M lies in conv $\{z, p, q\}$, so by a lemma of Valentine [8, Corollary 1], conv $\{z, p, q\} \subseteq$ M and $[p, q] \subseteq M \sim H$. Hence $M \sim H$ is convex, and since $M \subseteq cl(H_1)$, the set $cl(M \sim H) = cl(int M) = M$ is convex. But this implies that $Q = \emptyset$, a contradiction. Thus Q must be convex, completing the proof.

LEMMA 4. Let M be a closed 3-convex set in \mathbb{R}^d , where $d = \dim \operatorname{aff} M$, and let Q

denote the set of lnc points of M. If $M \sim Q$ is connected and Q lies in a hyperplane, then M is a union of two convex sets.

Proof. By Lemma 2, M = cl(int M). Also, since M is 3-convex, it is easy to show that $Q \subseteq ker M$, so by Lemma 3, either conv Q contains an interior point of M or Q is convex.

Suppose, for the moment, that $w \in \operatorname{conv} Q \cap \operatorname{int} M \neq \emptyset$. For H a hyperplane containing Q, with H_1 and H_2 the corresponding open halfspaces, we assert that $\operatorname{cl}(M \cap H_1)$, $\operatorname{cl}(M \cap H_2)$ are convex sets whose union is M: If x, yare in $M \cap H_1$, then $[x, w] \cup [w, y] \subseteq M$, no lnc point of M can be in conv $\{x, y, w\}$, so by Valentine's lemma, conv $\{x, y, w\} \subseteq M$ and $[x, y] \subseteq H_1 \cap M$. Hence $H_1 \cap M$ is convex, as is $\operatorname{cl}(H_1 \cap M)$. Similarly $\operatorname{cl}(H_2 \cap M)$ is convex, and since $M = \operatorname{cl}(\operatorname{int} M)$, clearly

$$M = \operatorname{cl}(H_1 \cap M) \cup \operatorname{cl}(H_2 \cap M),$$

the desired result.

In case conv $Q \cap$ int $M = \emptyset$, then Q must be convex by Lemma 3. We will show that Q satisfies the definition of essential given in [1, Definition 1]. Precisely, if $q \in Q$ and N is any convex neighborhood of q, we assert that $(N \cap M) \sim Q$ is connected: Let r, s belong to $(\text{int } M) \cap N$. Since $M \sim Q$ is connected and M = cl(int M), by standard arguments, int M is connected. Also, int M is locally convex and hence polygonally connected, so there is a polygonal path λ in int M from r to s. Let T denote a neighborhood of λ , $T \subseteq \text{int } M$. Since $q \in Q \subseteq \text{ker } M$, $\text{conv}(T \cup \{q\}) \subseteq M$, and $\text{conv}(T \cup \{q\})$ contains a path λ' in $(\text{int } M) \cap N$ from r to s. Thus $(\text{int } M) \cap N$ is polygonally connected and hence connected. Since

$$(\text{int } M) \cap N \subseteq (M \cap N) \sim Q \subseteq \operatorname{cl}[(\text{int } M) \cap N],$$

it follows that $(M \cap N) \sim Q$ is also connected, and the assertion is proved. Therefore, we may apply arguments given in [1, Theorem 3] to conclude that M is a union of two convex sets, finishing the proof of the lemma.

THEOREM 1. Let S be a closed subset of \mathbb{R}^k , and assume that S contains all triangles whose boundaries lie in S. Let \mathcal{M} denote any collection of closed 3-convex subsets of S such that for M in \mathcal{M} and Q_M the corresponding set of lnc points of M, each member of Q_M is an lnc point for $S \cap$ aff Q_M and $M \sim Q_M$ is connected. Then

 $\cap \{M: M \in \mathscr{M}\} \equiv \cap \mathscr{M}$

is 3-convex.

Proof. Let M belong to \mathcal{M} , let dim aff M = d, and let $Q_M = Q$ denote the set of lnc points of M. Since M is 3-convex, $Q \subseteq \ker M$. We will show that if $x, y \in M$ and $[x, y] \subseteq S$, then $[x, y] \subseteq M$. There are three cases to consider.

Case 1. In case int conv $Q \neq \emptyset$ (as a subset of the *d*-dimensional space aff *M*), then select $w \in \text{int conv } Q$ and let *N* be a *d*-dimensional neighborhood of *z* for which $N \subseteq \text{conv } Q$. Since conv $Q \subseteq \text{ker } M$, $\text{conv}(N \cup \{x\}) \subseteq M$ and $\text{conv}(N \cup \{y\}) \subseteq M$. Therefore, since *S* contains all triangles whose boundaries lie in *S*, $\text{conv}(N \cup [x, y]) \subseteq S$, and $(\text{conv}\{x, y, w\}) \sim [x, y]$ can contain no lnc point of $S \cap \text{aff } Q$. Hence $(\text{conv}\{x, y, w\}) \sim [x, y]$ can contain no lnc point of *M*, $[w, x] \cup [w, y] \subseteq M$, and by a generalization of Valentine's lemma, $\text{conv}\{x, y, w\} \subseteq M$ and $[x, y] \subseteq M$.

Case 2. Assume that int conv $Q = \emptyset$ and that conv Q contains an interior point of M. Then clearly we may select a point w in (rel int conv Q) \cap int M. Unfortunately, there are three subcases to consider, depending upon whether x, y belong to aff Q:

Case 2a. If $x, y \notin$ aff Q, then no point of (w, x] is in aff Q, and to each point of (w, x] we may associate a convex neighborhood disjoint from aff Q. Also, since $w \in$ int M, there is some neighborhood of w disjoint from Q. Hence by using a compactness argument, we may select a convex cylinder about [w, x]disjoint from Q. Finally, let N_x be a convex neighborhood of w contained in the cylinder, $N_x \subseteq M$. For z in $N_x, [z, w] \cup [w, x] \subseteq M$, clearly no lnc point of M lies in conv $\{z, w, x\}$, so again by Valentine's lemma, $[z, x] \subseteq M$. Thus conv $(N_x \cup \{x\}) \subseteq M$. Repeating the argument for y, we obtain a neighborhood N_y of w with conv $(N_y \cup \{y\}) \subseteq M$. Then $N = N_x \cap N_y$ is a neighborhood of w with conv $(N \cup \{x\}) \subseteq M$ and conv $(N \cup \{y\}) \subseteq M$. By repeating an argument used in Case 1, conv $\{x, y, w\}$ contains no lnc point of M and $[x, y] \subseteq M$, the desired result.

Case 2b. If both x and y are in aff Q, then consider the set $M_0 \equiv M \cap$ aff Q as a subset of the flat aff Q. Since $w \in$ rel int conv Q, w is interior to ker M_0 , and we may select a neighborhood N of w in aff Q for which $N \subseteq \text{ker } M_0$. Repeating the argument in Case 1, $(\text{conv}\{x, y, w\}) \sim [x, y]$ can contain no lnc point of $S \cap$ aff Q and hence no lnc point of M, so $[x, y] \subseteq M$.

Case 2c. In case exactly one of x and y, say y, is in aff Q, then use the argument in Lemma 4 to write M as a union of the convex sets $M_1 \equiv cl(M \cap H_1)$ and $M_2 \equiv cl(M \cap H_2)$, where H_1 and H_2 are open halfspaces determined by a hyperplane H, with $Q \subseteq H$. Since $w \in$ (rel int conv Q) \cap int M, w is in $M_1 \cap M_2$, and if N is a convex neighborhood of w in M, then $N \cap H_1 \neq \emptyset$, $N \cap H_2 \neq \emptyset$, and $N \cap H \subseteq M_1 \cap M_2$.

If both x and y lie in M_1 (or M_2), the argument is complete. Otherwise, without loss of generality, assume that $x \in M_1$, $y \in M_2$. The convex cone C at x emanating through $N \cap H$ necessarily contains some point z in $N \cap H_2$, and $[x, z] \subseteq M$. We may select a neighborhood N' of z with $N' \subseteq C \cap N \cap H_2$. Then for z' in N', $[x, z] \cup [z, z'] \subseteq M$, there are no lnc points of M in $C \cap H$ and hence no lnc points of M in conv $\{x, z, z'\}$, so again by Valentine's lemma, $[x, z'] \subseteq M$. Thus conv $(N' \cup \{x\}) \subseteq M$. Since $N' \subseteq M_2$ and $y \in M_2$, conv $(N' \cup \{y\}) \subseteq M$. Repeating an argument from Case 1, $(conv\{x, y, z\}) \sim$ [x, y] contains no lnc point of M and $[x, y] \subseteq M$, finishing the proof of Case 2. Case 3. Finally, consider the case in which conv $Q \cap \operatorname{int} M = \emptyset$. By Lemma 2, $M = \operatorname{cl}(\operatorname{int} M)$, and by an earlier remark, $Q \subseteq \ker M$. Hence we may use Lemma 3 to conclude that Q is convex. By remarks in the proof of Lemma 4, we may apply arguments given in [1, Theorem 3] to conclude that M is a union of two convex sets $\operatorname{cl}(M \cap H_1)$ and $\operatorname{cl}(M \cap H_2)$, where H_1 and H_2 are distinct open halfspaces determined by an appropriate hyperplane H, and $Q \subseteq H$. By [1, Lemma 4], int $M \sim \operatorname{aff} Q$ is connected, so clearly $(H \cap \operatorname{int} M) \sim \operatorname{aff} Q \neq \emptyset$. Then by adapting an argument in [1, Theorem 3], for w any point in $(H \cap \operatorname{int} M) \sim \operatorname{aff} Q$, w is in ker M.

We assert that there is some neighborhood N of w for which $\operatorname{conv}(N \cup \{x\}) \subseteq M$: If $x \in M \sim H$ or if $x \in (M \cap \operatorname{aff} Q) \sim Q$, then [w, x) contains no member of aff $Q, x \notin Q$, and we may employ an argument used in Case 2a to select an appropriate neighborhood N of w. If $x \in (M \cap H) \sim \operatorname{aff} Q$, then by an argument in [1, Theorem 3], x is in ker M; thus any neighborhood N of w in M has the required property. A similar result holds if $x \in Q \subseteq \ker M$, and the assertion is proved. A parallel statement holds for y, and an argument from Case 1 may be used to show that $[x, y] \subseteq M$, finishing Case 3 and completing this portion of the proof.

The remaining steps are easy. For points x, y, z in $\cap \mathcal{M}$, since every member of \mathcal{M} is 3-convex, at least one of the corresponding segments, say [x, y], lies in S. But then by our previous argument, [x, y] lies in every \mathcal{M} in \mathcal{M} , $\cap \mathcal{M}$ is again 3-convex, and Theorem 1 is proved.

It is interesting to notice that if $M \sim Q$ is not connected or if members of Q are not lnc points of S, then the result in Theorem 1 fails, as later examples will reveal.

3. Intersections of *m*-convex sets. The following result is an analogue of Theorem 1 for *m*-convex sets in the plane.

THEOREM 2. Let S be a closed, simply connected subset of the plane. Let \mathcal{M} be any collection of closed m-convex subsets of S such that for M in \mathcal{M} and Q_M the corresponding set of lnc points of M, each member of Q_M is an lnc point of S and $M \sim Q_M$ is connected. Then $\bigcap \mathcal{M}$ is again an m-convex set.

Proof. Let M belong to \mathcal{M} with $Q_M \equiv Q$ the corresponding set of lnc points of M. As in the proof of Theorem 1, we will show that if x and y are points of M with $[x, y] \subseteq S$, then $[x, y] \subseteq M$.

By [4, Lemma 2], M is locally starshaped, so there is a neighborhood N of x such that x sees each point of $N \cap M$ via M. Also, by Lemma 2, M = cl(int M), so we may choose a point x_0 in $N \cap$ int M and a corresponding neighborhood N' of x_0 , with $N' \subseteq N \cap$ int M. Then $conv(N' \cup \{x\}) \subseteq M$ and $[x_0, x) \subseteq$ int M. Using a parallel argument select y_0 with $[y_0, y) \subseteq$ int M. Clearly $x_0, y_0 \in M \sim Q$. Since $M \sim Q$ is connected and locally convex, it is polygonally connected, and there is a polygonal path in $M \sim Q$ from x_0 to y_0 .

1388

Moreover, since $[x_0, x) \cup [y_0, y) \subseteq M \sim Q$, there is a polygonal path λ in M from x to y, with $\lambda \sim \{x, y\} \subseteq M \sim Q$. Let

$$x = t_0, t_1, \ldots, t_k = y$$

denote the consecutive vertices of λ , and assume that λ has been selected so that k is minimal for all such paths in M.

For the moment, assume that λ contains no point of (x, y). Now if $k \geq 3$, then using the fact that S is simply connected, for some pair of adjacent segments $[t_{i-1}, t_i]$ and $[t_i, t_{i+1}]$,

$$(int conv\{t_{i-1}, t_i, t_{i+1}\}) \cup (t_{i-1}, t_{i+1})$$

contains no lnc point of S (and hence no lnc point of M). Furthermore, since x and y are the only points of λ which might lie in Q, $(t_{i-1}, t_i] \cup [t_i, t_{i+1})$ contains no lnc point of M, so by a generalization of Valentine's lemma, $\operatorname{conv}\{t_{i-1}, t_i, t_{i+1}\} \subseteq M$. However, then $[t_{i-1}, t_{i+1}] \subseteq M$, and x and y are the only points of $[t_{i-1}, t_{i+1}]$ which might lie in Q. (Clearly $[t_{i-1}, t_{i+1}] \cap Q \neq \emptyset$ only if i = 1 and $x \in Q$ or if i = k - 1 and $y \in Q$.) Letting λ' denote the path having vertices $t_0, \ldots, t_{i-1}, t_{i+1}, \ldots, t_k, \lambda' \sim \{x, y\} \subseteq M \sim Q$ and λ' has length k - 1, contradicting the minimality of k. Hence $k \leq 2$. Similarly, if k = 2, then $[t_0, t_1] \cup [t_1, t_2] \subseteq M$, there is no lnc point of M in $(\operatorname{conv}\{t_0, t_1, t_2\}) \sim [t_0, t_2]$, so again by Valentine's lemma, $\operatorname{conv}\{t_0, t_1, t_2\} \subseteq M$ and $[t_0, t_2] = [x, y] \subseteq M$, the desired result. Of course if k = 1, then $\lambda = [x, y] \subseteq M$.

In case λ contains points of (x, y), the argument above may be adapted suitably for subsets of λ having only their endpoints x', y' on [x, y] to show that $[x', y'] \subseteq M$. Then again $[x, y] \subseteq M$, and this portion of the argument is complete.

Finally, for any *m* points in $\cap \mathcal{M}$, at least one of the corresponding segments must lie in *S*. Then by the argument above, this segment lies in every member of \mathcal{M} , and $\cap \mathcal{M}$ is an *m*-convex set, finishing the proof of the theorem.

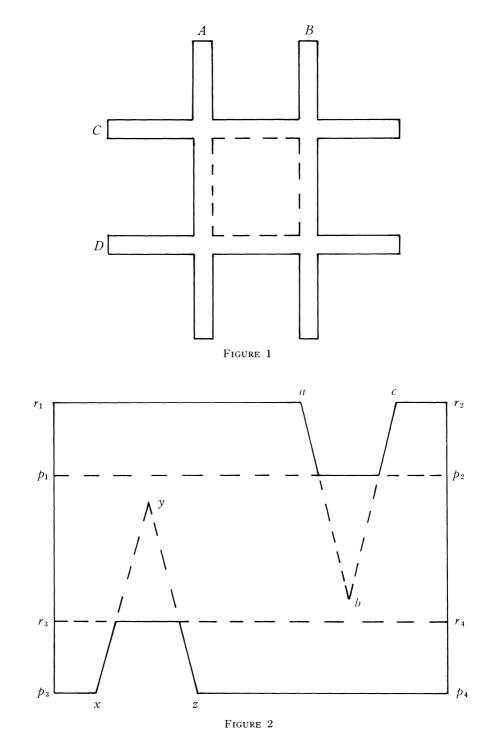
The following example shows that the results in Theorems 1 and 2 fail without the requirement that $M \sim Q$ be connected for $M \in \mathcal{M}$.

Example 1. Let S denote the simply connected set in Figure 1, A and B the indicated vertical strips, C and D the horizontal ones. Then $A \cup B$, $C \cup D$ are 3-convex subsets of S having no lnc points, yet their intersection is not 3-convex.

Furthermore, the results of Theorems 1 and 2 require that members of Q be lnc points of S, as Example 2 reveals.

Example 2. Let S denote the simply connected set in Figure 2, $P = \text{conv}\{p_i: 1 \leq i \leq 4\}, R = \text{conv}\{r_i: 1 \leq i \leq 4\}, M_R = \text{cl}(R \sim \text{conv}\{a, b, c\}), M_P = \text{cl}(P \sim \text{conv}\{x, y, z\})$. Then M_R and M_P are 3-convex, but the lnc points b and y are not lnc points of S, and $M_1 \cap M_2$ is not 3-convex.

The final result concerns maximal *m*-convex subsets of a set.



THEOREM 3. Let S be a closed subset of \mathbb{R}^d , int ker $S \neq \emptyset$, with Q the set of Inc points of S. Let \mathcal{N} denote the collection of all maximal m-convex subsets of S, and let \mathcal{M} denote any subcollection of \mathcal{N} such that for M in \mathcal{M} , the Inc points of M are in Q. Then $\cap \mathcal{M}$ is m-convex.

Proof. By an obvious use of Zorn's lemma, it is easy to show that every *m*-convex subset of S lies in a maximal *m*-convex subset of S, so the collection \mathcal{N} is not empty. Also, since S is closed, each member of \mathcal{N} is closed. Further, it is not hard to prove that if $M \in \mathcal{N}$ and $s \in \ker S$, then $sM \equiv \bigcup \{[s, t] : t \text{ in } M\}$ is *m*-convex. Hence M = sM, $s \in \ker M$, and ker $S \subseteq \bigcap \mathcal{N} \subseteq \bigcap \mathcal{M}$.

If $\mathcal{M} = \emptyset$, there is nothing to prove. Otherwise, let M belong to \mathcal{M} , and let $x, y \in \bigcap \mathcal{M}$ with $[x, y] \subseteq S$. Then for any $z \in int \ker S \subseteq \ker M$ and any neighborhood N of z with $N \subseteq \ker S$, $\operatorname{conv}(N \cup [x, y]) \subseteq S$. Hence using techniques employed in the proof of Theorem 1, $[x, y] \subseteq M$, and $\bigcap \mathcal{M}$ is *m*-convex.

In conclusion, we note that the maximality of members of \mathcal{M} in Theorem 3 may be replaced by the following requirement: For each M in \mathcal{M} , ker M contains a point in int ker S.

References

- Marilyn Breen, Points of local nonconvexity and finite unions of convex sets, Can. J. Math. 27 (1975), 376-383.
- 2. Marilyn Breen and David C. Kay, General decomposition theorems for m-convex sets in the plane, submitted to Israel J. Math.
- 3. W. R. Hare and John W. Kenelly, Intersections of maximal starshaped sets, Proc. Amer. Math. Soc. 19 (1968), 1299-1302.
- 4. David C. Kay and Merle D. Guay, Convexity and a certain property P_m , Israel J. Math. 8 (1970), 39-52.
- 5. Arthur G. Sparks, Intersections of maximal L_n sets, Proc. Amer. Math. Soc. 24 (1970), 245–250.
- 6. W. L. Stamey and J. M. Marr, Unions of two convex sets, Can. J. Math. 15 (1963), 152-156.
- 7. J. J. Tattersall, On the intersection of maximal m-convex subsets, Israel J. Math. 16 (1963), 300-305.
- 8. F. A. Valentine, Local convexity and L_n sets, Proc. Amer. Math. Soc. 16 (1965), 1305-1310.
- 9. A three point convexity property, Pacific J. Math. 7 (1957), 1227–1235.

University of Oklahoma, Norman, Oklahoma 1391