Twisted Gross-Zagier Theorems

Benjamin Howard

Abstract

The theorems of Gross-Zagier and Zhang relate the Néron-Tate heights of complex multiplication points on the modular curve $X_{0}(N)$ (and on Shimura curve analogues) with the central derivatives of automorphic L-function. We extend these results to include certain CM points on modular curves of the form $X\left(\Gamma_{0}(M) \cap \Gamma_{1}(S)\right)$ (and on Shimura curve analogues). These results are motivated by applications to Hida theory that can be found in the companion article "Central derivatives of L-functions in Hida families", Math. Ann. 399(2007), 803-818.

1 Introduction

Let χ_{0} be a finite order character of the idele class group $(\mathbb{O})^{\times} \backslash A^{\times}$of $(\mathbb{O}$, and suppose that $f \in S_{2}\left(\Gamma_{0}(N), \chi_{0}^{-1}, C\right)$ is a normalized newform of level N and character χ_{0}^{-1}. In particular we assume that f is an eigenform for all Hecke operators T_{n} with $(n, N)=1$. Writing $f=\sum_{n} b_{n} q^{n}$, the L-series of f is defined as the analytic continuation of $L(s, f)=\sum_{n} b_{n} n^{-s}$. To compare with the notation used in the body of the article, $L(s, \Pi)=L^{*}(s+1 / 2, f)$ where $L^{*}(s, f)=2(2 \pi)^{-s} \Gamma(s) L(s, f)$ is the completed L-function of f and Π is the automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ attached to f. Let E be a quadratic imaginary field of discriminant $-D$ and let χ be a finite order character of the idele class group $E^{\times} \backslash \mathbb{A}_{E}^{\times}$whose restriction to \mathbb{A}^{\times}agrees with χ_{0}. Factor $N=M S$ in such a way that S is divisible only by primes dividing $\mathrm{N}_{E / 02}(\operatorname{cond}(\chi))$ and M is relatively prime to $\mathrm{N}_{E / \mathbb{Q}}(\operatorname{cond}(\chi))$. We assume the following.
(a) N and $\mathrm{N}_{E / \mathbb{Q}}(\operatorname{cond}(\chi))$ are each relatively prime to D.
(b) For any prime $p \mid S$ the restriction of χ to $E_{p}^{\times}=\left(E \otimes_{\mathbb{Q}}\left(\mathbb{O}_{p}\right)^{\times}\right.$factors through the norm $E_{p}^{\times} \rightarrow \mathbb{O}_{p}^{\times}$.
(c) $S=\operatorname{cond}\left(\chi_{0}\right)$.

It is easy to see from these hypotheses that $\operatorname{cond}(\chi)=C \mathcal{O}_{E}$ for some positive integer C which is divisible by S.

Let ω denote the quadratic Dirichlet character attached to E. The L-function of f and the Hecke L-series of χ each admit Euler products over the rational primes. For each prime p the local Eulers factors have the form

$$
\begin{aligned}
& L_{p}(s, f)=\left(1-\alpha_{1} p^{-s}\right)^{-1}\left(1-\alpha_{2} p^{-s}\right)^{-1} \\
& L_{p}(s, \chi)=\left(1-\beta_{1} p^{-s}\right)^{-1}\left(1-\beta_{2} p^{-s}\right)^{-1}
\end{aligned}
$$

[^0]and we define a new Euler factor
$$
L_{p}(s, \chi, f)=\prod_{\substack{1 \leq i \leq 2 \\ 1 \leq j \leq 2}}\left(1-\alpha_{i} \beta_{j} p^{-s}\right)^{-1}
$$

The Rankin-Selberg convolution L-function $L(s, \chi, f)=\prod_{p} L_{p}(s, \chi, f)$ has analytic continuation to an entire function of s and satisfies the functional equation

$$
L^{*}(s, \chi, f)=-\omega(M) \cdot\left(C^{2} D M\right)^{2-2 s} \cdot L^{*}(2-s, \chi, f)
$$

where

$$
L^{*}(s, \chi, f)=4(2 \pi)^{-2 s} \Gamma(s)^{2} L(s, \chi, f)
$$

In the notation of the body of the text $L\left(s, \Pi \times \Pi_{\chi}\right)=L^{*}(s+1 / 2, \chi, f)$, and so the functional equation follows from the functional equation (2.6) of the Rankin-Selberg kernel and the integral representation of the L-function (2.8).

Assume that every prime divisor of M splits in E. In particular the functional equation forces $L(1, \chi, f)=0$. Let $\mathcal{O}=\mathbb{Z}+C \mathcal{O}_{E}$ and $\mathcal{O}^{\prime}=\mathbb{Z}+C S^{-1} \mathcal{O}_{E}$ be the orders of conductors C and $C S^{-1}$, respectively of \mathcal{O}_{E}. Fix an invertible ideal $\mathfrak{M} \subset \mathcal{O}$ such that $\mathcal{O} / \mathfrak{M} \cong \mathbb{Z} / M \mathbb{Z}$ and consider the isogenies of complex elliptic curves

$$
\mathbb{C} / \mathcal{O} \xrightarrow{F_{M}} \mathbb{C} / \mathfrak{M}^{-1}, \quad \mathbb{C} / \mathcal{O} \xrightarrow{F_{S}} \mathbb{C} / \mathcal{O}^{\prime}
$$

These isogenies are cyclic of degree M and S, respectively, and if we pick an arbitrary generator $\pi \in \operatorname{ker}\left(F_{S}\right)$ the triple $Q=\left(\mathbb{C} / \mathcal{O}, \operatorname{ker}\left(F_{M}\right), \pi\right)$ determines a point on the moduli space $X_{\Gamma}(\mathbb{C})$ parametrizing complex elliptic curves with $\Gamma=\Gamma_{0}(M) \cap \Gamma_{1}(S)$ level structure. We view X_{Γ} as a scheme over $\operatorname{Spec}(\mathbb{O})$). Let $\widehat{\mathcal{O}}$ denote the closure of \mathcal{O} in the ring $\mathbb{A}_{E, f}$ of finite adeles of E and let $\theta: \widehat{\mathcal{O}}^{\times} \rightarrow(\mathbb{Z} / S \mathbb{Z})^{\times}$denote the homomorphism giving the action of $\widehat{\mathcal{O}}^{\times}$on $\widehat{\mathcal{O}}^{\prime} / \widehat{\mathcal{O}} \cong \mathbb{Z} / S \mathbb{Z}$. The character χ has trivial restriction to $\operatorname{ker}(\theta)$, and by the theory of complex multiplication the point Q is rational over the abelian extension of E with class group $E^{\times} \backslash \mathbb{A}_{E, f}^{\times} / \operatorname{ker}(\theta)$. Thus we may form the divisor with complex coefficients

$$
Q_{\chi}=\sum_{t \in E^{\times} \backslash A_{E, f}^{\times} / \operatorname{ker}(\theta)} \overline{\chi(t)} \cdot Q^{[t, E]}
$$

on $X_{\Gamma} \times_{\mathbb{Q}} E_{\chi}$, where $[\cdot, E]$ is the Artin symbol normalized as in $[28, \S 5.2]$ and E_{χ} is the abelian extension of E cut out by χ. Assume that χ is nontrivial (otherwise $S=1$ and we are in the case originally considered by Gross and Zagier [13]), so that Q_{χ} has degree zero and may be viewed as a point in the modular Jacobian $Q_{\chi} \in J_{\Gamma}\left(E_{\chi}\right) \otimes_{\mathbb{Z}}(\mathbb{C}$. Denote by \mathbb{T} the (semi-simple) (C-algebra generated by the Hecke operators $\left\{T_{n} \mid(n, N)=1\right\}$ and the diamond operators $\{\langle d\rangle \mid(d, S)=1\}$ acting on $S_{2}(\Gamma, \mathbb{C})$. By the Eichler-Shimura theory the algebra \mathbb{T} acts on $J_{\Gamma}\left(E_{\chi}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ via the Albanese endomorphisms $T_{n *}$ and $\langle d\rangle_{*}$ as in [22, §2.4].

The following theorem is a special case of Theorem 5.6.2. When $S=1$ this result is due to Zhang [36, Theorem 6.1]. When $S=1$ and χ is unramified, it is due to Gross-Zagier [13].

Theorem A Let $Q_{\chi, f}$ denote the projection of Q_{χ} to the maximal summand of $J_{\Gamma}\left(E_{\chi}\right) \otimes_{\mathbb{Z}} \mathbb{C}$ on which $\mathbb{\Gamma}$ acts through $T_{n} \mapsto b_{n}$ and $\langle d\rangle \mapsto \chi_{0}^{-1}(d)$. Then $L^{\prime}(1, \chi, f)=0$ if and only if $Q_{\chi, f}=0$.

Remark 1.1 The hypotheses (b) and (c) placed on the prime divisors of S are not made for the sake of convenience; rather these hypotheses seem to be closely related to the particular choice of $\Gamma_{1}(S)$ level structure on \mathbb{C} / \mathcal{O}, given by a generator of the kernel of an isogeny to an elliptic curve with complex multiplication by a different quadratic order.

Remark 1.2 If $\Pi \cong \bigotimes_{v} \Pi_{v}$ denotes the automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ generated by the adelization of f, then the condition (c) above is equivalent to Hypothesis 1.1.1(b) below, with $F=(\mathbb{O}, \mathfrak{s}=S \mathbb{Z}$, and $\mathfrak{c}=C Z$. This follows from the formulas of [26, §12.3] and [25, Theorem 4.6.17].

Throughout the body of the article we work in much greater generality than the situation described above; instead of a classical modular form f as above, we work with a Hilbert modular newform ϕ_{Π} over a totally real field F and assume that ϕ_{Π} is either holomorphic of parallel weight 2 or is a Maass form of parallel weight 0 . Let χ be a finite order character of the idele class group of a totally imaginary quadratic extension E of F, and assume that the restriction of χ^{-1} to the ideles of F agrees with the central character of the automorphic representation Π generated by ϕ_{Π}. We assume that Π, χ, and E also satisfy the hypotheses of $\S 1.1$ below. The RankinSelberg L-function $L\left(s, \Pi \times \Pi_{\chi}\right)$, where Π_{χ} is the theta series representation associated with χ, is normalized so that the center of symmetry of the functional equation is at $s=1 / 2$.

Assume first that ϕ_{Π} is holomorphic of parallel weight 2 . When the sign in the functional equation of $L\left(s, \Pi \times \Pi_{\chi}\right)$ is 1 we prove a formula (Theorem 4.3.3) relating the central value $L\left(1 / 2, \Pi \times \Pi_{\chi}\right)$ to certain CM-points on a totally definite quaternion algebra over F. In special cases such results go back to Gross's special value formula [9]. Such special value formulas have been used by Bertolini and Darmon to construct anticyclotomic p-adic L-functions for elliptic curves [1], and such L-functions play a central role both in those authors' work on the anticyclotomic Iwasawa main conjecture for elliptic curves [2], as well as in the work of Vatsal [30] and Cornut-Vatsal $[4,5]$ on the nonvanishing of L-values in towers of ring class fields. We point out also the helpful expository article of Vatsal [31]. When the sign in the functional equation of $L\left(s, \Pi \times \Pi_{\chi}\right)$ is -1 we prove a theorem (Theorem 5.6.2, which includes Theorem A as a special case) which generalizes results of Zhang [36, Theorem 6.1] and Gross-Zagier [13] by relating the central derivative $L^{\prime}\left(1 / 2, \Pi \times \Pi_{\chi}\right)$ to the Néron-Tate height of CM-cycles on a Shimura curve over F. Now assume that ϕ_{Π} is Maass form of parallel weight 0 and that the sign in the functional equation of $L\left(s, \Pi \times \Pi_{\chi}\right)$ is 1 . In this case we prove (Theorem 4.4.2) a formula expressing the central value $L\left(1 / 2, \Pi \times \Pi_{\chi}\right)$ as a weighted sum of the values at CM points of a
weight 0 Maass form (related to ϕ_{Π} by the Jacquet-Langlands correspondence) on a Shimura variety of dimension $[F:(\mathbb{O}]$.

Our methods follow those of Zhang $[34,36]$ and we freely use his results and calculations when they carry over to our setting without significant change; the reader is advised to keep copies of [34] and [36] close at hand. The original contributions are primarily found in $\S 3$ and $\S 4$.

The primary motivation for this work is to obtain results on the behavior of Selmer groups and L-functions in Hida families. Indeed, the somewhat peculiar point $Q \in X_{\Gamma}(\mathbb{C})$ defined above plays a central role in the construction of big Heegner points [15] in the cohomology of Galois representations for Λ-adic modular forms. Theorem A can be used to verify, in any particular case, the conjectural nonvanishing of these big Heegner points and can also be used to give examples of Hida families of modular forms whose L-functions vanish to exact order one with only finitely many exceptions. The applications to Hida theory and Iwasawa theory of the results contained herein is found in a separate article [14].

1.1 Notation and Conventions

The following choices and conventions apply throughout the remainder of the article.
Fix a totally real field F, a CM-extension E / F of relative discriminant D and relative different \mathfrak{D}, and denote by \mathbb{A} and \mathbb{A}_{E} the adele rings of F and E, respectively. The integer rings of F and E are denoted \mathcal{O}_{F} and \mathcal{O}_{E}, respectively, and ω denotes the quadratic character of $\mathbb{A}^{\times} / F^{\times}$corresponding to the extension E / F. If M is any finitely generated \mathbb{Z}-module, we let \widehat{M} denote its profinite completion. If \mathfrak{a} is any nonzero \mathcal{O}_{F}-ideal, $\mathrm{N}_{F / \mathbb{Q}}(\mathfrak{a})$ denotes the cardinality of $\mathcal{O}_{F} / \mathfrak{a}$. If v is a real place of F, then $|\cdot|_{v}$ denotes the usual absolute value on $F_{v} \cong \mathbb{R}$. If v is a finite place, then $|\cdot|_{v}$ is normalized so that for any uniformizing parameter ϖ of $F_{v},|\varpi|_{v}^{-1}$ is the size of the residue field of v. For any \mathcal{O}_{F}-module M and any place v of F, set $M_{v}=M \otimes_{\mathcal{O}_{F}} \mathcal{O}_{F, v}$. For any $x \in \mathbb{A}^{\times}$let $x \mathcal{O}_{F}$ denote the fractional ideal of \mathcal{O}_{F} determined by $\left(x \mathcal{O}_{F}\right)_{v}=x_{v} \mathcal{O}_{F, v}$ for every finite place v.

Fix a finite order character $\chi: \mathbb{A}_{E}^{\times} / E^{\times} \rightarrow \mathbb{C}^{\times}$. Let χ_{0} denote the restriction of χ to $\mathbb{A}^{\times} / F^{\times}$and let \mathfrak{C} denote the conductor of χ. We abbreviate $\mathrm{N}(\mathfrak{C})=\mathrm{N}_{E / F}(\mathfrak{C})$. For each place v of F let χ_{v} denote the restriction of χ to $E_{v}^{\times}=\left(E \otimes_{F} F_{v}\right)^{\times}$. Let Π be an irreducible infinite dimensional cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$ of central character χ_{0}^{-1} and conductor \mathfrak{n}, as defined in $\S 2.1$. Factor $\mathfrak{n}=\mathfrak{m s}$ in such a way that \mathfrak{m} is prime to $N(\mathfrak{C})$ and \mathfrak{s} is divisible only by primes dividing $N(\mathbb{C})$. We assume throughout that \mathfrak{n} and $N(\mathfrak{C})$ are both prime to \mathfrak{D}.

Hypothesis 1.1.1 At times we will assume that Π satisfies the following hypotheses.
(a) For every $v \mid \mathfrak{s}$ there is a character ν_{v} of F_{v}^{\times}such that $\chi_{v}=\nu_{v} \circ \mathrm{~N}_{E_{v} / F_{v}}$. Note that this hypothesis implies that $\mathfrak{C}=\mathfrak{c} \mathcal{O}_{E}$ for some ideal \mathfrak{c} of \mathcal{O}_{F}.
(b) For every $v \mid \mathfrak{s}, \Pi_{v}$ is a principal series representation $\Pi\left(\mu_{v}, \chi_{0, v}^{-1} \mu_{v}^{-1}\right)$ of $\mathrm{GL}_{2}\left(F_{v}\right)$ with μ_{v} an unramified quasi-character of $F_{v} \times$. In particular

$$
\operatorname{ord}_{v}(\mathfrak{s})=\operatorname{ord}_{v}\left(\operatorname{cond}\left(\chi_{0}\right)\right) \leq \operatorname{ord}_{v}(\mathfrak{c})
$$

These hypotheses will be assumed in $\S 4$ and $\S 5$ but are not needed for the calculations of $\S 3$, or for the calculations of $\S 2$ unless otherwise indicated.

2 Automorphic Forms and the Rankin-Selberg Integral

Let $\psi: \mathbb{A} / F \rightarrow \mathbb{C}^{\times}$be a nontrivial additive character. Fix an idele $\delta \in \mathbb{A}^{\times}$in such a way that for every finite place v of F the restriction to F_{v} of the additive character $\psi^{0}: \mathbb{A} \rightarrow \mathbb{C}^{\times}$defined by $\psi^{0}(x)=\psi\left(\delta^{-1} x\right)$ has conductor $\mathcal{O}_{F, v}$ and so that for every archimedean place v the restriction of ψ^{0} to $F_{v} \cong \mathbb{R}$ is given by $\psi_{v}^{0}(x)=e^{2 \pi i x}$. This implies that F has absolute discriminant $D_{F}=|\delta|^{-1}$. For any finite place v of F we normalize the additive Haar measure $d x$ on F_{v} in such a way that the volume of $\mathcal{O}_{F, v}$ is equal to $|\delta|_{v}^{1 / 2}$, and normalize the multiplicative Haar measure $d^{\times} x$ on F_{v}^{\times}in such a way that the volume of $\mathcal{O}_{F, v}^{\times}$is 1 . Then $d x$ and $d^{\times} x$ are related by

$$
\begin{equation*}
|\delta|_{v}^{1 / 2}\left(1-|\varpi|_{v}\right) \cdot d^{\times} x=|x|_{v}^{-1} \cdot d x \tag{2.1}
\end{equation*}
$$

for any uniformizer ϖ of F_{v}. On \mathbb{R}^{\times}we normalize the Haar measure $d^{\times} x$ by $d^{\times} x=$ $|x|^{-1} d^{\text {Leb }} x$, where $d^{\text {Leb }} x$ is the usual Lebesgue measure giving [0,1] unit mass. For an archimedean place v the additive Haar measure $d x$ on $F_{v} \cong \mathbb{R}$ is normalized by $d x=|\delta|_{v}^{1 / 2} d^{\text {Leb }} x$. In all cases the Haar measure on the additive group F_{v} is selfdual with respect to ψ_{v}. Endow \mathbb{A} and \mathbb{A}^{\times}with the product measures; the quotient measure on \mathbb{A} / F has total volume 1 by [33, Proposition V.4.7].

Fix $d \in \mathbb{A}^{\times}$such that $d \cup_{F}=\mathfrak{D}$ and $d_{v}=1$ for $v \mid \infty$. Let S denote the set of places of F dividing \mathfrak{D}, and for each $v \in S$ set $h_{v}=\left(\begin{array}{cc}0 & 1 \\ -d_{v} & 0\end{array}\right) \in \operatorname{GL}_{2}\left(F_{v}\right)$, viewed as an element of $\mathrm{GL}_{2}(\mathbb{A})$ with trivial components away from v. For each subset $T \subset S$ set $h_{T}=\prod_{v \in T} h_{v}$ and view h_{T} as an operator on automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$ via $\left(h_{T} \phi\right)(g)=\phi\left(g h_{T}\right)$. For $a \in \mathbb{A}^{\times}$define $e_{\infty}(a)=\prod_{v \mid \infty} e_{v}(a)$ where

$$
e_{v}(a)= \begin{cases}2 e^{-2 \pi a_{v}} & \text { if } a_{v}>0 \\ 0 & \text { otherwise }\end{cases}
$$

for each $v \mid \infty$. Define the usual gamma factors

$$
G_{1}(s)=\pi^{-s / 2} \Gamma(s / 2), \quad G_{2}(s)=2(2 \pi)^{-s} \Gamma(s)
$$

2.1 Automorphic Forms

Let ϕ be an automorphic form on $\mathrm{GL}_{2}(\mathbb{A})$. Then ϕ admits a Fourier expansion

$$
\phi(g)=C_{\phi}(g)+\sum_{\alpha \in F^{\times}} W_{\phi}\left(\left(\begin{array}{cc}
\alpha & 0 \\
0 & 1
\end{array}\right) g\right)
$$

in which the constant term C_{ϕ} and Whittaker function W_{ϕ} (with respect to ψ) are defined by $[34,(2.4 .3),(2.4 .4)]$, respectively. For every $a \in \mathbb{A}^{\times}$the Whittaker coefficient

$$
B(a ; \phi)=W_{\phi}\left(\begin{array}{cc}
a \delta^{-1} & 0 \\
0 & 1
\end{array}\right)
$$

is independent of the choice of ψ, and a simple calculation shows that the Whittaker coefficients of ϕ and $\bar{\phi}$ are related by $B(a ; \bar{\phi})=\overline{B(-a ; \phi)}$. The zeta function of ϕ is defined as the meromorphic continuation of

$$
\begin{aligned}
Z(s ; \phi) & =|\delta|^{1 / 2-s} \int_{\mathbb{A}^{\times}} B(y ; \phi) \cdot|y|^{s-1 / 2} d^{\times} y \\
& =\int_{\mathbb{A}^{\times} / F^{\times}}\left(\phi-C_{\phi}\right)\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right) \cdot|y|^{s-1 / 2} d^{\times} y
\end{aligned}
$$

in which both integrals are convergent for $\operatorname{Re}(s) \gg 0$. As in [34, §3.5], we say that an automorphic form ϕ of parallel weight 2 is holomorphic if its Whittaker coefficient has the form $B(a ; \phi)=|a|_{\infty} e_{\infty}(a) \cdot \widehat{B}(\mathfrak{a} ; \phi)$ with $\mathfrak{a}=a \mathcal{O}_{F}$ for some function $\widehat{B}(\mathfrak{a} ; \phi)$ on fractional ideals of \mathcal{O}_{F} that vanishes on non-integral ideals.

Let v be a finite place of F. If \mathfrak{n}_{v} is an ideal of $\mathcal{O}_{F, v}$, define the habitual congruence subgroup

$$
K_{1}\left(\mathfrak{n}_{v}\right)=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \in \mathrm{GL}_{2}\left(\mathcal{O}_{F, v}\right) \right\rvert\, c \in \mathfrak{n}_{v}, d \in 1+\mathfrak{n}_{v}\right\} .
$$

For an irreducible, admissible, infinite dimensional representation π_{v} of $\mathrm{GL}_{2}\left(F_{v}\right)$ the conductor of π_{v} is the largest ideal \mathfrak{n}_{v} such that π_{v} admits a $K_{1}\left(\mathfrak{n}_{v}\right)$-fixed vector. The space $K_{1}\left(\mathrm{n}_{v}\right)$-fixed vectors is then one dimensional, and any nonzero vector on this line will be called a newvector. If v is an infinite place of F, then any π_{v} as above has a unique line of vectors of minimal non-negative weight for the action of $\mathrm{SO}_{2}(\mathbb{R})$; a nonzero vector on this line is again called a newvector. If $\pi \cong \bigotimes_{v} \pi_{v}$ is an irreducible automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$, then a newvector in π is a product of local newvectors. Such a newvector is unique up to scaling, and we define the normalized newvector $\phi_{\pi} \in \pi$ to be the unique newvector satisfying $Z\left(s, \phi_{\pi}\right)=|\delta|^{1 / 2-s} L(s, \pi)$. If \mathfrak{n} is an ideal of \mathcal{O}_{F}, set $K_{1}(\mathfrak{n})=\prod_{v} K_{1}\left(\mathfrak{n}_{v}\right)$ where the product is over all finite places.

Suppose v is a finite place of F, ϕ is an automorphic form which is fixed by the action of $K_{1}(\mathfrak{n})$, and $(\mathfrak{a}, \mathfrak{n})=1$. We define

$$
\left(T_{\mathfrak{a}} \phi\right)(g)=\sum_{h \in H(\mathfrak{a}) / K_{1}(\mathfrak{n})} \phi(g h)
$$

where $H\left(\mathfrak{a}_{v}\right)$ is the set of elements of $M_{2}\left(\mathcal{O}_{F, v}\right)$ whose determinant generates \mathfrak{a}_{v} and

$$
H(\mathfrak{a})=\prod_{v \nmid \mathfrak{a}} K_{1}\left(\mathfrak{n}_{v}\right) \cdot \prod_{v \mid \mathfrak{a}} H\left(\mathfrak{a}_{v}\right) .
$$

If $a \in \mathbb{A}^{\times}$satisfies $\mathfrak{a}=a \vartheta_{F}$ and $a_{v}=1$ for $v \mid \infty$, then the Hecke operator $T_{\mathfrak{a}}$ satisfies $B\left(1 ; T_{\mathfrak{a}} \phi\right)=\mathrm{N}_{F / \mathbb{Q}}(\mathfrak{a}) \cdot B(a ; \phi)$; see [35, Proposition 3.1.4].

2.2 Eisenstein Series

For any place v of F and any subset $X \subset F_{v}$ let $\mathbf{1}_{X}$ denote the characteristic function of X. Let $\mathcal{S}\left(\mathbb{A}^{2}\right)$ denote the space of Schwartz functions on \mathbb{A}^{2} and fix $\Omega \in \mathcal{S}\left(\mathbb{A}^{2}\right)$. Given a pair $\eta=\left(\eta_{1}, \eta_{2}\right)$ of quasi-characters of $\mathbb{A}^{\times} / F^{\times}$, we define

$$
f_{\Omega, \eta, s}(g)=|\operatorname{det}(g)|^{s} \eta_{1}(\operatorname{det}(g)) \int_{\mathbb{A}^{\times}} \Omega([0, t] \cdot g)|t|^{2 s} \eta_{1}(t) \eta_{2}\left(t^{-1}\right) d^{\times} t
$$

for s a complex variable and $g \in \mathrm{GL}_{2}(\mathbb{A})$. Then $f_{\Omega, \eta, s}$ lies in the space of the induced representation $\mathcal{B}\left(\eta_{1}|\cdot|^{s-1 / 2}, \eta_{2}|\cdot|^{1 / 2-s}\right)$ of [34, §2.2]. The Eisenstein series defined by the meromorphic continuation of

$$
E_{\Omega, \eta, s}(g)=\sum_{\gamma \in B(F) \backslash \mathrm{GL}_{2}(F)} f_{\Omega, \eta, s}(\gamma g)
$$

is an automorphic form with central character $\eta_{1} \eta_{2}$. If we set $w_{0}=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$, then according to $[34, \S 3.3] E_{\Omega, \eta, s}(g)$ has constant term

$$
C_{\Omega, \eta, s}(g)=f_{\Omega, \eta, s}(g)+\int_{\mathbb{A}} f_{\Omega, \eta, s}\left(w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) g\right) d x
$$

and Whittaker function

$$
W_{\Omega, \eta, s}(g)=\int_{\mathbb{A}} f_{\Omega, \eta, s}\left(w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) g\right) \psi(-x) d x
$$

To fix a particular Eisenstein series we let \mathfrak{r} be an \mathcal{O}_{F}-ideal relatively prime to D and choose $r \in \mathbb{A}^{\times}$so that $r \mathcal{O}_{F}=\mathfrak{r}$ and $r_{v}=1$ for $v \mid \infty$. Define a Schwartz function $\Omega_{\mathrm{r}}=\prod \Omega_{\mathrm{r}, v}$ on \mathbb{A}^{2} by

$$
\Omega_{\mathfrak{r}, v}(x, y)= \begin{cases}\mathbf{1}_{\mathfrak{r}_{v}}(x) \mathbf{1}_{\mathcal{O}_{F, v}}(y) & \text { if } v \nmid \boldsymbol{D} \infty \\ \omega_{v}(y) \mathbf{1}_{\mathfrak{D}_{v}}(x) \mathbf{1}_{\mathfrak{O}_{\mathfrak{F}, v}}(y) & \text { if } v \mid \boldsymbol{D} \\ (i x+y) e^{-\pi\left(x^{2}+y^{2}\right)} & \text { if } v \mid \infty\end{cases}
$$

Taking $\eta=(1, \omega)$, we abbreviate $E_{\mathrm{r}, s}(g)=E_{\Omega_{\mathrm{r}}, \eta, s}(g)$ and $f_{\mathrm{r}, s}(g)=f_{\Omega_{\mathrm{r}}, \eta, s}(g)$.
Proposition 2.2.1 Fix $a \in \mathbb{A}^{\times}$and set $\mathfrak{a}=a \mathcal{O}_{F}$. There is a product expansion

$$
B\left(a ; E_{\mathrm{r}, s}\right)=\prod B_{v}\left(a, E_{\mathrm{r}, s}\right)
$$

over all places v of F, in which the local factors are given as follows.
(i) If v is a finite place which does not divide \mathfrak{D}, then for any uniformizing parameter ϖ of F_{v}

$$
B_{v}\left(a ; E_{\mathrm{r}, s}\right)=\omega_{v}(\delta) \cdot|a|_{v}^{s} \cdot|\delta|_{v}^{s-1 / 2} \sum_{j=0}^{\operatorname{ord}_{v}\left(\mathfrak{a r}^{-1}\right)}\left|\varpi^{j}\right|_{v}^{1-2 s} \omega_{v}\left(\varpi^{j}\right)
$$

if $\operatorname{ord}_{v}(\mathfrak{a}) \geq \operatorname{ord}_{v}(\mathfrak{r})$, and otherwise $B_{v}\left(a ; E_{\mathrm{r}, s}\right)=0$.
(ii) If $v \mid \mathfrak{D}$, then

$$
B_{v}\left(a ; E_{\mathrm{r}, s}\right)= \begin{cases}\omega_{v}(\delta)|a d|_{v}^{s} \cdot|\delta d|_{v}^{s-1 / 2} \epsilon_{v}\left(1 / 2, \omega_{v}, \psi_{v}^{0}\right) & \text { if } \operatorname{ord}_{v}(\mathfrak{a}) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

and $B_{v}\left(a ; h_{v} E_{\mathrm{r}, 1-s}\right)=\omega_{v}(-a)|d|_{v}^{3 / 2-3 s}|\delta|_{v}^{1-2 s} \epsilon_{v}\left(1 / 2, \omega, \psi_{v}^{0}\right)^{-1} \cdot B_{v}\left(a ; E_{\mathrm{r}, s}\right)$ where $\epsilon_{v}\left(1 / 2, \omega, \psi_{v}^{0}\right)$ is the usual local epsilon factor as in $[18, \S 3]$.
(iii) If v is archimedean, then

$$
B_{v}\left(a ; E_{\mathrm{r}, s}\right)=\omega_{v}(a \delta)|a|_{v}^{1-s}|\delta|_{v}^{s-1 / 2} \frac{\Gamma(s+1 / 2)}{\pi^{s+1 / 2}} V_{s}\left(-a_{v}\right)
$$

where for $t \in \mathbb{R}$,

$$
V_{s}(t)=\int_{\mathbb{R}} \frac{e^{-2 \pi i t x}}{(i+x)\left(1+x^{2}\right)^{s-1 / 2}} d^{\mathrm{Leb}} x
$$

Proof For v nonarchimedean these formulas are found in [34, Lemmas 3.3.2, 3.3.3]. For v archimedean see [34, Lemma 3.3.4]. At each place our formulas differ from Zhang's by a factor of $\omega_{v}(-1)$. As $\omega(-1)=1$, this local factor does not change the value of $B\left(a ; E_{\mathrm{r}, s}\right)$.

Proposition 2.2.2 The Eisenstein series $E_{\mathrm{r}, \mathrm{s}}(g)$ satisfies the functional equation

$$
E_{\mathrm{r}, \mathrm{~s}}(g)=E_{\mathrm{r}, 1-s}\left(g h_{S}\right) \cdot(-i)^{[F: Q]]}|r \delta|^{2 s-1}|d|^{3 s-3 / 2} \omega(r \cdot \operatorname{det} g)
$$

Proof See $\S 3.2$ of [34], especially (3.2.1) and Lemmas 3.2.3 and 3.2.4.
Let $L(s, \omega)=\prod_{v} L_{v}(s, \omega)$ be the usual Dirichlet L-function attached to ω, including the gamma factors $L_{v}(s, \omega)=G_{1}(s+1)$ for $v \mid \infty$. Writing $L(s, \omega)$ as the quotient of the completed Dedekind ζ-functions of E and F and using the functional equation and residue formulas of [33, VII.6] gives the functional equation

$$
\begin{equation*}
L(s, \omega)=|d \delta|^{s-1 / 2} \cdot L(1-s, \omega) \tag{2.2}
\end{equation*}
$$

and the special value formula

$$
\begin{equation*}
L(0, \omega)=\frac{H_{E}}{H_{F}} \cdot\left[\mathcal{O}_{E}^{\times}: \mathcal{O}_{F}^{\times}\right]^{-1} \cdot 2^{[F: \mathbb{Q}]-1} \tag{2.3}
\end{equation*}
$$

in which H_{F} and H_{E} are the class numbers of F and E, respectively.
Proposition 2.2.3 Fix $a \in \mathbb{A}^{\times}$and set $\alpha=\left(\begin{array}{cc}a \delta^{-1} & 0 \\ 0 & 1\end{array}\right)$. For any $T \subset S$

$$
f_{\mathrm{r}, s}\left(\alpha h_{T}\right)= \begin{cases}|a|^{\mid}|\delta|^{-s} L(2 s, \omega) & \text { if } T=\varnothing \\ 0 & \text { otherwise }\end{cases}
$$

Furthermore, if $T=S$, then

$$
\begin{aligned}
& \int_{\mathbb{A}} f_{\mathrm{r}, s}\left(w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \alpha h_{T}\right) d x \\
&=i^{[F: \mathbb{O}]} \omega(a \delta) \omega(\mathfrak{r})|r|^{2 s-1}|a|^{1-s}|\delta|^{3 s-2}|d|^{3(s-1 / 2)} \cdot L(2-2 s, \omega)
\end{aligned}
$$

and otherwise the integral is 0 .

Proof Let v be a place of F and, if v is finite, let ϖ be a uniformizing parameter of F_{v}. We may factor $f_{\mathrm{r}, s}=\prod_{v} f_{\mathrm{r}, s, v}$ where

$$
f_{\mathrm{r}, s, v}(g)=|\operatorname{det}(g)|_{v}^{s} \int_{F_{v}^{\times}} \Omega_{\mathrm{r}, v}([0, t] \cdot g)|t|_{v}^{2 s} \omega_{v}(t) d^{\times} t
$$

For any place v one easily computes $f_{\mathrm{r}, s, v}(\alpha)=|a|_{v}^{s} \cdot|\delta|_{v}^{-s} \cdot L_{v}(2 s, \omega)$, and, if $v \in S$,

$$
f_{\mathrm{r}, s, v}\left(\alpha h_{v}\right)=\left|a \delta^{-1} r\right|_{v}^{s} \int_{F_{v}^{\times}} \Omega_{\mathrm{r}, v}(-r t, 0)|t|_{v}^{2 s} \omega_{v}(t) d^{\times} t
$$

which vanishes as $\Omega_{\mathrm{r}, v}(-r t, 0)=0$. This proves the first claim. If v is a finite place with $v \nmid D$, then

$$
\begin{aligned}
\int_{F_{v}} f_{\mathfrak{r}, s, v} & \left(w_{0}\left(\begin{array}{ll}
1 & x \\
0 & 0
\end{array}\right) \alpha\right) d x \\
& =\left|a \delta^{-1}\right|_{v}^{s} \int_{F_{v}^{\times}} \mathbf{1}_{\mathfrak{r}_{v}}\left(t a \delta^{-1}\right)\left(\int_{F_{v}} \mathbf{1}_{\mathcal{O}_{F, v}}(t x) d x\right)|t|_{v}^{2 s} \omega_{v}(t) d^{\times} t \\
& =|a|_{v}^{s}|\delta|_{v}^{1 / 2-s} \int_{F_{v}^{\times}} \mathbf{1}_{\mathfrak{r}_{v}}\left(t a \delta^{-1}\right)|t|_{v}^{2 s-1} \omega_{v}(t) d^{\times} t \\
& =\omega_{v}(a \delta)|a|_{v}^{1-s}|\delta|_{v}^{s-1 / 2}|r|_{v}^{2 s-1} \omega_{v}(r) L_{v}(2 s-1, \omega)
\end{aligned}
$$

If $v \mid \mathfrak{D}$, then by (2.1)

$$
\int_{F_{v}} \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}(t x) \omega_{v}(x) d x=|\delta|_{v}^{1 / 2}\left(1-|\varpi|_{v}\right) \int_{F_{v}^{\times}} \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}(t x) \omega_{v}(x)|x|_{v} d^{\times} x .
$$

The integral on the right vanishes, and hence so does

$$
\begin{aligned}
\int_{F_{v}} f_{\mathrm{r}, s, v} & \left(w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 0
\end{array}\right) \alpha\right) d x \\
& =\left|a \delta^{-1}\right|_{v}^{s} \int_{F_{v}} \int_{F_{v}^{\times}} \Omega_{\mathrm{r}, v}\left(-t a \delta^{-1},-t x\right)|t|_{v}^{2 s} \omega_{v}(t) d^{\times} t d x \\
& =\left|a \delta^{-1}\right|_{v}^{s} \int_{F_{v}^{\times}} \mathbf{1}_{\mathfrak{D}_{v}}\left(t a \delta^{-1}\right)\left(\int_{F_{v}} \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}(t x) \omega_{v}(x) d x\right)|t|_{v}^{2 s} d^{\times} t .
\end{aligned}
$$

Still assuming $v \mid \mathfrak{D}$,

$$
\begin{aligned}
\int_{F_{v}} f_{\mathrm{r}, s, v} & \left(w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 0
\end{array}\right) \alpha h_{v}\right) d x \\
& =\left|a d \delta^{-1}\right|_{v}^{s} \int_{F_{v}^{\times}}\left(\int_{F_{v}} \mathbf{1}_{\mathcal{O}_{F, v}}(t x) d x\right) \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}\left(t a \delta^{-1}\right)|t|_{v}^{2 s} \omega_{v}(-a \delta) d^{\times} t \\
& =|a|_{v}^{1-s}|d|_{v}^{s}|\delta|_{v}^{s-1 / 2} \omega_{v}(-a \delta) \int_{F_{v}^{\times}} \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}\left(t a \delta^{-1}\right) d^{\times} t \\
& =\omega_{v}(-a \delta)|a|_{v}^{1-s}|\delta|_{v}^{s-1 / 2}|d|_{v}^{s} .
\end{aligned}
$$

Finally, if v is archimedean, then

$$
\begin{aligned}
\int_{F_{v}} f_{\mathrm{r}, s, v} & \left(w_{0}\left(\begin{array}{ll}
1 & x \\
0 & 0
\end{array}\right) \alpha\right) d x \\
& =-|a|_{v}^{s}|\delta|_{v}^{1 / 2-s} \int_{\mathbb{R}} \int_{\mathbb{R}^{\times}} t\left(a \delta^{-1} i+x\right) e^{-\pi\left(t a \delta^{-1}\right)^{2}} e^{-\pi(t x)^{2}}|t|_{v}^{2 s} \omega_{v}(t) d^{\times} t d^{\mathrm{Leb}} x \\
& =i \cdot \omega_{v}(-a \delta)|a|_{v}^{s+1}|\delta|_{v}^{-1 / 2-s} \int_{\mathbb{R}^{\times}} e^{-\pi\left(t a \delta^{-1}\right)^{2}}|t|_{v}^{2 s+1}\left(\int_{\mathbb{R}} e^{-\pi(t t)^{2}} d^{\mathrm{Leb}} x\right) d^{\times} t \\
& =i \cdot \omega_{v}(-a \delta)|a|_{v}^{s+1}|\delta|_{v}^{-1 / 2-s} \int_{\mathbb{R}^{\times}} e^{-\pi\left(t a \delta^{-1}\right)^{2}}|t|_{v}^{2 s} d^{\times} t \\
& =i \cdot \omega_{v}(-a \delta)|a|_{v}^{1-s}|\delta|_{v}^{s-1 / 2} \pi^{-s} \Gamma(s) .
\end{aligned}
$$

Putting everything together gives

$$
\begin{aligned}
& \int_{\mathbb{A}} f_{s}\left(w_{0}\left(\begin{array}{cc}
1 & x \\
0 & 1
\end{array}\right) \alpha h_{T}\right) d x \\
& \quad= \begin{cases}i^{[F: \mathbb{Q}]} \omega(a \delta) \omega(r)|r|^{2 s-1}|a|^{1-s}|\delta|^{s-1 / 2}|d|^{s} \cdot L(2 s-1, \omega) & \text { if } T=S \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

and the second claim now follows from the functional equation (2.2).

2.3 Theta Series

As in $[16, \S 12]$ or $[34, \S 2.2]$ (see also [26, §12.6.1, §12.6.5], and the references therein), there is an irreducible automorphic representation Π_{χ} of $\mathrm{GL}_{2}(\mathbb{A})$ of central character $\omega \chi_{0}$ and conductor $\mathfrak{D} \mathrm{N}(\mathbb{C})$ characterized by $L\left(s, \Pi_{\chi}\right)=L(s, \chi)$, where the right-hand side is the Dirichlet L-function of χ including the gamma factors $L_{v}(s, \chi)=G_{2}(s)$ for $v \mid \infty$. Denote by $\theta_{\chi} \in \Pi_{\chi}$ the normalized newvector and define

$$
\theta(g)=\theta_{\chi}\left(g\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\right)
$$

so that θ has parallel weight -1 .
Proposition 2.3.1 Fix $a \in \mathbb{A}^{\times}$. The Whittaker coefficient $B(a ; \theta)$ admits a product decomposition $B(a ; \theta)=\prod_{v} B_{v}(a ; \theta)$ over all places of F in which the local factors are given as follows. Let v be a place of F, and ifv is finite, let ϖ be a uniformizing parameter of F_{v}.
(i) If v is finite and inert in K, then

$$
B_{v}(a ; \theta)=|a|_{v}^{1 / 2} \cdot \begin{cases}\chi_{v}(\varpi)^{\frac{1}{2}} \operatorname{ord}_{v}(a) & \text { if } \operatorname{ord}_{v}(a) \geq 0, \operatorname{ord}_{v}(a) \text { even, } \chi_{v} \text { unramified } \\ 1 & \text { if } \operatorname{ord}_{v}(a)=0, \chi_{v} \text { ramified, } \\ 0 & \text { otherwise. }\end{cases}
$$

(ii) If v is finite and splits in K, then identify $E_{v}^{\times} \cong F_{v}^{\times} \times F_{v}^{\times}$. Set $\alpha=0$ if the restriction of χ_{v} to the first factor is ramified, and $\alpha=\chi_{v}(\varpi, 1)$ otherwise. Set $\beta=0$ if the restriction of χ_{v} to the second factor is ramified, and $\beta=\chi_{v}(1, \varpi)$ otherwise. Then

$$
B_{v}(a ; \theta)=|a|_{v}^{1 / 2} \sum_{\substack{i+j=\operatorname{ord}_{v}(\mathfrak{a}) \\ i, j \geq 0}} \alpha^{i} \beta^{j}
$$

Here we adopt the convention that $0^{0}=1$ in case one or both of α, β is 0 .
(iii) If $v \mid \mathfrak{D}$ (so that χ_{v} is unramified), let ϖ_{E} denote a uniformizer of E_{v}. Then

$$
B_{v}(a ; \theta)=|a|_{v}^{1 / 2} \cdot \begin{cases}\chi_{v}\left(\varpi_{E}\right)^{\operatorname{ord}_{v}(a)} & \text { if } \operatorname{ord}_{v}(a) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

(iv) If v is archimedean, then $B_{v}(a ; \theta)=|a|_{v}^{1 / 2} e_{v}(-a)$.

Proof When χ_{0} is trivial, this is a restatement of [34, Lemmas 3.3.6, 3.3.7]. The proof of the general case is identical.

Proposition 2.3.2 The local Whittaker coefficients of θ satisfy

$$
\begin{aligned}
\omega_{v}(a) B_{v}(a ; \theta) & =B_{v}(a ; \theta) & & \text { if } v \nmid \mathfrak{D} \cdot \infty, \\
\omega_{v}(a) B_{v}(a ; \theta) & =-B_{v}(a ; \theta) & & \text { if } v \mid \infty, \\
\omega_{v}(a) B_{v}\left(a ; h_{v} \theta\right) & =\chi_{v}(\mathfrak{D}) \epsilon_{v}\left(1 / 2, \omega, \psi_{v}^{0}\right) \cdot B_{v}(a ; \theta) & & \text { if } v \mid \mathrm{D} .
\end{aligned}
$$

Furthermore, θ satisfies the global functional equation

$$
\theta(g)=\theta\left(g h_{S}\right) \cdot \omega(\operatorname{det} g) \cdot \bar{\chi}(\mathfrak{D}) \cdot(-i)^{[F: \mathbb{Q}]}
$$

Proof When χ_{0} is trivial, this is [34, Lemma 3.2.5], and the proof of the general case is identical.

Lemma 2.3.3 Let $\chi^{*}(t)=\chi(\bar{t})$ where $t \mapsto \bar{t}$ is the nontrivial involution of E / F, extended to \mathbb{A}_{E}^{\times}. The following are equivalent:
(i) Π_{χ} is noncuspidal,
(ii) there is a character $\nu: \mathbb{A}^{\times} / F^{\times} \rightarrow \mathbb{C}^{\times}$such that $\chi=\nu \circ \mathrm{N}$,
(iii) $\chi^{*}=\chi$.

Proof If (ii) does not hold, then Π_{χ} is cuspidal by [16, Proposition 12.1]. Conversely, if (ii) does hold, then comparing L-functions we see that Π_{χ} is isomorphic to (indeed, is defined as) the principal series $\Pi(\nu, \nu \omega)$, hence is noncuspidal. Thus (i) and (ii) are equivalent. The equivalence of (ii) and (iii) is a consequence of Hilbert's Theorem 90.

Lemma 2.3.4 Assume that $\mathfrak{C}=\mathcal{O}_{E}$ and that the equivalent conditions of Lemma 2.3.3 hold. Then

$$
\begin{equation*}
\nu(\operatorname{det} g) \cdot E_{\mathcal{O}_{F, 1 / 2}}(g)=(-1)^{[F: Q]]}|d|^{1 / 2} \theta(g) \tag{2.4}
\end{equation*}
$$

where $E_{\mathcal{O}_{F, s}}$ is the Eisenstein series of $\S 2.2$ with $\mathfrak{r}=\mathcal{O}_{F}$.

Proof As in the proof of Lemma 2.3.3, Π_{χ} is isomorphic to $\Pi(\nu, \nu \omega)$, and so is generated by $\nu(\operatorname{det} g) E_{\mathcal{O}_{F}, 1 / 2}(g)$. As both $\theta(g)$ and $\nu(\operatorname{det} g) E_{\mathcal{O}_{F}, 1 / 2}(g)$ are $K_{1}(\mathfrak{D})$-fixed and of parallel weight -1 , they must be scalar multiples of one another. To compute the scalar we compute Whittaker coefficients. For any $a \in \mathbb{A}^{\times}$, comparing Propositions 2.2.1 and 2.3.1 gives

$$
B_{v}\left(a ; E_{\mathcal{O}_{F}, 1 / 2}\right)=\bar{\nu}_{v}(a) \omega_{v}(a \delta) B_{v}\left(a ; h_{v} \theta\right) \cdot \begin{cases}\bar{\chi}_{v}(\mathfrak{D})|d|_{v}^{1 / 2} & \text { if } v \nmid \infty \\ i & \text { if } v \mid \infty\end{cases}
$$

Using Proposition 2.3.1, we see that both sides of (2.4) have the same Whittaker coefficients.

2.4 The Kernel Θ

For each $v \in S$ set $\sigma_{s, v}=1+\bar{\chi}_{v}(\mathfrak{D})|d|_{v}^{1 / 2-s} h_{v}$ and define the symmetrized kernel

$$
\begin{aligned}
\Theta_{\mathrm{r}, s}(g) & =\left(\prod_{v \in S} \sigma_{s, v}\right) \cdot\left[\theta(g) E_{\mathrm{r}, s}(g)\right] \\
& =\sum_{T \subset S} \bar{\chi}_{T}(\mathfrak{D})|d|_{T}^{1 / 2-s} \theta\left(g h_{T}\right) E_{\mathrm{r}, s}\left(g h_{T}\right)
\end{aligned}
$$

where the subscript T indicates the product over all $v \in T$, e.g., $\chi_{T}=\prod_{v \in T} \chi_{v}$. For every place v of F define

$$
\epsilon_{v}(s, \mathfrak{r}, \psi)=|\delta|_{v}^{2 s-1} \cdot \begin{cases}-1 & \text { if } v \mid \infty \tag{2.5}\\ \omega_{v}(r)|r|_{v}^{2 s-1} & \text { if } v \mid \mathfrak{r} \\ |d|_{v}^{2 s-1} & \text { otherwise }\end{cases}
$$

and set $\epsilon(s, \mathfrak{r})=\prod_{v} \epsilon_{v}(s, \mathfrak{r}, \psi)$, so that $\epsilon(s, \mathfrak{r})=(-1)^{[F: \mathbb{Q}]} \omega(\mathfrak{r}) \mathrm{N}_{F / \mathbb{Q} \mathbb{Q}}(\mathfrak{D r})^{1-2 s} D_{F}^{1-2 s}$. Combining Propositions 2.2.2 and 2.3.2 gives the relation

$$
\theta(g) E_{\mathrm{r}, s}(g)=\epsilon(s, \mathfrak{r})|d|^{s-1 / 2} \bar{\chi}(\mathfrak{D}) \cdot \theta\left(g h_{S}\right) E_{\mathrm{r}, 1-s}\left(g h_{S}\right)
$$

and hence

$$
\left(\prod_{v \in S} \sigma_{s, v}\right)\left[\theta(g) E_{\mathfrak{r}, s}(g)\right]=\epsilon(s, \mathfrak{r})\left(\prod_{v \in S} \bar{\chi}_{v}(\mathfrak{D})|d|_{v}^{s-1 / 2} \sigma_{s, v} h_{v}\right)\left[\theta(g) E_{\mathfrak{r}, 1-s}(g)\right]
$$

For $v \in S$ the operator h_{v}^{2} acts as $\chi_{0, v}(\mathfrak{D})=\chi_{v}(\mathfrak{D})^{2}$ on automorphic forms of central character χ_{0}. Thus we may replace the expression $\bar{\chi}_{v}(\mathfrak{D})|d|_{v}^{s-1 / 2} \sigma_{s, v} h_{v}$ with $\sigma_{1-s, v}$ to arrive at the functional equation

$$
\begin{equation*}
\Theta_{\mathrm{r}, s}(g)=\epsilon(s, r) \cdot \Theta_{\mathrm{r}, 1-s}(g) \tag{2.6}
\end{equation*}
$$

As in [34, §3.3], multiplying the Fourier expansions of $\theta(g)$ and $E_{\mathrm{r}, \mathrm{s}}(g)$ shows that the product $\theta(g) \cdot E_{\mathrm{r}, s}(g)$ has constant term

$$
\mathbf{C}_{\mathrm{r}, s}(g)=C_{\theta}(g) C_{\mathrm{r}, s}(g)+\sum_{\substack{\eta, \xi \in F^{\times} \\
\eta+\xi=0}} W_{\theta}\left(\left(\begin{array}{ll}
\eta & 0 \\
0 & 1
\end{array}\right) g\right) W_{\mathrm{r}, s}\left(\left(\begin{array}{ll}
\xi & 0 \\
0 & 1
\end{array}\right) g\right)
$$

and Whittaker function

$$
\begin{aligned}
\mathbf{W}_{\mathrm{r}, s}(g)=C_{\theta}(g) W_{\mathrm{r}, s}(g)+C_{\mathrm{r}, s}(g) & W_{\theta}(g) \\
& +\sum_{\substack{\eta, \xi \in F^{\times} \\
\eta+\xi=1}} W_{\theta}\left(\left(\begin{array}{ll}
\eta & 0 \\
0 & 1
\end{array}\right) g\right) W_{\mathrm{r}, s}\left(\left(\begin{array}{ll}
\xi & 0 \\
0 & 1
\end{array}\right) g\right) .
\end{aligned}
$$

From the Fourier expansion of $\theta(g) E_{\mathrm{r}, s}(g)$ and the definition of the symmetrized kernel we find the decomposition

$$
\begin{equation*}
B\left(a ; \Theta_{\mathrm{r}, s}\right)=A_{0}\left(a ; \Theta_{\mathrm{r}, s}\right)+A_{1}\left(a ; \Theta_{\mathrm{r}, s}\right)+\sum_{\substack{\eta, \xi \in F^{\times} \\ \eta+\xi=1}} B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right) \tag{2.7}
\end{equation*}
$$

in which the terms on the right hand side are defined by

$$
\begin{aligned}
A_{0}\left(a ; \Theta_{\mathrm{r}, s}\right) & =\sum_{T \subset S} \bar{\chi}_{T}(\mathfrak{D})|d|_{T}^{1 / 2-s} W_{\theta}\left(\alpha h_{T}\right) C_{\mathrm{r}, s}\left(\alpha h_{T}\right), \\
A_{1}\left(a ; \Theta_{\mathrm{r}, s}\right) & =\sum_{T \subset S} \bar{\chi}_{T}(\mathfrak{D})|d|_{T}^{1 / 2-s} C_{\theta}\left(\alpha h_{T}\right) W_{\mathrm{r}, s}\left(\alpha h_{T}\right), \\
B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right) & =\sum_{T \subset S} \bar{\chi}_{T}(\mathfrak{D})|d|_{T}^{1 / 2-s} B\left(\eta a ; h_{T} \theta\right) B\left(\xi a ; h_{T} E_{\mathrm{r}, s}\right),
\end{aligned}
$$

where we have abbreviated $\alpha=\left(\begin{array}{cc}a \delta^{-1} & 0 \\ 0 & 1\end{array}\right)$. If we define

$$
\begin{aligned}
& B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right) \\
& \quad=B_{v}(\eta a ; \theta) \cdot \begin{cases}B_{v}\left(\xi a ; E_{\mathrm{r}, s}\right) & \text { if } v \nmid \mathbf{D}, \\
B_{v}\left(\xi a ; E_{\mathrm{r}, s}\right)+\omega_{v}(-\eta \xi)|d \delta|_{v}^{2 s-1} B_{v}\left(\xi a ; E_{\mathrm{r}, 1-s}\right) & \text { if } v \mid \mathfrak{D},\end{cases}
\end{aligned}
$$

then the local functional equations of Propositions 2.2.1 and 2.3.1 imply the factorization

$$
B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right)=\prod_{v} B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right)
$$

Lemma 2.4.1 For every place v of F, every $a \in \mathbb{A}^{\times}$, and every $\eta, \xi \in F^{\times}$,

$$
B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right)=\omega_{v}(-\eta \xi) \epsilon_{v}(s, \mathfrak{r}, \psi) \cdot B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, 1-s}\right)
$$

Proof This follows from direct examination of the explicit formulas of Propositions 2.2.1 and 2.3.1. For $v \mid \infty$ one also uses the functional equation satisfied by $V_{s}(t)$ found in [13, Proposition IV.3.3 (c)].

Proposition 2.4.2 Suppose $\eta, \xi \in F^{\times}, \eta+\xi=1$, and $\omega_{v}(-\eta \xi)=\epsilon_{\nu}(1 / 2, \mathfrak{r}, \psi)$. Fix $a \in \mathbb{A}^{\times}$and abbreviate, here and later, $\Theta_{\mathrm{r}}=\Theta_{\mathrm{r}, 1 / 2}$.
(i) Ifv is a finite place which is split in E, then

$$
B_{v}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}\right)=|a|_{v}|\eta \xi|_{v}^{1 / 2} \omega_{v}(\delta)\left(\operatorname{ord}_{v}\left(\xi \mathfrak{a r}^{-1}\right)+1\right) \sum_{\substack{i+j=\operatorname{ord}_{v}(\eta \mathfrak{a}) \\ i, j \geq 0}} \alpha^{i} \beta^{j}
$$

if $\operatorname{ord}_{v}(\eta \mathfrak{a})$ and $\operatorname{ord}_{v}\left(\xi \mathfrak{a r}^{-1}\right)$ are nonnegative, and is 0 otherwise. Here α and β are as in Proposition 2.3.1.
(ii) Suppose v is a finite place which is inert in E. If χ_{v} is unramified, then

$$
B_{v}\left(a, \eta, \xi ; \Theta_{r}\right)=|a|_{v}|\eta \xi|_{v}^{1 / 2} \omega_{v}(\delta) \chi_{v}(\varpi)^{\frac{1}{2} \operatorname{ord}_{v}(\eta a)}
$$

if $\operatorname{ord}_{v}(\eta \mathfrak{a})$ and $\operatorname{ord}_{v}\left(\xi \mathfrak{a r}^{-1}\right)$ are even and nonnegative, and is 0 otherwise. If χ_{v} is ramified, then $B_{v}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}\right)=|a|_{v}|\eta \xi|_{v}^{1 / 2} \omega_{v}(\delta)$ if $\operatorname{ord}_{v}(\eta \mathfrak{a})=0$ and $\operatorname{ord}_{v}\left(\xi \mathrm{ar}^{-1}\right)$ is even and nonnegative, and is 0 otherwise.
(iii) If $v \mid \mathfrak{D}$, then

$$
B_{v}\left(a, \eta, \xi ; \Theta_{r}\right)=2 \chi_{v}\left(\varpi_{E}\right)^{\operatorname{ord}_{v}(\eta a)} \omega_{v}(\delta)|\eta \xi d|_{v}^{1 / 2}|a|_{v} \epsilon_{v}\left(1 / 2, \omega_{v}, \psi_{v}^{0}\right)
$$

if $\operatorname{ord}_{v}(\eta \mathfrak{a})$ and $\operatorname{ord}_{v}(\xi \mathfrak{a})$ are nonnegative, and is 0 otherwise.
(iv) If v is archimedean, then

$$
B_{v}\left(a, \eta, \xi ; \Theta_{r}\right)=2 i|\eta \xi|_{v}^{1 / 2}|a|_{v} \omega_{v}(\delta) \cdot e_{v}(-a)
$$

Proof This follows from Propositions 2.2.1 and 2.3.1. For $v \mid \infty$ one also uses the special value formula for $V_{1 / 2}(t)$ found in [13, Proposition IV.3.3 (d)], which implies $B_{v}\left(a ; E_{r, 1 / 2}\right)=-i|a|_{v}^{1 / 2} \omega_{v}(\delta) \cdot e_{v}(-a)$.

2.5 The Rankin-Selberg L-function

Recall the automorphic representation Π of $\mathrm{GL}_{2}(\mathbb{A})$ of $\S 1.1$ and assume Hypothesis 1.1.1. Fix a Haar measure on $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ and let Z denote the center of GL_{2}. Setting $F_{\infty}=F \otimes_{\mathbb{Q}} \mathbb{R}$, we identify $\mathrm{GL}_{2}\left(F_{\infty}\right) / Z\left(F_{\infty}\right) \mathrm{SO}_{2}\left(F_{\infty}\right) \cong \mathcal{H}^{[F: \mathbb{O}]}$ in the usual way, where $\mathcal{H}=\mathbb{C}-\mathbb{R}$ is the union of the upper and lower half-planes equipped with the hyperbolic volume form $y^{-2} d x d y$. Suppose F_{0} and F_{1} are two automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$ for which $F_{0} \bar{F}_{1}$ is a square integrable function on $\mathrm{GL}_{2}(F) \backslash \mathcal{H}{ }^{[F: \mathbb{Q}]} \times \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)$. If $K \subset \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ is a compact open subgroup, we define the Petersson inner product of level K

$$
\left\langle F_{0}, F_{1}\right\rangle_{K}=\operatorname{Vol}(K)^{-1} \int_{\left.\mathrm{GL}_{2}(F) \backslash \mathcal{H}^{[F}: \mathbb{Q}\right] \times \mathrm{GL}_{2}\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)} F_{0} \overline{F_{1}},
$$

where the quotient measure is induced by the Haar measure on $Z\left(\mathbb{A}_{f}\right)$ giving $\widehat{\mathcal{O}}_{F}^{\times}$ volume 1 . For any $b \in \mathbb{A}^{\times}$with trivial archimedean components set $R_{b}=\left(\begin{array}{cc}b^{-1} & 0 \\ 0 & 1\end{array}\right)$
and view R_{b} as an operator on automorphic forms by $\left(R_{b} \phi\right)(g)=\phi\left(g R_{b}\right)$. Let \mathfrak{b} be an ideal of \mathcal{O}_{F} dividing $D \mathfrak{c}^{2} \mathfrak{s}^{-1}$ and fix $b \in \mathbb{A} \times$ with trivial archimedean components and $b \mathcal{O}_{F}=\mathfrak{b}$. Let $L\left(s, \Pi \times \Pi_{\chi}\right)$ be the Rankin-Selberg L-function defined as in [34, §2.5] (see also $[26, \S 12.6 .2]$ and the references therein).
Proposition 2.5.1 Let $\phi_{\Pi} \in \Pi$ be the normalized newvector and set $\mathfrak{r}=\mathfrak{m c}^{2}$. Assume that Π_{v} is a discrete series of weight 2 for each $v \mid \infty$. Then

$$
\operatorname{Vol}\left(K_{0}(\mathfrak{D r})\right)^{-1} \int \phi_{\Pi}\left(g R_{b}\right) \theta(g) E_{\mathrm{r}, s}(g) d g=|\delta|^{1 / 2-s}|b|^{s-1} B(b ; \theta) L\left(s, \Pi \times \Pi_{\chi}\right)
$$

Proof Hypothesis 1.1.1 implies that for every finite place v either Π_{v} or $\Pi_{\chi, v}$ is a principal series. Hence the claim follows from [34, Propositions 2.5.1, 2.5.2].

Under the notation and assumptions of Proposition 2.5.1, a direct calculation as in [34, Lemma 3.1.2] gives

$$
\begin{equation*}
\left\langle R_{b} \phi_{\Pi}, \bar{\Theta}_{\mathfrak{r}, s}\right\rangle_{K_{0}(\mathrm{dr})}=L\left(s, \Pi \times \Pi_{\chi}\right) \cdot|\delta|^{1 / 2-s} \prod_{v \mid \mathfrak{D} \mathfrak{c}} \gamma_{s, v}(b) \tag{2.8}
\end{equation*}
$$

where

$$
\gamma_{s, v}(b)=|b|_{v}^{-1 / 2} B_{v}(b ; \theta) \begin{cases}|b|_{v}^{s-1 / 2}+|b|_{v}^{1 / 2-s} & \text { if } v \mid \mathfrak{D} \\ 1 & \text { if } v \mid \mathfrak{c}\end{cases}
$$

2.6 Central Derivatives and Holomorphic Projection

Throughout 2.6 we assume that $\epsilon(1 / 2, r)=-1$. For any $\eta, \xi \in F^{\times}$with $\eta+\xi=1$ define the difference set $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)=\left\{\right.$ places v of $\left.F \mid \omega_{v}(-\eta \xi) \neq \epsilon_{v}(1 / 2, r, \psi)\right\}$. Note that the cardinality of $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)$ is odd, and that Lemma 2.4.1 implies that $B_{v}\left(a, \eta, \xi, \Theta_{\mathrm{r}}\right)=0$ for each $v \in \operatorname{Diff}_{\mathrm{r}}(\eta, \xi)$. In particular $B\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)=0$. Note also that $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)$ contains only places which are nonsplit in E, as v split implies that both $\omega_{\nu}(-\eta \xi)$ and $\epsilon_{v}(1 / 2, \mathfrak{r}, \psi)$ are equal to 1 . Define

$$
\Theta_{\mathrm{r}}^{\prime}(g)=\left.\frac{d}{d s} \Theta_{\mathrm{r}, s}(g)\right|_{s=1 / 2}
$$

and, with notation as in (2.7), abbreviate

$$
A_{i}\left(a ; \Theta_{\mathrm{r}}^{\prime}\right)=\left.\frac{d}{d s} A_{i}\left(a ; \Theta_{\mathrm{r}, s}\right)\right|_{s=1 / 2}, \quad B\left(a, \eta, \xi, \Theta_{\mathrm{r}}^{\prime}\right)=\left.\frac{d}{d s} B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right)\right|_{s=1 / 2}
$$

and similarly with $B(\cdot)$ replaced by $B_{v}(\cdot)$. For t a positive real number define

$$
q_{0}(t)=\int_{1}^{\infty} e^{-x t} d^{\times} x
$$

Proposition 2.6.1 If $w \in \operatorname{Diff}_{\mathrm{r}}(\eta, \xi)$, then

$$
B\left(a, \eta, \xi ; \Theta_{\mathrm{r}}^{\prime}\right)=B_{w}\left(a, \eta, \xi, \Theta_{\mathrm{r}}^{\prime}\right) \cdot \prod_{v \neq w} B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)
$$

The value of $B_{w}\left(a, \eta, \xi, \Theta_{\mathrm{r}}^{\prime}\right)$ is given as follows.
(i) Suppose $w \nmid \infty$ is inert in E. If χ_{w} is unramified, then

$$
B_{w}\left(a, \eta, \xi, \Theta_{r}^{\prime}\right)=\omega_{w}(\delta)|\eta \xi|_{w}^{1 / 2}|a|_{w} \log \left|\xi a r^{-1} \varpi\right|_{w} \chi_{w}(\varpi)^{\frac{1}{2} \operatorname{ord}_{v}(a \eta)}
$$

if $\operatorname{ord}_{w}(\eta a)$ is even and nonnegative and $\operatorname{ord}_{w}\left(\xi a r^{-1}\right)$ is odd and nonnegative; otherwise the left-hand side is 0 . If χ_{w} is ramified, then

$$
B_{w}\left(a, \eta, \xi, \Theta_{\mathrm{r}}^{\prime}\right)=\omega_{w}(\delta)|\eta \xi|_{w}^{1 / 2}|a|_{w} \log \left|\xi a r^{-1} \varpi\right|_{w}
$$

if $\operatorname{ord}_{w}(\eta a)=0$ and $\operatorname{ord}_{w}\left(\xi a r^{-1}\right)$ is odd and nonnegative; otherwise the left-hand side is 0 .
(ii) If $w \nmid \infty$ is ramified in E, then

$$
B_{w}\left(a, \eta, \xi, \Theta_{\mathfrak{r}}^{\prime}\right)=2 \omega_{w}(\delta)|\eta \xi|_{w}^{1 / 2}|a|_{w}|d|_{w}^{1 / 2} \chi_{w}\left(\varpi_{E}\right)^{\operatorname{ord}_{w}(\eta \mathfrak{a})} \cdot \epsilon_{w}\left(\omega, \psi_{w}^{0}\right) \cdot \log |\xi a d|_{w}
$$

if $\operatorname{ord}_{w}(\eta \mathfrak{a})$ and $\operatorname{ord}_{w}(\xi \mathfrak{a})$ are nonnegative; otherwise the left-hand side is 0 .
(iii) If $w \mid \infty$, then

$$
B_{w}\left(a, \eta, \xi, \Theta_{r}^{\prime}\right)=-4 i \omega_{w}(\delta)|\eta \xi|_{w}^{1 / 2}|a|_{w} e^{2 \pi a_{w}} q_{0}\left(4 \pi a_{w} \xi_{w}\right)
$$

if $\eta_{w} a_{w}<0$ and $\xi_{w} a_{w}>0$; otherwise the left-hand side is 0 .
Proof The first claim follows from Lemma 2.4.1 and the remaining claims follow from the formulas of Propositions 2.2.1 and 2.3.1, together with the equality

$$
\left.\frac{d}{d s} V_{s}(t)\right|_{s=1 / 2}=-2 \pi i e^{-2 \pi t} q_{0}(-4 \pi t)
$$

for $t<0$, which is found in [13, Proposition IV.3.3(e)].
Remark 2.1 It follows from Lemma 2.4.1 and the first claim of Proposition 2.6.1 that $B\left(a, \eta, \xi ; \Theta_{\mathrm{r}}^{\prime}\right)$ vanishes unless $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)$ consists of a single place, necessarily nonsplit in E.

Let $\Phi_{\mathrm{r}}(g)$ be the holomorphic projection of $\overline{\Theta_{r}^{\prime}(g)}$. Thus Φ_{r} is the unique holomorphic cusp form on $\mathrm{GL}_{2}(\mathbb{A})$ of parallel weight 2 such that $\left\langle\phi, \Phi_{\mathrm{r}}\right\rangle_{K}=\left\langle\phi, \overline{\Theta_{\mathrm{r}}^{\prime}}\right\rangle_{K}$ for any cusp form ϕ and any compact open subgroup K. If the representation Π of $\S 2.5$ is discrete of weight 2 at every archimedean place, then (2.8) implies

$$
\left\langle\phi_{\Pi}, \Phi_{\mathrm{r}}\right\rangle_{K_{0}(\mathrm{\partial r})}=2^{|S|} L^{\prime}\left(1 / 2, \Pi \times \Pi_{\chi}\right)
$$

We now describe the coefficients $\widehat{B}\left(\mathfrak{a}, \Phi_{\mathfrak{r}}\right)$ as in [34, $\left.\S 3.5\right]$ (see also [35, §6.4]). If w is a finite place of F, define

$$
\begin{equation*}
\widehat{B}^{w}\left(\mathfrak{a} ; \Phi_{\mathfrak{r}}\right)=(-2 i)^{[F: \mathbb{O}]} \omega_{\infty}(\delta) \sum_{\eta, \xi}|\eta \xi|_{\infty}^{1 / 2} \cdot \overline{B_{w}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}^{\prime}\right)} \prod_{\imath \nmid w \infty} \overline{B_{v}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}\right)} \tag{2.9}
\end{equation*}
$$

where the sum is over all $\eta, \xi \in F^{\times}$with $\eta+\xi=1$ and $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)=\{w\}$. This sum is finite and is 0 for all but finitely many w. For $t, \sigma \in \mathbb{R}$ with $\sigma>0$ define

$$
M_{\sigma}(t)= \begin{cases}\int_{1}^{\infty} \frac{-d^{\mathrm{Leb}} x}{x(1-t x)^{1+\sigma}} & \text { if } t<0 \\ 0 & \text { otherwise }\end{cases}
$$

If $w \mid \infty$, then we set

$$
\begin{equation*}
\widehat{B}^{w}\left(\sigma, \mathfrak{a} ; \Phi_{\mathrm{r}}\right)=(-2 i)^{[F: © \mathbb{Q}]} \omega_{\infty}(\delta) \sum_{\eta, \xi}|\eta \xi|_{\infty}^{1 / 2} M_{\sigma}\left(\xi_{w}\right) \cdot \prod_{v \nmid \infty} \overline{B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)}, \tag{2.10}
\end{equation*}
$$

where the sum is over all $\eta, \xi \in F^{\times}$with $\eta+\xi=1$ and $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)=\{w\}$.
Proposition 2.6.2 The Fourier coefficient $\widehat{B}\left(\mathfrak{a} ; \Phi_{\mathfrak{r}}\right)$ decomposes as

$$
\widehat{B}\left(\mathfrak{a} ; \Phi_{\mathfrak{r}}\right)=A(\mathfrak{a})+D(\mathfrak{a})+\sum_{w \nmid \infty} \widehat{B}^{w}\left(\mathfrak{a} ; \Phi_{\mathfrak{r}}\right)+\text { const }_{\sigma \rightarrow 0} \sum_{w \mid \infty} \widehat{B}^{w}\left(\sigma, \mathfrak{a} ; \Phi_{\mathfrak{r}}\right)
$$

in which $A(\mathfrak{a})$ is a derivation of $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}$ and $D(\mathfrak{a})$ is a sum of derivations of principal series in the sense of [34, Definition 3.5.3].

Proof When χ_{0} is trivial, this is exactly [34, Proposition 3.5.5]. When χ_{0} is nontrivial, the proof is similar.

2.7 The Weight Zero Kernel

We define an automorphic form $\Theta_{r, 5}^{*}$ in exactly the same way as $\Theta_{r, s}$, but replacing θ by θ_{χ} everywhere in the construction of $\S 2.4$. Thus $\Theta_{r, s}^{*}(g)=\left(\prod_{v \in S} \sigma_{s, v}\right)$. $\left[\theta_{\chi}(g) E_{r, s}(g)\right]$ is a nonholomorphic form of parallel weight 0 . Using the relation

$$
B_{v}\left(a ; \theta_{\chi}\right)= \begin{cases}B_{v}(a ; \theta) & \text { if } v \nmid \infty \\ B_{v}(-a ; \theta) & \text { if } v \mid \infty\end{cases}
$$

and repeating the arguments of $\S 2.4$, we find that the weight zero kernel satisfies the functional equation $\Theta_{\mathrm{r}, s}^{*}(g)=(-1)^{[F: \mathbb{O}]} \epsilon(s, r) \cdot \Theta_{\mathrm{r}, 1-s}^{*}(g)$ and admits a decomposition

$$
B\left(a ; \Theta_{\mathrm{r}, s}^{*}\right)=A_{0}\left(a ; \Theta_{\mathrm{r}, s}^{*}\right)+A_{1}\left(a ; \Theta_{\mathrm{r}, s}^{*}\right)+\sum_{\substack{\eta, \xi \in F^{\times} \\ \eta+\xi=1}} B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}^{*}\right)
$$

in which A_{0} and A_{1} are defined exactly as in $\S 2.4$ but with θ replaced by θ_{χ}. There is a further product decomposition $B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}^{*}\right)=\prod_{v} B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}^{*}\right)$, where for $v \nmid \infty$ one has $B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}^{*}\right)=B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}\right)$ while for $v \mid \infty$

$$
B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}, s}^{*}\right)= \begin{cases}-4 i|a|_{v}|\eta \xi|_{v}^{1 / 2} \omega_{v}(\delta) e^{-2 \pi a_{v}\left(1-2 \xi_{v}\right)} & \text { if } \omega_{v}(-\eta \xi)=1, \xi_{v} a_{v}<0 \\ 0 & \text { otherwise }\end{cases}
$$

Assume that the representation Π of $\S 1.1$ satisfies Hypothesis 1.1 .1 and is a weight 0 principal series for every archimedean v. The Rankin-Selberg L-function $L\left(s, \Pi \times \Pi_{\chi}\right)$ is defined exactly as in $\S 2.5$, but with the archimedean factors now given by [36, (5.4)]. With notation as in Proposition 2.5.1, one again has the integral representation of the Rankin-Selberg L-function

$$
\begin{equation*}
\left\langle R_{b} \phi_{\Pi}, \overline{\Theta_{\mathrm{r}, s}^{*}}\right\rangle_{K_{0}(\partial \mathrm{r})}=L\left(s, \Pi \times \Pi_{\chi}\right) \cdot|\delta|^{1 / 2-s} \prod_{v \mid \mathfrak{~} \mathrm{c}} \gamma_{s, v}(b) \tag{2.11}
\end{equation*}
$$

exactly as in (2.8).

2.8 The Quasi-New Line

Suppose the representation Π in $\S 1.1$ satisfies Hypothesis 1.1.1 and is unitary. Set $\mathfrak{r}=\mathfrak{m c}$. Fix a place v of F dividing $D \mathfrak{c}$ and a uniformizer ϖ of F_{v}. As Π_{v} has conductor $\mathfrak{s}_{v}=\mathfrak{n}_{v}$, [34, Proposition 2.3.1] implies that the space of $K_{1}\left(\mathfrak{r}_{v}\right)$ fixed vectors of Π_{v} is finite dimensional with basis $\left\{R_{\varpi^{k}} \phi_{\Pi, v} \mid 0 \leq k \leq \operatorname{ord}_{v}\left(\mathfrak{r s}^{-1}\right)\right\}$, where $\phi_{\Pi, v}$ is any newvector in Π_{v} and R_{b} is as in $\S 2.5$. Define a linear functional Λ_{v} on this finite dimensional vector space by the condition $\left.\Lambda_{v}\left(R_{\varpi^{k}} \phi_{\Pi, v}\right)=\gamma_{\frac{1}{2}, v}\left(\varpi^{k}\right)\right]$ where, in the notation of (2.8),

$$
\gamma_{\frac{1}{2}, v}(b)=|b|_{v}^{-1 / 2} B_{v}(b ; \theta) \begin{cases}2 & \text { if } v \mid \mathfrak{D} \\ 1 & \text { if } v \mid c\end{cases}
$$

Definition 2.8.1 If $v \mid \mathfrak{D c}$, then the quasi-new line in Π_{v} is the orthogonal complement in the space of $K_{1}\left(\mathrm{r}_{v}\right)$ fixed vectors of the kernel of Λ_{v}. If $v \nmid \mathfrak{D c}$, then the quasi-new line is defined to be the span of the newvectors in Π_{v}, i.e., the line of $K_{1}\left(\mathfrak{m}_{v}\right)=K_{1}\left(\mathfrak{r}_{v}\right)$ fixed vectors. The quasi-new line in $\Pi=\bigotimes_{v} \Pi_{v}$ is the tensor product of the local quasi-new lines, and a quasi-newform in Π is any nonzero vector on the quasi-new line.

Proposition 2.8.2 Assume that either Π or Π_{χ} is cuspidal and that Π_{v} is discrete of weight 2 at each archimedean v. The projection of $\overline{\Theta_{r}(g)}$ to Π lies on the quasi-new line; if, in addition, $\epsilon(1 / 2, r)=-1$, then the projection of $\Phi_{\mathrm{r}}(g)$ to Π lies on the quasi-new line. If, instead, we assume that Π has weight 0 at every archimedean place, then the projection of $\overline{\Theta_{r}^{*}(g)}$ to Π lies on the quasi-new line.

Proof There is an evident global characterization of the quasi-new line in Π : for each $\mathfrak{b} \mid \mathfrak{r s}^{-1}$ fix $b \in \mathbb{A}^{\times}$with $b \mathcal{O}_{F}=\mathfrak{b}$. The set $\left\{R_{b} \phi_{\Pi} \mid \mathfrak{b}\right.$ divides $\left.\mathfrak{r s}{ }^{-1}\right\}$ is a basis for the space of $K_{1}(\mathrm{r})$-fixed vectors in Π, and the quasi-new line is the orthogonal complement (in the $K_{1}(\mathfrak{r})$-fixed vectors) of the kernel of the linear functional Λ defined by $\Lambda\left(R_{b} \phi_{\Pi}\right)=\prod_{v \mid \text { Dc }} \gamma_{\frac{1}{2}, v}(b)$. In the weight 2 case (2.8) implies that the projection of $\bar{\Theta}_{\mathrm{r}}$ to Π is orthogonal to any form in the kernel of Λ; hence it lies on the quasi-new line. If $\epsilon(1 / 2, r)=-1$, then $L\left(1 / 2, \Pi \times \Pi_{\chi}\right)=0$ and again (2.8) shows that the projection of Φ_{r} to Π lies on the quasi-new line. In the weight 0 case one uses (2.11) in place of (2.8).

3 CM Cycles on Quaternion Algebras

Let B be a quaternion algebra over F and assume that there is an embedding $E \rightarrow B$, which we fix once and for all. Let T and G denote the algebraic groups over F determined by $T(A)=\left(E \otimes_{F} A\right)^{\times}$and $G(A)=\left(B \otimes_{F} A\right)^{\times}$for any F-algebra A, and let Z denote the center of G. We denote by N both the norm $T \rightarrow Z$ and the reduced norm $G \rightarrow Z$. Let $t \mapsto \bar{t}$ be the involution of $T(\mathbb{A})$ induced by the nontrivial Galois automorphism of E / F.

3.1 Preliminaries

Define $B^{+}=E$ and $B^{-}=\{b \in B \mid b t=\bar{t} b \forall t \in E\}$. It follows from the NoetherSkolem theorem that B^{-}is nontrivial, and from this one deduces that $B=B^{+} \oplus B^{-}$ with each summand free of rank one as a left E-module. For any $\gamma \in G(F)$ the two invariants

$$
\begin{equation*}
\eta=\frac{\mathrm{N}\left(\gamma^{+}\right)}{\mathrm{N}(\gamma)}, \quad \xi=\frac{\mathrm{N}\left(\gamma^{-}\right)}{\mathrm{N}(\gamma)} \tag{3.1}
\end{equation*}
$$

where $\gamma^{ \pm}$denote the projection of γ to $B^{ \pm}$, depend only on the double coset $T(F) \gamma T(F)$ and not on γ itself. A simple calculation shows that all elements of B^{-}are trace-free and that $\mathrm{N}(\gamma)=\mathrm{N}\left(\gamma^{+}\right)+\mathrm{N}\left(\gamma^{-}\right)$. For any place v of F let $B_{v}^{ \pm}=B^{ \pm} \otimes_{F} F_{v}$. We say that γ is degenerate if $\{\eta, \zeta\}=\{0,1\}$ (i.e., if $\gamma \in B^{+} \cup B^{-}$), and that γ is nondegenerate otherwise. Of course we may make similar definitions for $\gamma \in G\left(F_{v}\right)$ for v any place of F.

Lemma 3.1.1 The function $\gamma \mapsto(\eta, \xi)$ defines an injection

$$
T(F) \backslash G(F) / T(F) \rightarrow F \times F
$$

The image of this injection is the union of $\{(1,0),(0,1)\}$ and the set of pairs (η, ξ) such that $\eta, \xi \neq 0, \eta+\xi=1$, and for every place v of F

$$
\omega_{v}(-\eta \xi)= \begin{cases}1 & \text { if } B_{v} \text { is split } \tag{3.2}\\ -1 & \text { otherwise }\end{cases}
$$

Proof This is stated without proof in [34, $\S 4.1]$. We leave the injectivity as an easy exercise, and sketch a proof of the second claim. Choose a generator ϵ for B^{-}as a left E-module and write $E=F[\sqrt{\Delta}]$. Then B has as an F-basis $\{1, \sqrt{\Delta}, \epsilon, \sqrt{\Delta} \cdot \epsilon\}$, or, in the standard notation (as in [21, Example A.2]), $B \cong\left(\frac{\Delta,-\mathrm{N}(\epsilon)}{F}\right)$. It follows that the right-hand side of (3.2) is equal to the Hilbert symbol $(\Delta,-\mathrm{N}(\epsilon))_{v}=\omega_{v}(-\mathrm{N}(\epsilon))$. On the other hand, it is easy to see that for any nondegenerate $\gamma \in G(F)$ we have $\omega_{v}(\eta \xi)=\omega_{v}(\mathrm{~N}(\epsilon))$, so that (η, ξ) satisfies (3.2). The condition $\eta+\xi=1$ is clear from the additivity of N with respect to the decomposition $B=B^{+} \oplus B^{-}$noted earlier. Conversely, given a pair $\eta, \xi \in F^{\times}$satisfying (3.2) and $\eta+\xi=1$ we must have $(\Delta,-\mathrm{N}(\epsilon))_{v}=(\Delta,-\eta \xi)_{v}$ for every place v. It follows from the Hasse-Minkowski theorem that there are $x, y \in F$ such that $\xi \eta^{-1} \mathrm{~N}(\epsilon)^{-1}=x^{2}-y^{2} \Delta$. Taking $\gamma=$
$1+(x+y \sqrt{\Delta}) \epsilon$ shows that (η, ξ) arises from a nondegenerate γ. Any degenerate γ generates either B^{+}or B^{-}as a left E-module and so has image either $(1,0)$ or $(0,1)$, respectively.

Lemma 3.1.2 For any nondegenerate $\gamma \in G(F)$ and any place v of F set

$$
\tau_{v}(\gamma)=\omega_{v}(\delta)|\eta \xi|_{v}^{1 / 2} \chi_{v}(\eta) \bar{\chi}_{v}\left(\gamma^{+}\right) \epsilon_{v}\left(1 / 2, \omega, \psi_{v}^{0}\right)
$$

Then $\prod_{v} \tau_{v}(\gamma)=1$ where the product is over all places of F. If v is an archimedean place, then $\tau_{v}(\gamma)=\omega_{v}(\delta) \cdot i \cdot|\eta \xi|_{v}^{1 / 2}$.

Proof The functional equation (2.2) and [18, Corollary 4.4] imply

$$
\epsilon(s, \omega)=|d \delta|^{s-1 / 2}
$$

while [18, (3.29)] gives

$$
|\delta|_{v}^{s-1 / 2} \omega_{v}(\delta) \epsilon_{v}\left(s, \omega, \psi_{v}^{0}\right)=\epsilon_{v}\left(s, \omega, \psi_{v}\right)
$$

From this it is clear that $\prod_{v} \tau_{v}(\gamma)=1$. If v is archimedean, then $\epsilon\left(s, \omega, \psi_{v}^{0}\right)=i$ by [18, Proposition 3.8(iii)]. As χ_{v} is the trivial character, the final claim follows.

3.2 Heights of CM-Cycles

If $U \subset G\left(\mathbb{A}_{f}\right)$ is a compact open subgroup, we define the set of $C M$ points of level $U C_{U}=T(F) \backslash G\left(\mathbb{A}_{f}\right) / U$. By a CM-cycle of level U, we mean a compactly supported (i.e., finitely supported) function on C_{U}. There is a unique left $T\left(\mathbb{A}_{f}\right)$-invariant measure on C_{U} with the property that

$$
\int_{G\left(\mathbb{A}_{f}\right) / U} f(g) d g=\int_{C_{U}} \sum_{t \in T(F) /(Z(F) \cap U)} f(t g) d g
$$

for every locally constant compactly supported function f on $G\left(\mathbb{A}_{f}\right) / U$, where the measure on $G\left(\mathbb{A}_{f}\right) / U$ gives every coset volume one. The measure on C_{U} assigns to each double coset $T(F) g U$ a volume equal to the inverse of

$$
\left[T(F) \cap g U g^{-1}: Z(F) \cap U\right]
$$

Given compact open subgroups $U \subset V$, the measures on C_{U} and C_{V} are related by

$$
\begin{equation*}
\int_{C_{V}} \sum_{h \in V / U} f(g h) d g=\frac{\lambda_{U}}{\lambda_{V}} \int_{C_{U}} f(g) d g \tag{3.3}
\end{equation*}
$$

for any CM-cycle f of level U, where $\lambda_{U}=\left[\mathcal{O}_{F}^{\times}: \mathcal{O}_{F}^{\times} \cap U\right]$ and similarly with U replaced by V.

Given a $T(F)$ bi-invariant function m on $G(F)$ define a function k_{U}^{m} on $G\left(\mathbb{A}_{f}\right) \times$ $G\left(\mathbb{A}_{f}\right)$ by

$$
k_{U}^{m}(x, y)=\sum_{\gamma \in G(F) /(Z(F) \cap U)} \mathbf{1}_{U}\left(x^{-1} \gamma y\right) \cdot m(\gamma)
$$

where $\mathbf{1}_{U}$ is the characteristic function of U. We will address the convergence of this sum as the need arises; for the moment, assume that the sum converges absolutely for every x, y. Note that k_{U}^{m} descends to a function on $C_{U} \times C_{U}$. If P, Q are CM-cycles of level U, define the height pairing in level U with multiplicity m

$$
\begin{equation*}
\langle P, Q\rangle_{U}^{m}=\int_{C_{U} \times C_{U}} P(x) \cdot k_{U}^{m}(x, y) \cdot \overline{Q(y)} d x d y \tag{3.4}
\end{equation*}
$$

As in $[34,(4.1 .9)]$ a simple calculation shows that there is a decomposition

$$
\begin{equation*}
\langle P, Q\rangle_{U}^{m}=\sum_{\gamma \in T(F) \backslash G(F) / T(F)}\langle P, Q\rangle_{U}^{\gamma} \cdot m(\gamma), \tag{3.5}
\end{equation*}
$$

where for every $\gamma \in G(F)$

$$
\langle P, Q\rangle_{U}^{\gamma}=\int_{C_{U}} \sum_{\delta \in T(F) \backslash T(F) \gamma T(F)} P(\delta y) \overline{Q(y)} d y
$$

is the linking number of P and Q at γ.
Abbreviate $U_{Z}=U \cap Z\left(\mathbb{A}_{f}\right)$ and $U_{T}=U \cap T\left(\mathbb{A}_{f}\right)$ and suppose now that U is small enough that χ is trivial on U_{T}. We will say that a CM-cycle P of level U is χ-isotypic if for all $t \in T\left(\mathbb{A}_{f}\right)$ and $g \in G\left(\mathbb{A}_{f}\right)$ we have $P(t g)=\chi(t) P(g)$.

Lemma 3.2.1 Set $\chi^{*}(t)=\chi(\bar{t})$. Suppose P and Q are χ-isotypic CM-cycles of level U and that Q is supported on the image of $T\left(\mathbb{A}_{f}\right) \rightarrow C_{U}$. If $\gamma \in G(F)$ is degenerate, then

$$
\langle P, Q\rangle_{U}^{\gamma}=\overline{Q(1)} \cdot \frac{\left[T\left(\mathbb{A}_{f}\right): T(F) U_{T}\right]}{[T(F) \cap U: Z(F) \cap U]} \begin{cases}P(\gamma) & \text { if }(\eta, \xi)=(1,0) \\ P(\gamma) & \text { if }(\eta, \xi)=(0,1) \text { and } \chi^{*}=\chi \\ 0 & \text { if }(\eta, \xi)=(0,1) \text { and } \chi^{*} \neq \chi\end{cases}
$$

If γ is nondegenerate, then

$$
\langle P, Q\rangle_{U}^{\gamma}=\overline{Q(1)} \cdot\left[Z\left(\mathbb{A}_{f}\right): Z(F) U_{Z}\right] \sum_{t \in Z\left(\mathbb{A}_{f}\right) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} P\left(t^{-1} \gamma t\right)
$$

Proof First suppose that γ is degenerate. Then γ normalizes $T(F)$ and so

$$
\langle P, Q\rangle_{U}^{\gamma}=\int_{C_{U}} P(\gamma y) \overline{Q(y)} d y=\int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} P\left(y^{-1} \gamma y\right) \overline{Q(1)} d y
$$

If $(\eta, \xi)=(1,0)$, then $\gamma \in T(F)$ leaving

$$
\langle P, Q\rangle_{U}^{\gamma}=\operatorname{Vol}\left(T(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}\right) \cdot P(\gamma) \overline{Q(1)}
$$

If $(\eta, \xi)=(0,1)$, then $\gamma y=\bar{y} \gamma$ for every $y \in T\left(\mathbb{A}_{f}\right)$, leaving

$$
\langle P, Q\rangle_{U}^{\gamma}=P(\gamma) \overline{Q(1)} \cdot \int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} \chi(y)^{-1} \chi^{*}(y) d y
$$

In either case the first claim follows. Now suppose that γ is nondegenerate. The nondegeneracy of γ implies that $\gamma^{-1} T(F) \gamma \cap T(F)=Z(F)$ and so

$$
\begin{aligned}
\langle P, Q\rangle_{U}^{\gamma} & =\int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} \sum_{\delta \in T(F) \backslash T(F) \gamma T(F)} P\left(y^{-1} \delta y\right) \overline{Q(1)} d y \\
& =\int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} \sum_{t \in T(F) / Z(F)} P\left(y^{-1} \gamma t y\right) \overline{Q(1)} d y \\
& =\overline{Q(1)} \int_{Z(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} P\left(y^{-1} \gamma y\right) d y
\end{aligned}
$$

where the measure on $Z(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}$ gives each coset volume 1 . The second claim follows.

In particular, if the $U=\prod_{v} U_{v}$ and $P=\prod_{v} P_{v}$ of Lemma 3.2.1 are factorizable and γ is nondegenerate, then there is a decomposition

$$
\begin{equation*}
\langle P, Q\rangle_{U}^{\gamma}=\overline{Q(1)} \cdot\left[Z\left(\mathbb{A}_{f}\right): Z(F) U_{Z}\right] \cdot \prod_{v} O_{U}^{\gamma}\left(P_{v}\right) \tag{3.6}
\end{equation*}
$$

where the product is over all finite places of F and

$$
\begin{equation*}
O_{U}^{\gamma}\left(P_{v}\right)=\sum_{t \in F_{v}^{\times} \backslash E_{v}^{\times} / U_{T, v}} P_{v}\left(t^{-1} \gamma t\right) \tag{3.7}
\end{equation*}
$$

is the orbital integral of P_{v} at γ, where we abbreviate $U_{T, v}=E_{v}^{\times} \cap U_{v}$.
The remainder of $\S 3$ is devoted to the computations of orbital integrals for specific CM-cycles, and we fix the following data throughout $\S 3.3$ and $\S 3.4$. Let v be a finite place of F and fix $\epsilon_{v} \in B_{v}^{\times}$such that $E_{\nu} \epsilon_{v}=B_{v}^{-}$. We assume that $\mathrm{N}\left(\epsilon_{v}\right) \in \mathcal{O}_{F, v}$ and let \mathfrak{e} be an ideal of \mathcal{O}_{F} satisfying $\mathfrak{e}_{v}=\mathrm{N}\left(\epsilon_{v}\right) \mathcal{O}_{F, v}$. Define an order of B_{v} by

$$
R_{v}=\mathcal{O}_{E, v}+\mathcal{O}_{E, v} \epsilon_{v} .
$$

Fix a uniformizing parameter $\varpi \in F_{v}$.

3.3 Local Calculations at Primes Away from $\mathrm{N}(\mathfrak{C})$

Assume that $v \nmid \mathrm{~N}(\mathfrak{C})$ and set $U_{v}=R_{v}^{\times}$. Define a function on $G\left(F_{v}\right) / U_{v}$ by

$$
P_{\chi, v}(g)=\sum_{t \in E_{v}^{\times} / \mathcal{O}_{E, v}^{\times}} \chi_{v}(t) \mathbf{1}_{U_{v}}\left(t^{-1} g\right) .
$$

For each ideal $\mathfrak{a} \subset \mathcal{O}_{F}$ set $H\left(\mathfrak{a}_{v}\right)=\left\{h \in R_{v} \mid \mathrm{N}(h) \mathcal{O}_{F, v}=\mathfrak{a}_{v}\right\}$ and define another function on $G\left(F_{v}\right) / U_{v}$

$$
P_{\chi, \mathfrak{a}, v}(g)=\sum_{h \in H\left(\mathfrak{a}_{v}\right) / U_{v}} P_{\chi, v}(g h)=\chi_{v}(\mathfrak{a}) \sum_{t \in E_{v}^{\times} / \mathcal{O}_{E, v}^{\times}} \chi_{v}(t) \mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(t^{-1} g\right) .
$$

For each nondegenerate $\gamma \in G\left(F_{v}\right)$ we wish to compute the orbital integral

$$
\begin{equation*}
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=\sum_{t \in F_{v}^{\times} \backslash E_{v}^{\times} / \mathcal{O}_{E, v}^{\times}} P_{\chi, \mathfrak{a}, v}\left(t^{-1} \gamma t\right) . \tag{3.8}
\end{equation*}
$$

Proposition 3.3.1 Suppose v is inert in E and $\gamma \in G\left(F_{v}\right)$ is nondegenerate. Then (3.8) is nonzero if and only if $\operatorname{ord}_{v}(\eta \mathfrak{a})$ and $\operatorname{ord}_{v}\left(\xi \mathfrak{a} e^{-1}\right)$ are both even and nonnegative. When this is the case

$$
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=\bar{\chi}_{v}(\eta) \chi_{v}\left(\gamma^{+}\right) \chi_{v}(\varpi)^{\frac{\operatorname{ord}(\eta(\eta)}{2}} .
$$

Proof Suppose $\gamma^{+}=1$, so that $\gamma=1+\beta \epsilon_{v}$ with $\beta \in E_{v}^{\times}$. The expression (3.8) reduces to

$$
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=P_{\chi, \mathfrak{a}, v}(\gamma)=\chi_{v}(\mathfrak{a}) \sum_{k=-\infty}^{\infty} \chi_{v}(\varpi)^{k} \mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(\varpi^{-k} \gamma\right)
$$

Using $\operatorname{ord}_{v}(\eta)=-\operatorname{ord}_{v}(\mathrm{~N}(\gamma))$, we see that the only possible contribution to the inner sum is for k satisfying $2 k=-\operatorname{ord}_{v}(\eta \mathfrak{a})$. Thus we may assume that $\operatorname{ord}_{v}(\eta \mathfrak{a})$ is even, leaving

$$
\begin{aligned}
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right) & =\chi_{v}(\mathfrak{a}) \chi_{v}(\varpi)^{-\frac{1}{2} \operatorname{ord}_{v}(\eta \mathfrak{a})} \mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(\varpi^{\frac{1}{2} \operatorname{ord}_{v}(\eta \mathfrak{a})} \gamma\right) \\
& =\overline{\chi(\eta)} \chi_{v}(\varpi)^{\frac{1}{2} \operatorname{ord}_{v}(\eta \mathfrak{a})} \mathbf{1}_{R_{v}}\left(\varpi^{\frac{1}{2} \operatorname{ord}_{v}(\eta \mathfrak{a})} \gamma\right),
\end{aligned}
$$

which is nonzero if and only if $\varpi^{\frac{1}{2}} \operatorname{ord}_{v}(\eta \mathrm{a})\left(1+\beta \epsilon_{v}\right) \in \mathcal{O}_{E, v}+\mathcal{O}_{E, v} \epsilon_{v}$. Thus $O_{U}^{\gamma}\left(P_{\chi, \mathrm{a}, v}\right)$ is nonzero if and only if both $\operatorname{ord}_{v}(\eta \mathfrak{a}) \geq 0$ and $\operatorname{ord}_{v}(\eta \mathfrak{a}) \geq-\operatorname{ord}_{v}(\mathrm{~N}(\beta))$ hold. The observation that

$$
\operatorname{ord}_{v}\left(\xi \mathfrak{a} \mathrm{e}^{-1}\right)=\operatorname{ord}_{v}(\mathfrak{a})+\operatorname{ord}_{v}(\mathrm{~N}(\beta))-\operatorname{ord}_{v}(\mathrm{~N}(\gamma))=\operatorname{ord}_{v}(\eta \mathfrak{a})+\operatorname{ord}_{v}(\mathrm{~N}(\beta)),
$$

together with $\operatorname{ord}_{v}(\mathrm{~N}(\beta)) \in 2 \mathbb{Z}$, completes the proof when $\gamma^{+}=1$. For the general case, simply note that if γ is replaced by $t \gamma$ with $t \in E_{v}^{\times}$, then both sides of the stated equality are multiplied by $\chi_{v}(t)$. Thus it suffices to prove the claim for a single element of $E_{v}^{\times} \gamma$.

Remark 3.1 In the proof of Proposition 3.3.1 it sufficed to treat the case $\gamma^{+}=1$. This will remain true in all remaining computations of orbital integrals in $\S 3.3$ and §3.4. We will continue to state the results for arbitrary γ, but in the proofs we will assume that $\gamma^{+}=1$.

Proposition 3.3.2 Suppose v is ramified in E and $\gamma \in G\left(F_{v}\right)$ is nondegenerate. Then (3.8) is nonzero if and only if $\operatorname{ord}_{v}(\eta \mathfrak{a})$ and $\operatorname{ord}_{v}\left(\xi \mathfrak{a e} e^{-1}\right)$ are both nonnegative. When this is the case,

$$
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=2 \cdot \overline{\chi_{v}(\eta)} \chi_{v}\left(\gamma^{+}\right) \chi_{v}\left(\varpi_{E}\right)^{\operatorname{ord}_{v}(\eta \mathfrak{a})}
$$

for any uniformizer $\varpi_{E} \in E_{v}$.
Proof Write $\gamma=1+\beta \epsilon_{v}$ with $\beta \in E_{v}^{\times}$. Equation (3.8) reduces to

$$
\begin{aligned}
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right) & =P_{\chi, \mathfrak{a}, v}(\gamma)+P_{\chi, \mathfrak{a}, v}\left(\varpi_{E}^{-1} \gamma \varpi_{E}\right) \\
& =\chi_{v}(\mathfrak{a}) \sum_{k=-\infty}^{\infty} \chi_{v}\left(\varpi_{E}\right)^{-k}\left[\mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(\varpi_{E}^{k} \gamma\right)+\mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(\varpi_{E}^{k-1} \gamma \varpi_{E}\right)\right]
\end{aligned}
$$

The only possible contribution to the final sum is the term $k=\operatorname{ord}_{v}(\eta \mathfrak{a})$, leaving

$$
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=\chi_{v}(\mathfrak{a}) \chi_{v}\left(\varpi_{E}\right)^{-\operatorname{ord}_{v}(\eta \mathfrak{a})}\left[\mathbf{1}_{R_{v}}\left(\varpi_{E}^{\operatorname{ord}_{v}(\eta \mathfrak{a})} \gamma\right)+\mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(\varpi_{E}^{\operatorname{ord}_{v}(\eta \mathfrak{a})-1} \gamma \varpi_{E}\right)\right] .
$$

The remainder of the proof is exactly as the proof of Proposition 3.3.1.
Proposition 3.3.3 Suppose v is split in E and $\gamma \in G\left(F_{v}\right)$ is nondegenerate. Then (3.8) is nonzero if and only if $\operatorname{ord}(\eta \mathfrak{a})$ and $\operatorname{ord}_{v}\left(\xi \mathfrak{a} \mathrm{e}^{-1}\right)$ are both nonnegative. When this is the case,

$$
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=\overline{\chi_{v}(\eta)} \chi_{v}\left(\gamma^{+}\right) \cdot\left(1+\operatorname{ord}_{v}\left(\xi \mathfrak{a} \mathrm{e}^{-1}\right)\right) \sum_{\substack{i+j=\operatorname{ord}_{v}(\eta \mathfrak{a}) \\ i, j \geq 0}} \alpha^{i} \beta^{j}
$$

where $\alpha=\chi_{v}(\varpi, 1)$ and $\beta=\chi_{v}(1, \varpi)$ under the identification $E_{v}^{\times} \cong F_{v}^{\times} \times F_{v}^{\times}$.
Proof Write $\gamma=1+\beta \epsilon_{v}$ with $\beta \in E_{v}^{\times}$, so that $\operatorname{ord}_{v}(\eta)=-\operatorname{ord}_{v}(\mathrm{~N}(\gamma))$ and $\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right)=\operatorname{ord}_{v}(\eta)+\operatorname{ord}_{v}(\mathrm{~N}(\beta))$. For any $t \in T\left(F_{v}\right)$

$$
P_{\chi, \mathfrak{a}, v}\left(t^{-1} \gamma t\right)=\chi_{v}(\mathfrak{a}) \sum_{s \in E_{v}^{\times} / \mathcal{O}_{\mathbb{E}, v}^{\times}} \bar{\chi}_{v}(s) \cdot \mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(s t^{-1} \gamma t\right)
$$

and the only terms in the final sum which may contribute are from those s satisfying $\operatorname{ord}_{v}(\mathrm{~N}(s))=\operatorname{ord}_{v}(\eta a)$. Fix an isomorphism $\mathcal{O}_{E, v} \cong \mathcal{O}_{F, v} \times \mathcal{O}_{F, v}$ and set $e_{i, j}=$ $\left(\varpi^{i}, \varpi^{j}\right)$. Then

$$
\begin{equation*}
P_{\chi, \mathfrak{a}, v}\left(t^{-1} \gamma t\right)=\chi_{v}(\mathfrak{a}) \sum_{i+j=\operatorname{ord}_{v}(\eta \mathfrak{a})} \alpha^{-i} \beta^{-j} \mathbf{1}_{R_{v}}\left(e_{i, j} t^{-1} \gamma t\right) \tag{3.9}
\end{equation*}
$$

The set $\left\{e_{k, 0} \mid k \in \mathbb{Z}\right\}$ is a complete set of coset representatives for $F_{v}^{\times} \backslash E_{v}^{\times} / \mathcal{O}_{E, v}^{\times}$, and

$$
e_{k, 0}^{-1} \cdot \gamma \cdot e_{k, 0}=e_{k, 0}^{-1}\left(1+\beta \epsilon_{v}\right) e_{k, 0}=1+e_{-k, k} \beta \epsilon_{v}
$$

Combining (3.8) and (3.9) therefore gives

$$
\begin{equation*}
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=\chi_{v}(\mathfrak{a}) \sum_{i+j=\operatorname{ord}_{v}(\eta \mathfrak{a})} \alpha^{-i} \beta^{-j} \sum_{k=-\infty}^{\infty} \mathbf{1}_{R_{v}}\left(e_{i, j}\left(1+e_{-k, k} \beta \epsilon_{v}\right)\right) \tag{3.10}
\end{equation*}
$$

The inner sum counts the number of k such that $e_{i, j}+e_{i-k, j+k} \beta \epsilon_{v} \in \mathcal{O}_{E, v}+\mathcal{O}_{E, v} \epsilon_{v}$. When $i+j=\operatorname{ord}_{v}(\eta \mathfrak{a})$, the condition $e_{i, j} \in \mathcal{O}_{E, v}$ is equivalent to $0 \leq i, j \leq \operatorname{ord}_{v}(\eta a)$, and so the outer sum may be restricted to $i, j \geq 0$. The inner sum then counts the number of k such that $e_{i-k, j+k} \beta \in \mathcal{O}_{E, v}$. Replacing β by an $\mathcal{O}_{E, v}^{\times}$-multiple does not change the number of such k, and so we may assume that $\beta=e_{s, t}$ for some $s, t \in \mathbb{Z}$. The inner sum of (3.10) is then equal to

$$
\begin{aligned}
\#\{k \in \mathbb{Z} \mid i-k+s \geq 0, j+k+t \geq 0\} & =i+j+s+t+1 \\
& =\operatorname{ord}_{v}(\eta \mathfrak{a})+\operatorname{ord}_{v}(\mathrm{~N}(\beta))+1 \\
& =\operatorname{ord}_{v}\left(\xi \mathfrak{a} \mathfrak{e}^{-1}\right)+1
\end{aligned}
$$

if $\operatorname{ord}_{v}\left(\xi \mathfrak{a e ^ { - 1 }}\right) \geq 0$, and is equal to 0 otherwise. Thus (3.10) reduces to

$$
O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=\chi_{v}(\mathfrak{a})\left(\operatorname{ord}_{v}\left(\xi \mathfrak{a} \mathfrak{e}^{-1}\right)+1\right) \sum_{\substack{i+j=\operatorname{ord}_{v}(\eta \mathfrak{a}) \\ i, j \geq 0}} \alpha^{-i} \beta^{-j}
$$

when $\operatorname{ord}_{v}\left(\xi \mathfrak{a} \mathrm{e}^{-1}\right) \geq 0$. Using $\chi_{v}(\eta \mathfrak{a})=\alpha^{i+j} \beta^{i+j}$, the proposition follows.
Corollary 3.3.4 Suppose $v \nmid \mathrm{~N}(\mathfrak{C}), \gamma \in G\left(F_{v}\right)$ is nondegenerate, and \mathfrak{r} is an ideal of \mathcal{O}_{F} with $\mathfrak{r}_{v}=\mathfrak{e}_{v}$. Then $|a|_{v}|d|_{v}^{1 / 2} \tau_{v}(\gamma) \cdot O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)=B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)$ where $\tau_{v}(\gamma)$ is as in Lemma 3.1.2.

Proof Propositions 3.3.1, 3.3.2, and 3.3.3 give explicit formulas for the left-hand side, while Proposition 2.4.2 gives explicit formulas for the right-hand side.

We now turn to the calculation of $P_{\chi, \mathfrak{a}, v}(1)$ and $P_{\chi, \mathfrak{a}, v}\left(\epsilon_{v}\right)$.
Lemma 3.3.5 Suppose that v is inert in E. Then

$$
\begin{aligned}
P_{\chi, \mathfrak{a}, v}(1) & = \begin{cases}\chi_{v}(\varpi)^{\frac{1}{2}} \operatorname{ord}_{v}(\mathfrak{a}) & \text { if } \operatorname{ord}_{v}(\mathfrak{a}) \text { is even and nonnegative, } \\
0 & \text { otherwise },\end{cases} \\
P_{\chi, \mathfrak{a}, v}\left(\epsilon_{v}\right) & = \begin{cases}\chi_{v}(\mathfrak{e}) \chi_{v}(\varpi)^{\frac{1}{2}} \operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right) & \text { if } \operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right) \text { is even and nonnegative, } \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof Exactly as in Proposition 3.3.1

$$
P_{\chi, \mathfrak{a}, v}(g)=\chi_{v}(\mathfrak{a}) \sum_{k=-\infty}^{\infty} \chi_{v}(\varpi)^{-k} \mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}\left(\varpi^{k} g\right)
$$

If $g=1$, then $\operatorname{ord}_{v}(\mathrm{~N}(g))=0$ and the only contribution to the final sum is when $2 k=\operatorname{ord}_{v}(\mathfrak{a})$. Thus we may assume that $\operatorname{ord}_{v}(\mathfrak{a})$ is even, leaving

$$
P_{\chi, a, v}(1)=\chi_{v}(\varpi)^{\frac{1}{2} \operatorname{ord}_{v}(a)} \mathbf{1}_{R_{v}}\left(\varpi^{\frac{1}{2} \operatorname{ord}_{v}(a)}\right)
$$

which proves the first claim. If $g=\epsilon_{v}$, then $\operatorname{ord}_{v}(\mathrm{~N}(g))=\operatorname{ord}_{v}(\mathrm{e})$ and the only contribution to the above sum is for k satisfying $2 k+\operatorname{ord}_{v}(\mathfrak{e})=\operatorname{ord}_{v}(\mathfrak{a})$. Thus we may assume $\operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right)$ is even, leaving

$$
P_{\chi, \mathfrak{a}, v}\left(\epsilon_{v}\right)=\chi_{v}(\mathfrak{a}) \chi_{v}(\varpi)^{-\frac{1}{2} \operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right)} \mathbf{1}_{R_{v}}\left(\varpi^{\frac{1}{2} \operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right)} \epsilon_{v}\right)
$$

which proves the second claim.
Lemma 3.3.6 Suppose that v is ramified in E, and let ϖ_{E} be a uniformizer of E_{v}. Then

$$
\begin{aligned}
P_{\chi, \mathfrak{a}, v}(1) & = \begin{cases}\chi_{v}\left(\varpi_{E}\right)^{\operatorname{ord}_{v}(\mathfrak{a})} & \text { if } \operatorname{ord}_{v}(\mathfrak{a}) \geq 0 \\
0 & \text { otherwise },\end{cases} \\
P_{\chi, \mathfrak{a}, v}\left(\epsilon_{v}\right) & = \begin{cases}\chi_{v}(\mathfrak{e}) \chi_{v}\left(\varpi_{E}\right)^{\operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right)} & \text { if } \operatorname{ord}_{v}\left(\mathfrak{a} \mathfrak{e}^{-1}\right) \geq 0 \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

Proof The proof is nearly identical to that of Lemma 3.3.5, and the details are omitted.

Lemma 3.3.7 Suppose that v is split in E, and let α and β be as in Proposition 3.3.3. Then

$$
P_{\chi, \mathfrak{a}, v}(1)=\sum_{\substack{i+j=\operatorname{ord}_{v}(\mathfrak{a}) \\ i, j \geq 0}} \alpha^{i} \beta^{j} \quad P_{\chi, \mathfrak{a}, v}\left(\epsilon_{v}\right)=\chi_{v}(\mathfrak{e}) \sum_{\substack{i+j=\operatorname{ord}_{v}\left(\mathfrak{a e}^{-1}\right) \\ i, j \geq 0}} \alpha^{i} \beta^{j}
$$

Proof On the right-hand side of

$$
P_{\chi, \mathfrak{a}, v}(g)=\chi_{v}(\mathfrak{a}) \sum_{t \in E_{v}^{\times} / \mathcal{O}_{E, v}^{\times}} \bar{\chi}_{v}(t) \mathbf{1}_{H\left(\mathfrak{a}_{v}\right)}(t g),
$$

the only terms which may contribute are from those t satisfying

$$
\operatorname{ord}_{v}(\mathrm{~N}(t))=\operatorname{ord}_{v}(\mathfrak{a})-\operatorname{ord}_{v}(\mathrm{~N}(g)) .
$$

Fix an isomorphism $\mathcal{O}_{E, v} \cong \mathcal{O}_{F, v} \times \mathcal{O}_{F, v}$ and set $e_{i, j}=\left(\varpi^{i}, \varpi^{j}\right)$. Then

$$
P_{\chi, \mathfrak{a}, v}(g)=\chi_{v}(\mathfrak{a}) \sum_{i+j=\operatorname{ord}_{v}(a)-\operatorname{ord}_{v}(\mathrm{~N}(g))} \alpha^{-i} \beta^{-j} \mathbf{1}_{R_{v}}\left(e_{i, j} g\right) .
$$

The lemma follows easily from this equality, using $\alpha \beta=\chi_{\nu}(\varpi)$.

Corollary 3.3.8 Suppose v does not divide $\mathrm{N}(\mathfrak{C})$ and that $a \in \mathbb{A}^{\times}$satisfies $a \mathcal{O}_{F}=\mathfrak{a}$. Then $P_{\chi, \mathfrak{a}, v}(1)=|a|_{v}^{-1 / 2} B_{v}(a ; \theta)$. If we pick $e \in \mathbb{A}^{\times}$such that $e \mathcal{O}_{F}=\mathfrak{e}$, then

$$
P_{\chi, \mathfrak{a}, v}\left(\epsilon_{v}\right)=\chi_{v}(e)|e|_{v}^{1 / 2}|a|_{v}^{-1 / 2} B_{v}\left(a e^{-1} ; \theta\right) .
$$

Proof Compare Lemmas 3.3.5, 3.3.6, and 3.3.7 with Proposition 2.3.1.

3.4 Local Calculations at Primes Dividing $\mathrm{N}(\mathbb{C})$

Let v be a finite place of F dividing $\mathrm{N}(\mathfrak{C})$ (in particular $v \nmid \mathfrak{D}$). Assume that

$$
\begin{equation*}
\operatorname{ord}_{v}(\mathrm{~N}(\mathfrak{C})) \leq \operatorname{ord}_{v}(\mathfrak{e}) \tag{3.11}
\end{equation*}
$$

and let $U_{v} \subset R_{v}^{\times}$be the kernel of the homomorphism $R_{v}^{\times} \rightarrow\left(\mathcal{O}_{E, v} / \mathfrak{C}_{v}\right)^{\times}$given by $x+y \epsilon_{v} \mapsto x$. Define a function $P_{\chi, v}$ on $G\left(F_{v}\right)$ by

$$
P_{\chi, v}(g)=\sum_{t \in E_{v}^{\times} / U_{T, v}} \chi_{v}(t) \mathbf{1}_{U_{v}}\left(t^{-1} g\right) .
$$

For each nondegenerate $\gamma \in G\left(F_{v}\right)$ we wish to compute the orbital integral

$$
\begin{equation*}
O_{U}^{\gamma}\left(P_{\chi, v}\right)=\sum_{t \in F_{v}^{\times} \backslash E_{v}^{\times} / U_{T, v}} P_{\chi, v}\left(t^{-1} \gamma t\right) \tag{3.12}
\end{equation*}
$$

In accordance with Remark 3.1 we will state the results for any nondegenerate γ, but we will assume in the proofs that $\gamma^{+}=1$ and write $\gamma=1+\beta \epsilon_{v}$ with $\beta \in E_{v}^{\times}$.

Proposition 3.4.1 Suppose v is inert in E and $\gamma \in G\left(F_{v}\right)$ is nondegenerate. Then (3.12) is nonzero if and only if $\operatorname{ord}_{v}(\eta)=0$ and $\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right)$ is even and nonnegative. When this is the case, $O_{U}^{\gamma}\left(P_{\chi, v}\right)=\left[\mathcal{O}_{E, v}^{\times}: \mathcal{O}_{F, v}^{\times} U_{T, v}\right] \cdot \chi_{v}\left(\gamma^{+}\right)$.

Proof In this case (3.12) gives
$O_{U}^{\gamma}\left(P_{\chi, v}\right)=\sum_{t \in \mathcal{O}_{F, v}^{\times} \backslash \mathfrak{O}_{E, v}^{\times} / U_{T, v}} P_{\chi, v}\left(t^{-1} \gamma t\right)=\sum_{t \in \mathcal{O}_{F, v}^{\times} \backslash \mathfrak{O}_{E, v}^{\times} / U_{T, v}} \sum_{s \in E_{v}^{\times} / U_{T, v}} \chi_{v}(s) \mathbf{1}_{U_{v}}\left(s^{-1} t^{-1} \gamma t\right)$.
As $U_{v}=U_{T, v}+\mathcal{O}_{E, v} \epsilon_{v}$, the only way that $s^{-1} t^{-1} \gamma t=s^{-1}\left(1+t^{-1} \bar{t} \beta \epsilon_{v}\right)$ can lie in U_{v} is if $s \in U_{T, v}$. Therefore only the term $s=1$ contributes to the inner sum, leaving

$$
O_{U}^{\gamma}\left(P_{\chi, v}\right)=\sum_{t \in \mathcal{O}_{F, v}^{\times} \backslash \mathcal{O}_{E, v}^{\times} / U_{T, v}} \mathbf{1}_{U_{v}}\left(1+t^{-1} \bar{t} \beta \epsilon_{v}\right)
$$

If $\operatorname{ord}_{v}(\mathrm{~N}(\beta)) \geq 0$, then every term in the sum is 1 , and otherwise every term is 0 . As $\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right)=\operatorname{ord}_{v}(\eta)+\operatorname{ord}_{v}(\mathrm{~N}(\beta))$, the condition $\operatorname{ord}_{v}(\mathrm{~N}(\beta)) \geq 0$ is equivalent to $\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right) \geq \operatorname{ord}_{v}(\eta)$, and using $\eta+\xi=1$ and $\operatorname{ord}_{v}(\mathrm{e})>0$

$$
\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right) \geq \operatorname{ord}_{v}(\eta) \Longleftrightarrow \operatorname{ord}_{v}(\eta)=0 \text { and } \operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right) \geq 0
$$

Proposition 3.4.2 Suppose v is split in E and $\gamma \in G\left(F_{v}\right)$ is nondegenerate. Then (3.12) is nonzero if and only if $\operatorname{ord}_{v}(\eta)=0$ and $\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right) \geq 0$. When this is the case

$$
O_{U}^{\gamma}\left(P_{\chi, v}\right)=\left[\mathcal{O}_{E, v}^{\times}: \mathcal{O}_{F, v}^{\times} U_{T, v}\right] \cdot \chi_{v}\left(\gamma^{+}\right)\left(1+\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right)\right)
$$

Proof Using the notation of Proposition 3.3.3 so that $e_{i, j}=\left(\varpi^{i}, \varpi^{j}\right)$, for any $t \in$ $T\left(F_{v}\right)$ we have

$$
\begin{aligned}
P_{\chi, v}\left(t^{-1} \gamma t\right) & =\sum_{s \in E_{v}^{\times} / U_{T, v}} \bar{\chi}_{v}(s) \cdot \mathbf{1}_{U_{v}}\left(s t^{-1} \gamma t\right) \\
& =\sum_{i, j \in \mathbb{Z}_{s \in \mathcal{O}_{E, v}} / U_{T, v}} \bar{\chi}_{v}\left(s e_{i, j}\right) \cdot \mathbf{1}_{U_{v}}\left(s e_{i, j}\left(1+t^{-1} \bar{t} \beta \epsilon_{v}\right)\right) .
\end{aligned}
$$

As $U_{v}=U_{T, v}+\mathcal{O}_{E, v} \epsilon_{v}$, only terms for which $s e_{i, j} \in U_{T, v}$ can contribute to the inner sum, and so the only nonzero term can be the one with $i=j=0$ and $s \in U_{T, v}$. This leaves $P_{\chi}\left(t^{-1} \gamma t\right)=\mathbf{1}_{U_{v}}\left(1+t^{-1} \bar{t} \beta \epsilon_{v}\right)$ and so (3.12) becomes

$$
\begin{aligned}
O_{U}^{\gamma}\left(P_{\chi, v}\right) & =\sum_{t \in F_{v}^{\times} \backslash E_{v}^{\times} / U_{T, v}} \mathbf{1}_{U_{v}}\left(1+t^{-1} \bar{t} \beta \epsilon_{v}\right) \\
& =\sum_{k=-\infty}^{\infty} \sum_{t \in \mathcal{O}_{F, v}^{\times} \backslash \mathcal{O}_{E, v}^{\times} / U_{T, v}} \mathbf{1}_{U_{v}}\left(1+e_{-k, k} t^{-1} \bar{t} \beta \epsilon_{v}\right) \\
& =\left[\mathcal{O}_{E, v}^{\times}: \mathcal{O}_{F, v}^{\times} U_{T, v}\right] \cdot \sum_{k=-\infty}^{\infty} \mathbf{1}_{U_{v}}\left(1+e_{-k, k} \beta \epsilon_{v}\right) .
\end{aligned}
$$

Every term in the final sum is 0 unless the quantity $\mathrm{N}\left(1+e_{-k, k} \beta \epsilon_{v}\right)=\mathrm{N}(\gamma)=\eta^{-1}$ lies in \mathcal{O}_{F}^{\times}. Thus we may assume $\operatorname{ord}_{v}(\eta)=0$, so that the sum simply counts the number of k for which $e_{-k, k} \beta \in \mathcal{O}_{E, v}$. Multiplying β by an element of $\mathcal{O}_{E, v}^{\times}$, we may assume that $\beta=e_{s, t}$ for some $s, t \in \mathbb{Z}$. The k for which $e_{-k, k} \beta \in \mathcal{O}_{E, v}$ holds are then precisely those for which $s-k \geq 0$ and $t+k \geq 0$, and there are

$$
s+t+1=\operatorname{ord}_{v}(\mathrm{~N}(\beta))+1=\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right)+1
$$

such k if $\operatorname{ord}_{v}\left(\xi \mathrm{e}^{-1}\right) \geq 0$, and no such k otherwise.
Corollary 3.4.3 Suppose v divides $\mathrm{N}(\mathfrak{C})$ and γ is nondegenerate. Then

$$
\tau_{v}(\gamma) \cdot O_{U}^{\gamma}\left(P_{\chi, v}\right)=\left[\mathcal{O}_{E, v}^{\times}: \mathcal{O}_{F, v}^{\times} U_{T, v}\right] \cdot B_{v}\left(1, \eta, \xi ; \Theta_{\mathrm{r}}\right)
$$

where $\tau_{v}(\gamma)$ is as in Lemma 3.1.2 and $\mathfrak{r}_{v}=\mathfrak{e}_{v}$.
Proof Propositions 3.4.1 and 3.4.2 give explicit formulas for the left-hand side, while Proposition 2.4.2 gives explicit formulas for the right-hand side.

Lemma 3.4.4 We have the equalities $P_{\chi, v}(1)=1$ and $P_{\chi, v}\left(\epsilon_{v}\right)=0$.

Proof Clearly $P_{\chi, v}(1)=1$ simply by definition of $P_{\chi, v}$. On the other hand,

$$
P_{\chi, v}\left(\epsilon_{v}\right)=\sum_{t \in T\left(F_{v}\right) / U_{T, v}} \chi_{v}\left(t^{-1}\right) \mathbf{1}_{U_{v}}\left(t \epsilon_{v}\right)
$$

If this sum is nonzero, then $t \epsilon_{v} \in R_{v}^{\times}$for some $t \in T\left(F_{v}\right)$. But this would imply both $\mathrm{N}\left(t \epsilon_{v}\right) \in \mathcal{O}_{F, v}^{\times}$and $t \epsilon_{v} \in \mathcal{O}_{E, v} \epsilon_{v}$, which implies $\operatorname{ord}_{v}\left(\mathrm{~N}\left(\epsilon_{v}\right)\right) \leq 0$. But $\operatorname{ord}_{v}\left(\mathrm{~N}\left(\epsilon_{v}\right)\right)=$ $\operatorname{ord}_{v}(e)>0$ by (3.11), a contradiction.

Corollary 3.4.5 Choose $e \in \mathbb{A}^{\times}$with $e \mathcal{O}_{F}=e$. Then $P_{\chi, v}(1)=B_{v}(1 ; \theta)$ and $P_{\chi, v}\left(\epsilon_{v}\right)=\chi_{v}(e)|e|_{v}^{1 / 2} B_{v}\left(e^{-1} ; \theta\right)$.

Proof Compare Lemma 3.4.4 with Proposition 2.3.1.

4 Central Values

Suppose the representation Π of $\S 1.1$ satisfies Hypothesis 1.1.1. Recall that Π has conductor $\mathfrak{n}=\mathfrak{m s}$ and that χ has conductor $\mathfrak{C}=\mathfrak{c} \mathcal{O}_{E}$ for some \mathcal{O}_{F}-ideal \mathfrak{c}. Let B be a quaternion algebra over F satisfying

$$
\begin{equation*}
B_{v} \text { is split } \Longleftrightarrow \epsilon_{v}(1 / 2, \mathrm{r}, \psi)=1 \tag{4.1}
\end{equation*}
$$

for every finite place v of F, where $\mathfrak{r}=\mathfrak{m} c^{2}$ and the local epsilon factor is defined by (2.5). This implies that the reduced discriminant of B divides \mathfrak{m} and, as E_{v} is a field whenever B_{v} is nonsplit, that there is an embedding $E \rightarrow B$ which we fix. For the moment we do not specify the behavior of B at archimedean places. Let G and T be the algebraic groups over F defined at the beginning of $\S 3$. For any ideal $\mathfrak{b} \subset \mathcal{O}_{F}$ let $\mathcal{O}_{\mathfrak{b}}=\mathcal{O}_{F}+\mathfrak{b} \mathcal{O}_{E}$ denote the order of \mathcal{O}_{E} of conductor \mathfrak{b}.

4.1 Special CM Cycles

We construct two particular compact open subgroups $U \subset V$ of $G\left(\mathbb{A}_{f}\right)$ and two special CM-cycles Q_{χ} and P_{χ} of level V and U, respectively. It is ultimately the cycle Q_{χ} in which we are interested, but the local orbital integrals (3.7) of cycles of level V seem too difficult to compute directly. The subgroup U is chosen to make these orbital integrals more readily computable (indeed, they have already been computed in $\S 3.3$ and 3.3).

Lemma 4.1.1 For every finite place v there is an order in B_{v} of reduced discriminant \mathfrak{m}_{v} which contains $\mathcal{O}_{E, v}$. Such an order is unique up to E_{v}^{\times}-conjugacy.
Proof If v is inert in E, then (4.1) implies that $\operatorname{ord}_{v}(\mathfrak{m t}) \equiv \operatorname{ord}_{v}\left(\operatorname{disc}\left(B_{v}\right)\right)(\bmod 2)$ where $\operatorname{disc}\left(B_{v}\right)$ is the reduced discriminant of B_{v}. Thus the lemma follows from [10, Proposition 3.4].

If v is a place of F dividing \mathfrak{c}, then, in particular, $v \nmid \mathrm{Dm}$ and $B_{v} \cong M_{2}\left(F_{v}\right)$. Let W_{v} denote a two dimensional F_{v}-vector space on which B_{v} acts on the left. As W_{v} is free of rank one over E_{v}, we may choose $w_{0} \in W_{v}$ such that $W_{v}=E_{v} \cdot w_{0}$. For
each rank two $\mathcal{O}_{F, v}$-submodule $\Lambda_{v} \subset W_{v}$ set $\mathcal{O}\left(\Lambda_{v}\right)=\left\{b \in B_{v} \mid b \cdot \Lambda_{v} \subset \Lambda_{v}\right\}$, a maximal order of B_{v}. As $\mathfrak{s} \mid \mathfrak{c}$ by Hypothesis 1.1.1 we may consider the two lattices in $W_{v}: L_{v}^{\prime}=\mathcal{O}_{\mathfrak{c}, v} w_{0}$ and $L_{v}=\mathcal{O}_{\mathfrak{c s}^{-1}, v} w_{0}$.

Choose a global order $S \subset B$ such that $S_{v}=\mathcal{O}\left(L_{v}\right) \cap \mathcal{O}\left(L_{v}^{\prime}\right)$ for every place $v \mid \mathfrak{c}$ and such that for every finite place $v \nmid c, S_{v}$ has reduced discriminant \mathfrak{m}_{v} and contains $\mathcal{O}_{E, v}$ (which can be done by Lemma 4.1.1). The group \widehat{S}^{\times}acts on $\prod_{v \mid c} L_{v} / L_{v}^{\prime} \cong \mathcal{O}_{F} / \mathfrak{s}$ through a homomorphism $\vartheta: \widehat{S}^{\times} \rightarrow\left(\mathcal{O}_{F} / \mathfrak{s}\right)^{\times}$, and we define V to be the kernel of ϑ. One should regard $V \subset G\left(\mathbb{A}_{f}\right)$ as a quaternion analogue of the congruence subgroup $K_{0}(\mathfrak{m}) \cap K_{1}(\mathfrak{s})$. Define a CM-cycle of level V

$$
Q_{\chi}(g)= \begin{cases}\chi(t) & \text { if } g=t v \text { for some } t \in T\left(\mathbb{A}_{f}\right), v \in V \\ 0 & \text { otherwise }\end{cases}
$$

For this definition to make sense we need to know that χ is trivial on $T\left(\mathbb{A}_{f}\right) \cap V$. This is immediate from the following.
Lemma 4.1.2 We have $\widehat{\mathcal{O}}_{c}^{\times}=T\left(\mathbb{A}_{f}\right) \cap \widehat{S}^{\times}$, and $\chi_{0} \circ \vartheta$ and χ have the same restriction to $\widehat{\mathcal{O}}_{c}^{\times}$.

Proof For $v \nmid c$ a finite place of $F, \mathcal{O}_{\mathfrak{c}, v} \subset S_{v}$. As $\mathcal{O}_{\mathfrak{c}, v}$ is a maximal order in E_{v}, we must therefore have $\mathcal{O}_{\mathfrak{c}, v}=E_{v} \cap S_{v}$. For $v \mid \mathfrak{c}$ it follows from $\mathcal{O}=\left\{x \in E_{v} \mid x \mathcal{O} \subset \mathcal{O}\right\}$ for any order $\mathcal{O} \subset E_{v}$ that

$$
\mathcal{O}_{\mathfrak{c}, v}=\mathcal{O}_{\mathfrak{c}, v} \cap \mathcal{O}_{\mathfrak{c s}^{-1}, v}=E_{v} \cap \mathcal{O}\left(L_{v}\right) \cap \mathcal{O}\left(L_{v}^{\prime}\right)=E_{v} \cap S_{v},
$$

proving the first claim. To prove the second claim, if $v \nmid \mathfrak{s}$, then both ϑ_{v} and χ_{v} are trivial on $\mathcal{O}_{\substack{ \\\times}}^{\times}=\mathcal{O}_{F, v}^{\times}\left(1+\mathfrak{c} \mathcal{O}_{E, v}\right)^{\times}$. If $v \mid \mathfrak{s}$, then $\vartheta_{v}: \mathcal{O}_{\mathfrak{c}, v}^{\times} \rightarrow\left(\mathcal{O}_{F, v} / \mathfrak{s}_{v}\right)^{\times}$is given by $\vartheta_{v}(x(1+c y))=x$ for $x \in \mathcal{O}_{F, v}^{\times}, y \in \mathcal{O}_{E, v}$, and $c \in \mathcal{O}_{F, v}$ satisfying $c \mathcal{O}_{F, v}=\mathfrak{c}_{v}$. Thus

$$
\left(\chi_{0, v} \circ \vartheta\right)(x(1+c y))=\chi_{0, v}(x)=\chi_{v}(x)=\chi_{v}(x(1+c y))
$$

Lemma 4.1.3 For every finite place v there is an $\epsilon_{v} \in B_{v}$ satisfying
(i) $E_{v} \epsilon_{v}=B_{v}^{-}$,
(ii) $\operatorname{ord}_{v}\left(\mathrm{~N}\left(\epsilon_{v}\right)\right)=\operatorname{ord}_{v}(\mathrm{r})$,
(iii) if $v \nmid c$, then $\epsilon_{v} \in S_{v}$,
(iv) if $v \mid \mathfrak{c}$, then $\epsilon_{v} w_{0} \in \mathfrak{c} \mathcal{O}_{E, v} w_{0}$.

Proof First fix an ϵ_{v} which generates B_{v}^{-}as a left E_{v}-module. If v is split or ramified in E, then we may multiply ϵ_{v} on the left by an element of E_{v}^{\times}to ensure that (ii) holds. If v is inert in E, then it follows from the proof of Lemma 3.1.1 that $\omega_{v}\left(\mathrm{~N}\left(\epsilon_{v}\right)\right)$ is 1 if B_{v} is split and is -1 if B_{v} is ramified. Condition (4.1) then implies that $\omega_{v}\left(\mathrm{~N}\left(\epsilon_{v}\right)\right)=\omega_{v}(\mathrm{r})$, and so again we may multiply ϵ_{v} on the left by an element of E_{v}^{\times}so that (ii) holds. Assume now that $v \nmid c$ and define an order $R_{v}=\mathcal{O}_{E, v}+\mathcal{O}_{E, v} \epsilon_{v}$. An easy calculation shows that R_{v} has reduced discriminant $\mathrm{D}_{v} \mathrm{~m}_{v}$, and so may be enlarged to an order R_{v}^{\prime} of reduced discriminant \mathfrak{m}_{v}. By Lemma 4.1.1 $t R_{v}^{\prime} t^{-1}=S_{v}$ for some $t \in E_{v}^{\times}$. Replacing ϵ_{v} by $t \epsilon_{v} t^{-1}=t \bar{t}^{-1} \epsilon_{v}$ we find that (iii) holds. Now assume that $v \mid c$. As
W_{v} is free of rank one over E_{v} there is an $x \in E_{v}$ such that $\epsilon_{v} \cdot w_{0}=x \cdot w_{0}$, and it follows that $\mathrm{N}\left(\epsilon_{v}\right) w_{0}=-\epsilon_{v}^{2} w_{0}=-\mathrm{N}(x) w_{0}$. Therefore $\operatorname{ord}_{v}\left(\mathrm{c}^{2}\right)=\operatorname{ord}_{v}(\mathrm{~N}(x))$. If v is inert in E, then this implies $x \in \mathfrak{c} \mathcal{O}_{E, v}$ and hence (iv) holds. If v is split in E, then we need not have $x \in \mathfrak{c} \mathcal{O}_{E, v}$, but there is some $t \in E_{v}^{\times}$satisfying $\mathrm{N}(t)=1$ and $t x \in \mathfrak{c} \mathcal{O}_{E, v}$. Replacing ϵ_{v} by $t \epsilon_{v}$ we again find that (iv) holds.

Let $R \subset B$ be a global order such that $R_{v}=\mathcal{O}_{E, v}+\mathcal{O}_{E, v} \epsilon_{v}$ at every finite place v, with ϵ_{v} satisfying the properties of Lemma 4.1.3. There is a natural \mathcal{O}_{F}-algebra homomorphism $R \rightarrow \mathcal{O}_{E} / \mathfrak{c} \mathcal{O}_{E}$ defined by $b \mapsto b^{+}$(with notation as in $\S 3.1$), and the kernel of the induced homomorphism $\widehat{R}^{\times} \rightarrow\left(\mathcal{O}_{E} / \mathfrak{c} \mathcal{O}_{E}\right)^{\times}$will be denoted U. Define a CM-cycle of level U

$$
P_{\chi}(g)= \begin{cases}\chi(t) & \text { if } g=t u \text { for some } t \in T\left(\mathbb{A}_{f}\right), u \in U \\ 0 & \text { otherwise }\end{cases}
$$

so that $P_{\chi}=\prod_{v} P_{\chi, v}$ where the function $P_{\chi, v}$ on $G\left(F_{v}\right) / U_{v}$ agrees with that constructed in $\S 3.3$ and $\S 3.4$ (with $\mathfrak{e}=\mathfrak{r}=\mathrm{mc}^{2}$). The compact open subgroups and CM-cycles constructed above satisfy $U \subset V$ and

$$
\left[V_{T}: U_{T}\right] \cdot Q_{\chi}(g)=\sum_{h \in V / U} P_{\chi}(g h)
$$

For each ideal a prime to \mathfrak{c} we have, from $\S 3.3$ and $\S 3.4$, a CM-cycle of level U defined as the product $P_{\chi, \mathfrak{a}}(g)=\prod_{v \mid \mathfrak{a}} P_{\chi, \mathfrak{a}, v}\left(g_{v}\right) \prod_{v \nmid \mathfrak{a}} P_{\chi, v}\left(g_{v}\right)$. If \mathfrak{a} is prime to $\mathfrak{b r}$, then R_{v} is a maximal order for each $v \mid \mathfrak{a}$. and we define the Hecke operator $T_{\mathfrak{a}}$ on CM-cycles of level U

$$
\left(T_{\mathfrak{a}} P\right)(g)=\sum_{h \in H(\mathfrak{a}) / U} P(g h)
$$

where $H(\mathfrak{a})=\prod_{v \mid \mathfrak{a}} H\left(\mathfrak{a}_{v}\right) \cdot \prod_{v \nmid \mathfrak{a}} U_{v}$ and $H\left(\mathfrak{a}_{v}\right)$ was defined in $\S 3.3$ for $v \mid \mathfrak{a}$. One then has the relation $T_{\mathfrak{a}} P_{\chi}=P_{\chi, \mathfrak{a}}$.

For the remainder of $\S 4$ the letters U and V will be used exclusively for the compact open subgroups constructed above.

4.2 Toric Newvectors and the Jacquet-Langlands Correspondence

Let $\operatorname{Ram}(B)$ denote the set of places of F at which B is nonsplit and let π be a cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbb{A})$. If π_{v} is square-integrable for every $v \in \operatorname{Ram}(B)$, then there is a unique infinite dimensional automorphic representation π^{\prime} of $G(\mathbb{A})$ such that for every $v \notin \operatorname{Ram}(B), \pi_{v} \cong \pi_{v}^{\prime}$ as representations of $G\left(F_{v}\right) \cong \mathrm{GL}_{2}\left(F_{v}\right)$. We then say that π is the Jacquet-Langlands lift of π^{\prime}. There are many references for the Jacquet-Langlands correspondence including [6,7,16,17,20].

Lemma 4.2.1 With Π the automorphic representation fixed at the beginning of $\S 4$, if $v \in \operatorname{Ram}(B)$ is a nonarchimedean place, then either
(i) $\operatorname{ord}_{v}(\mathfrak{m})=1$ and Π_{v} is a twist of the Steinberg representation by an unramified character,
(ii) $\operatorname{or} \operatorname{ord}_{v}(\mathfrak{m})>1$ and Π_{v} is supercuspidal.

In particular Π_{v} is square integrable.
Proof If $v \in \operatorname{Ram}(B)$ is nonarchimedean, then (4.1) implies that $\operatorname{ord}_{v}(\mathfrak{m})=\operatorname{ord}_{v}(\mathfrak{n})$ is odd and Π_{v} has unramified central character. The lemma now follows from standard formulas for the conductor of irreducible admissible representations as in [26, (12.3.9.1)]

For the remainder of $\S 4.2$ we assume that Π is cuspidal and that either Π_{v} is a weight 2 discrete series at each archimedean v and B is totally definite, or that Π_{v} is a weight 0 principal series at each archimedean v and B is totally indefinite. In either case it follows from Lemma 4.2.1 that Π_{v} is square integrable for each $v \in \operatorname{Ram}(B)$ and so Π is the Jacquet-Langlands lift of some Π^{\prime}.

Definition 4.2.2 For any place v of F we define a newvector $\phi \in \Pi_{v}^{\prime}$ to be a nonzero vector such that

- if v is a nonarchimedean place, then ϕ is V_{v}-fixed;
- if v is an archimedean place and we are in the weight 0 case above, then ϕ is fixed by the action of $E_{v}^{\times} \cong \mathbb{R}^{\times} \cdot \mathrm{SO}_{2}(\mathbb{R})$;
- if v is an archimedean place and we are in weight 2 case, then we impose no condition on ϕ.
A newvector in $\Pi^{\prime} \cong \bigotimes_{v} \Pi_{v}^{\prime}$ is a product of local newvectors.
Lemma 4.2.3 Up to scaling there is a unique newvector in Π^{\prime}.
Proof It suffices to prove existence and uniqueness everywhere locally. If v is archimedean this is clear (in the weight 2 case Π_{v}^{\prime} is the one dimensional trivial representation of $G\left(F_{v}\right)$ by [17, Lemma 4.2(2)]), so assume that v is nonarchimedean. If B_{v} is split, then there is an isomorphism $B_{v} \cong M_{2}\left(F_{v}\right)$ which identifies $V_{v} \cong$ $K_{0}\left(\mathfrak{m}_{v}\right) \cap K_{1}\left(\mathfrak{s}_{v}\right)$, and so the claim follows from the theory of newvectors for $\mathrm{GL}_{2}\left(F_{v}\right)$ as in §2.1. If B_{v} is nonsplit, then (4.1) implies that $v \mid \mathfrak{m}$ and $v \nmid c$. As $V_{v}=S_{v}^{\times}$with S_{v} an order of B_{v} of discriminant \mathfrak{m}_{v} containing $\mathcal{O}_{E, v}$, the claim is a special case of [10, Proposition 6.4].

Definition 4.2.4 For any place v of F let E_{v}^{\times}act on Π_{v}^{\prime} via the embedding $T\left(F_{v}\right) \rightarrow G\left(F_{v}\right)$. We define a toric newvector $\phi \in \Pi_{v}^{\prime}$ to be a nonzero vector such that

- if $v \nmid \mathfrak{D r}$, then ϕ is a newvector;
- if $v \mid \mathcal{D}$, then ϕ is U_{v}-fixed and satisfies $t \cdot \phi=\bar{\chi}_{v}(t) \cdot \phi$ for every $t \in E_{v}^{\times}$;
- if $v \mid \mathfrak{r}$, then ϕ is U_{v}-fixed and satisfies $t \cdot \phi=\bar{\chi}_{v}(t) \cdot \phi$ for every $t \in \mathcal{O}_{E, v}^{\times}$.

A toric newvector in $\Pi^{\prime} \cong \otimes \Pi_{v}^{\prime}$ is a product of local toric newvectors.
Lemma 4.2.5 Up to scaling there is a unique toric newvector in Π^{\prime}.
Proof Again it suffices to prove the claim everywhere locally. If $v \nmid \mathfrak{D r}$, then the claim is a restatement of Lemma 4.2.3. If $v \mid \mathfrak{D}$, then χ_{v} has the form $\chi_{v}=\nu_{v} \circ \mathrm{~N}$ for some unramified character ν_{v} of F_{v}^{\times}. By a theorem of Waldspurger [34, Theorem 2.3.2]
the representation $\Pi_{v}^{\prime} \otimes \nu_{v}$ has a unique line of E_{v}^{\times}-fixed vectors, and by a theorem of Gross-Prasad [34, Theorem 2.3.3] this line is also fixed by the unit group of any maximal order of B_{v} containing $\mathcal{O}_{E, v}$. As R_{v} may be enlarged to such an order, the E_{v}^{\times}-fixed vectors in $\Pi_{v}^{\prime} \otimes \nu_{v}$ are also fixed by $U_{v}=R_{v}^{\times}$. It follows that Π_{v}^{\prime} has a unique line of U_{v}-fixed vectors on which E_{v}^{\times}acts through χ_{v}^{-1}.

If $v \mid \mathfrak{m}$, then $R_{v}=S_{v}\left(\right.$ as $R_{v} \subset S_{v}$ and both have reduced discriminant $\left.\mathfrak{m}_{v}\right)$, $U_{v}=V_{v}$, and a toric newvector is just a nonzero V_{v}-fixed vector; again the claim follows from Lemma 4.2.3. If $v \mid c$ but $v \nmid \mathfrak{s}$, then χ_{v} is trivial on $\mathcal{O}_{F, v}^{\times}$, and so we may find a character χ_{v}^{\prime} of E_{v}^{\times}which is trivial on F_{v}^{\times}but agrees with χ_{v} on $\mathcal{O}_{E, v}^{\times}$. By [34, Theorem 2.3.5] (Zhang's Γ is our $R_{v}^{\times}=\mathcal{O}_{E, v}^{\times} U_{v}$) there is a unique line of U_{v}-fixed vectors in Π_{v}^{\prime} on which $\mathcal{O}_{E, v}^{\times}$acts through $\bar{\chi}_{v}^{\prime}$, and thus a unique toric newvector in Π_{v}^{\prime}. If $v \mid \mathfrak{s}$, then $\Pi_{v}^{\prime} \cong \Pi_{v}$ is a principal series $\Pi_{v} \cong \Pi\left(\mu_{v}, \chi_{0, v}^{-1} \mu_{v}^{-1}\right)$ and $\chi_{v}=\nu_{v} \circ \mathrm{~N}$ for some character ν_{v} of F_{v}^{\times}of conductor \mathfrak{c} (both claims by Hypothesis 1.1.1). It follows that $\Pi_{v}^{\prime} \otimes \nu_{v}$ has trivial central character and conductor c_{v}^{2}. As R_{v} has reduced discriminant c_{v}^{2} and contains $\mathcal{O}_{E, v}$ there is a unique line of R_{v}^{\times}-fixed vectors in $\Pi_{v}^{\prime} \otimes \nu_{v}$ by [34, Theorem 2.3.3]. As $R_{v}^{\times}=\mathcal{O}_{E, v}^{\times} \cdot U_{v}$ we find that $\Pi_{v}^{\prime} \otimes \nu_{v}$ has a unique line of U_{v}-fixed vectors on which $\mathcal{O}_{E, v}^{\times}$acts through the trivial character, and the claim now follows from the observation that $\mathrm{N}\left(U_{v}\right) \subset 1+\mathfrak{c}_{v} \subset \operatorname{ker}\left(\nu_{v}\right)$.

4.3 Central Values for Holomorphic Forms

In addition to Hypothesis 1.1.1, we assume that Π_{v} is a discrete series of weight 2 for every archimedean place v, and that $\epsilon(1 / 2, r)=1$. Let B be the (unique up to isomorphism) totally definite quaternion algebra over F satisfying (4.1) for all finite places of F. Taking m to be the constant function 1 on $G(F)$, let $k_{U}(x, y)$ be the function on $C_{U} \times C_{U}$ defined by (3.2) and let $\langle P, Q\rangle_{U}$ be the associated height pairing on CM-cycles of level U defined by (3.4). According to [31, §7.2], the sum defining $k_{U}(x, y)$ is actually finite. Recall that we have set $\mathfrak{r}=\mathfrak{m c}^{2}$ and abbreviate $\Theta_{\mathfrak{r}}=\Theta_{\mathfrak{r}, 1 / 2}$.

Proposition 4.3.1 Fix $a \in \mathbb{A}^{\times}$and assume that $\mathfrak{a}=a \mathcal{O}_{F}$ is prime to c. Then

$$
H_{F} / \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot B\left(-a ; \Theta_{\mathrm{r}}\right)=2^{[F: \mathbb{Q}]}|d|^{1 / 2}|a|\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U} \cdot e_{\infty}(a)
$$

where, as in $\S 3.2, H_{F}$ is the class number of F and $\lambda_{U}=\left[\mathcal{O}_{F}^{\times}: \mathcal{O}_{F}^{\times} \cap U\right]$.
Proof Suppose $\gamma \in G(F)$ is nondegenerate and let η and ξ be defined by (3.1). Then Corollaries 3.3.4 and 3.4.3 show that

$$
\left[\mathcal{O}_{E, v}^{\times}: \mathcal{O}_{F, v}^{\times} U_{T, v}\right] \cdot B_{v}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}\right)=\tau_{v}(\gamma) \cdot|a|_{v}|d|_{v}^{1 / 2} \cdot O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)
$$

for every finite place v of F. By (3.6)

$$
\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U}^{\gamma}=\left[Z\left(\mathbb{A}_{f}\right): Z(F) U_{Z}\right] \cdot \prod_{\nvdash \infty} O_{U}^{\gamma}\left(P_{\chi, \mathfrak{a}, v}\right)
$$

By the final claims of Proposition 2.4.2 and Lemma 3.1.2, for v an archimedean place

$$
B_{v}\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)=2 \tau_{v}(\gamma)|a|_{v} e_{v}(-a) .
$$

Combining these equalities gives

$$
H_{F} / \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot B\left(a, \eta, \xi ; \Theta_{\mathrm{r}, 1 / 2}\right)=2^{[F: \mathbb{Q}]}|d|^{1 / 2}|a|\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U}^{\gamma} \cdot e_{\infty}(-a)
$$

By Lemma 2.4.1, given $\eta, \xi \in F^{\times}$with $\eta+\xi=1$, we have $B\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)=0$ unless $\omega_{v}(-\eta \xi)=\epsilon_{v}(1 / 2, \mathrm{r}, \psi)$ for every place v of F. Combining (4.1) with Lemma 3.1.1, we find that $B\left(a, \eta, \xi ; \Theta_{\mathrm{r}}\right)=0$ unless the pair η, ξ is of the form (3.1) for some $\gamma \in G(F)$. Therefore,

$$
\begin{align*}
H_{F} / \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot & \sum_{\substack{\eta, \xi \in F^{\times} \\
\eta+\xi=1}} B\left(-a, \eta, \xi ; \Theta_{\mathrm{r}}\right) \tag{4.2}\\
& =2^{[F: \mathbb{Q}]}|d|^{1 / 2}|a| \sum_{\substack{\gamma \in T(F) \backslash G(F) / T(F) \\
\gamma \text { nondegenerate }}}\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U}^{\gamma} \cdot e_{\infty}(a) .
\end{align*}
$$

It remains to compare the linking numbers at the two degenerate choices of γ (i.e., $\gamma \in B^{ \pm}$) with the degenerate terms $A_{0}\left(a ; \Theta_{\mathrm{r}}\right)$ and $A_{1}\left(a ; \Theta_{\mathrm{r}}\right)$ of (2.7). First suppose $\gamma=\epsilon^{\circ}$ where ϵ° satisfies $B^{-}=E \epsilon^{\circ}$, so that $(\eta, \xi)=(0,1)$. Let $z \in \mathbb{A}_{E}^{\times}$be such that $\epsilon_{v}^{\circ}=z_{v} \epsilon_{v}$ for every finite place v. If $\chi \neq \chi^{*}$, then both $A_{1}\left(a ; \Theta_{r}\right)$ and $\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U}^{\gamma}$ vanish, by Lemmas 2.3.3 and 3.2.1, respectively. We therefore assume that $\chi=\chi^{*}$. If χ is ramified, then $B_{v}\left(a ; E_{\mathrm{r}, s}\right)=0$ for any $v \mid \mathfrak{c}$ by Proposition 2.2.1 and the inequality $\operatorname{ord}_{v}\left(\mathfrak{a r}^{-1}\right)=-\operatorname{ord}_{v}(\mathfrak{r})<0$. Abbreviating $\alpha=\left(\begin{array}{cc}a \delta^{-1} & 0 \\ 0 & 1\end{array}\right)$, it follows that $W_{\mathrm{r}, s}\left(\alpha h_{T}\right)=0$ for any $T \subset S$ and so $A_{1}\left(a ; \Theta_{\mathrm{r}}\right)=0$. Similarly if χ is ramified then $P_{\chi, \mathfrak{a}}\left(\epsilon^{\circ}\right)=0$ by Lemma 3.4.4, and so also $\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U, \gamma}=0$ by Lemma 3.2.1. We therefore assume that χ is unramified. By (2.2), Proposition 2.2.3, and Lemma 2.3.4, $C_{\theta}\left(\alpha h_{T}\right)=0$ unless $T=\varnothing$ or S, and so

$$
\begin{aligned}
A_{1}\left(a ; \Theta_{\mathrm{r}}\right) & =\sum_{T \subset S} \bar{\chi}_{T}(\mathfrak{D}) C_{\theta}\left(\alpha h_{T}\right) W_{\mathrm{r}, 1 / 2}\left(\alpha h_{T}\right) \\
& =B\left(a ; E_{\mathrm{r}, 1 / 2}\right) C_{\theta}(\alpha)+\bar{\chi}(\mathfrak{D}) B\left(a ; h_{S} E_{\mathrm{r}, 1 / 2}\right) C_{\theta}\left(\alpha h_{S}\right) \\
& =2 \cdot B\left(a ; E_{\mathrm{r}, 1 / 2}\right) C_{\theta}(\alpha)
\end{aligned}
$$

where we have used Propositions 2.2.2 and 2.3.2 for the third equality. Again using Proposition 2.2.3 and Lemma 2.3.4, we find

$$
\begin{gathered}
C_{\theta}(\alpha)=(-1)^{[F: \mathbb{Q}]} \nu\left(a \delta^{-1}\right)\left|a d^{-1} \delta^{-1}\right|^{1 / 2} L^{*}(1, \omega) \\
B\left(a ; E_{\mathrm{r}, 1 / 2}\right)=|r|^{1 / 2} B\left(a r^{-1} ; E_{\mathcal{O}_{F}, 1 / 2}\right)=(-1)^{[F: \mathbb{Q}]}|d r|^{1 / 2} \bar{\nu}\left(a r^{-1} \delta^{-1}\right) B\left(a r^{-1} ; \theta\right)
\end{gathered}
$$

where $r \mathcal{O}_{F}=\mathfrak{r}$ for $r \in \mathbb{A}^{\times}$with $r_{v}=1$ at each archimedean v. Therefore,

$$
A_{1}\left(a ; \Theta_{\mathrm{r}}\right)=2 \nu(\mathfrak{r})\left|a r \delta^{-1}\right|^{1 / 2} B\left(a r^{-1} ; \theta\right) L(1, \omega)
$$

On the other hand, using Corollary 3.3.8, Lemma 3.4.4, and

$$
\chi(r z)=\nu(r)^{2} \nu(\mathrm{~N}(z))=\nu(r)^{2} \nu\left(\mathrm{~N}\left(\epsilon^{\circ}\right)^{-1}\right)=\nu(r)
$$

we find $P_{\chi, \mathfrak{a}}\left(\epsilon^{\circ}\right) \cdot e_{\infty}(-a)=\nu(\mathfrak{r})|r|^{1 / 2}|a|^{-1 / 2} B\left(a r^{-1} ; \theta\right)$, and now (2.2), (2.3), and Lemma 3.2.1 imply that (for $\gamma=\epsilon^{\circ}$)

$$
\begin{equation*}
H_{F} \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot A_{1}\left(-a ; \Theta_{\mathrm{r}}\right)=2^{[F: \mathbb{O}]}|d|^{1 / 2}|a|\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U}^{\gamma} \cdot e_{\infty}(a) \tag{4.3}
\end{equation*}
$$

A similar, but easier, argument also shows that (4.3) continues to hold if $\gamma=1$ and A_{1} is replaced by A_{0}. The theorem follows from this together with equation (4.2), equation (3.5), and the decomposition (2.7).

We now construct a pairing $[P, Q]$ on CM-cycles of level U taking values in the space of automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$ as in [34, (4.4.5)]. Endow the (finite) set $S_{U}=G(F) \backslash G\left(\mathbb{A}_{f}\right) / U$ with the measure determined by

$$
\int_{S_{U}} \sum_{\gamma \in T(F) \backslash G(F)} P(\gamma g) d g=\int_{C_{U}} P(g) d g
$$

for any CM-cycle P of level U. For each a prime to $\mathfrak{D r}$ there is a Hecke operator $\left(T_{\mathfrak{a}} \phi\right)(g)=\sum \phi(g h)$ on $L^{2}\left(S_{U}\right)$ where the sum is over $h \in H(\mathfrak{a}) / U$ as in $\S 4.1$. For any $\phi \in L^{2}\left(S_{U}\right)$ we have

$$
\int_{S_{U}} k_{U}(x, y) \phi(y) d y=\phi(x)
$$

and it follows that that there is a decomposition $k_{U}(x, y)=\sum_{i=1}^{\ell} f_{i}^{\prime}(x) \overline{f_{i}^{\prime}(y)}$ where $\left\{f_{1}^{\prime}, \ldots, f_{\ell}^{\prime}\right\}$ is any orthonormal basis for $L^{2}\left(S_{U}\right)$. We choose this basis in such a way that each f_{i}^{\prime} is a simultaneous eigenvector for every $T_{\mathfrak{a}}$ with $(\mathfrak{a}, \mathfrak{b r})=1$. The JacquetLanglands correspondence implies that for each f_{i}^{\prime} there is a (not necessarily unique) holomorphic automorphic form f_{i} of weight 2 on $\mathrm{GL}_{2}(\mathbb{A})$ fixed by $K_{1}(\mathfrak{b r})$ having the same Hecke eigenvalues as f_{i}^{\prime}. Indeed, if f_{i}^{\prime} generates an infinite dimensional representation π^{\prime} of $G(\mathbb{A})$, then take f_{i} to be a newvector in the Jacquet-Langlands lift of π^{\prime}. If f_{i}^{\prime} generates a finite dimensional representation of $G(\mathbb{A})$, then $f_{i}^{\prime}(g)=$ $\mu(\mathrm{N}(g))$ with μ some character of $\mathbb{A}^{\times} / F^{\times}$, and one takes f_{i} to be an Eisenstein series constructed from a function in the induced representation $\mathcal{B}\left(\mu|\cdot|^{1 / 2}, \mu|\cdot|^{-1 / 2}\right)$. We may assume that $\widehat{B}\left(\mathcal{O}_{F}, f_{i}\right)=1$ for every i. For any CM-cycles P and Q of level U we define a parallel weight 2 , holomorphic, $K_{1}(\mathfrak{D r})$-fixed automorphic form on $\mathrm{GL}_{2}(\mathbb{A})$

$$
[P, Q]=\sum_{i=1}^{\ell}\left(\int_{C_{U} \times C_{U}} P(x) f_{i}^{\prime}(x) \overline{f_{i}^{\prime}(y) Q(y)} d x d y\right) f_{i}
$$

This form satisfies $\widehat{B}\left(\mathcal{O}_{F},[P, Q]\right)=\langle P, Q\rangle_{U}$ and, for any ideal a relatively prime to $\mathfrak{d r}$, $T_{\mathfrak{a}} \cdot[P, Q]=\left[P, T_{\mathfrak{a}} Q\right]$. Set $\Psi=\left[P_{\chi}, P_{\chi}\right]$, an automorphic form of central character χ_{0}^{-1} satisfying

$$
\begin{equation*}
\widehat{B}\left(\mathcal{O}_{F} ; T_{\mathfrak{a}} \Psi\right)=\left\langle P_{\chi}, P_{\chi, \mathfrak{a}}\right\rangle_{U} \tag{4.4}
\end{equation*}
$$

Let Π^{\prime} be the automorphic representation of $G(\mathbb{A})$ whose Jacquet-Langlands lift is Π, let $\phi_{\Pi^{\prime}}^{\chi}$ be the toric newvector in Π^{\prime} normalized by $\int_{S_{U}}\left|\phi_{\Pi^{\prime}}^{\chi}\right|^{2}=1$ and let $\left.\Psi\right|_{\Pi}$
denote the projection of Ψ to Π. We may choose the basis $\left\{f_{i}^{\prime}\right\}$ so that $\phi_{\Pi^{\prime}}^{\chi}=f_{1}^{\prime}$. If we set $\mathcal{P}_{\chi}(g)=\sum_{\gamma} P_{\chi}(\gamma g)$ where the sum is over $\gamma \in T(F) \backslash G(F)$, then

$$
\widehat{B}\left(\mathcal{O}_{F} ;\left.\Psi\right|_{\Pi}\right)=\sum_{\substack{1 \leq i \leq \ell \\ \pi_{i}=\pi_{1}}}\left|\int_{S_{U}} \mathcal{P}_{\chi}(t) f_{i}^{\prime}(t) d t\right|^{2}
$$

The projection of $\overline{\mathcal{P}}_{\chi}$ to π_{1}^{\prime} is a toric newvector, hence a scalar multiple of f_{1}^{\prime}, and so only the term $i=1$ contributes to the sum. It follows that

$$
\begin{equation*}
\widehat{B}\left(\mathcal{O}_{F} ;\left.\Psi\right|_{\Pi}\right)=\left|\int_{C_{U}} P_{\chi}(t) \phi_{\Pi^{\prime}}^{\chi}(t) d t\right|^{2} \tag{4.5}
\end{equation*}
$$

Proposition 4.3.2 Let $\phi_{\Pi}^{\#}$ be the orthogonal projection of the normalized newform $\phi_{\Pi} \in \Pi$ to the quasi-new line (defined in §2.8). Then

$$
\begin{aligned}
2^{|S|} H_{F} \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) & L\left(1 / 2, \Pi \times \Pi_{\chi}\right) \\
& =|d|^{1 / 2} 2^{[F: \mathbb{Q}]}\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\mathfrak{\partial r})}^{2} \cdot\left|\int_{C_{U}} P_{\chi}(t) \phi_{\Pi^{\prime}}^{\chi}(t) d t\right|^{2}
\end{aligned}
$$

in which S is the set of prime divisors of D .
Proof Let $\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}$ and $\left.\Psi\right|_{\Pi}$ denote the projections of $\bar{\Theta}_{\mathrm{r}}$ and Ψ to Π. Combining Proposition 4.3.1 and (4.4) gives

$$
H_{F} \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot \widehat{B}\left(\mathcal{O}_{F} ; T_{\mathfrak{a}} \bar{\Theta}_{\mathfrak{r}}\right)=2^{[F: \mathbb{O}]}|d|^{1 / 2} \widehat{B}\left(\mathcal{O}_{F}, T_{\mathfrak{a}} \Psi\right)
$$

for all \mathfrak{a} prime to $\mathfrak{b r}$. The action of the operators $T_{\mathfrak{a}}$ with $(\mathfrak{a}, \mathfrak{D r})=1$ on the space of all K_{1} (Dr)-fixed, holomorphic, parallel weight two automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$ of central character χ_{0}^{-1} generates a semi-simple $(\mathbb{C}$-algebra, and it follows from this and strong multiplicity one that there is a polynomial e_{Π} in the Hecke operators $T_{\mathfrak{a}}$ such that $\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}=e_{\Pi} \cdot \bar{\Theta}_{\mathrm{r}}$ and $\left.\Psi\right|_{\Pi}=e_{\Pi} \cdot \Psi$. We therefore deduce that

$$
\begin{equation*}
H_{F} \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot \widehat{B}\left(\mathcal{O}_{F} ;\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}\right)=2^{[F: \mathbb{Q}]}|d|^{1 / 2} \widehat{B}\left(\mathcal{O}_{F} ;\left.\Psi\right|_{\Pi}\right) \tag{4.6}
\end{equation*}
$$

Under the decomposition $\Pi \cong \bigotimes_{v} \Pi_{v}$ the newform ϕ_{Π} is decomposable as a pure tensor $\phi_{\Pi}=\bigotimes_{v} \phi_{\Pi, v}$. In the notation of $\S 2.8 \Lambda_{v}\left(\phi_{\Pi, v}\right) \neq 0$ for $v \mid \mathfrak{D c}$, and so $\phi_{\Pi, v}$ has nontrivial projection to the quasi-new line in Π_{v}. It follows that $\phi_{\Pi}^{\#} \neq 0$. The form $\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}$ lies on the quasi-new line of Π by Proposition 2.8.2, and so if $\widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right)=0$, then also $\widehat{B}\left(\mathcal{O}_{F} ;\left.\bar{\Theta}_{r}\right|_{\Pi}\right)=0$. Using (4.5) and (4.6), we then see that both sides of the stated equality are 0 . Therefore, we may assume $\widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) \neq 0$ so that

$$
\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}=\frac{\widehat{B}\left(\mathcal{O}_{F} ;\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}\right)}{\widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right)} \cdot \phi_{\Pi}^{\#} .
$$

Combining this with (2.8) (with $b=1$) gives

$$
\begin{aligned}
\widehat{B}\left(\mathcal{O}_{F} ;\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}\right) \cdot\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\mathrm{\partial r})}^{2} & =\widehat{B}\left(\mathcal{O}_{F} ;\left.\bar{\Theta}_{\mathrm{r}}\right|_{\Pi}\right) \cdot\left\langle\phi_{\Pi}, \phi_{\Pi}^{\#}\right\rangle_{K_{0}(\mathrm{\partial r})} \\
& =\widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) \cdot\left\langle\phi_{\Pi}, \bar{\Theta}_{\mathrm{r}}\right\rangle_{K_{0}(\mathrm{\partial r})} \\
& =2^{|S|} \widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) L\left(1 / 2, \Pi \times \Pi_{\chi}\right) .
\end{aligned}
$$

The claim now follows from (4.5) and (4.6).
Theorem 4.3.3 Let $\phi_{\Pi} \in \Pi$ be the normalized newvector (in the sense of §2.1) and let $\phi_{\Pi^{\prime}} \in \Pi^{\prime}$ be the newvector (in the sense of Definition 4.2.2) normalized by $\int_{S_{V}}\left|\phi_{\Pi^{\prime}}\right|^{2}=1$. Then

$$
\frac{L\left(1 / 2, \Pi \times \Pi_{\chi}\right)}{\left\|\phi_{\Pi}\right\|_{K_{0}(\mathfrak{n})}^{2}}=\frac{2^{[F: \mathbb{Q}]}}{H_{F, \mathfrak{s}} \sqrt{\mathrm{~N}_{F / \mathbb{Q}}\left(\mathfrak{D c}^{2}\right)}} \cdot\left|\int_{C_{V}} Q_{\chi}(t) \phi_{\Pi^{\prime}}(t) d t\right|^{2}
$$

where $H_{F, \mathfrak{s}}=\left[Z\left(\mathbb{A}_{f}\right): F^{\times} V_{Z}\right]$ is the order of the ray class group of conductor \mathfrak{s}.
Proof The proof is postponed until $\S 4.6$.

4.4 Central Values for Maass Forms

In addition to Hypothesis 1.1 .1 we assume that Π_{v} is a weight zero principal series for every archimedean place v, and that $\epsilon(1 / 2, r)=(-1)^{[F: \mathbb{Q}]}$. Thus the weight 0 kernel of $\S 2.7$ satisfies $\Theta_{\mathrm{r}, s}^{*}=\Theta_{\mathrm{r}, 1-s}^{*}$. Let B be the (unique up to isomorphism) totally indefinite quaternion algebra over F satisfying (4.1) for every finite place v. Let $\mathbb{S}=\operatorname{Res}_{\mathbb{C} / \mathbb{R}}\left(G_{m}\right.$ and set $F_{\infty}=F \otimes_{\mathbb{Q}} \mathbb{R}$. As F_{∞} is naturally an \mathbb{R}-algebra,

$$
T_{/ F_{\infty}}=T \times_{\operatorname{Spec}(F)} \operatorname{Spec}\left(F_{\infty}\right) \quad \text { and } \quad G_{/ F_{\infty}}=G \times_{\operatorname{Spec}(F)} \operatorname{Spec}\left(F_{\infty}\right)
$$

are naturally algebraic groups over \mathbb{R}. Fixing an embedding of real algebraic groups $\mathbb{S} \rightarrow T_{/ F_{\infty}}$, the embedding $T \rightarrow G$ determines an embedding $x_{0}: \mathbb{S} \rightarrow G_{/ F_{\infty}}$, and we let X denote the $G\left(F_{\infty}\right)$-conjugacy class of x_{0}. As $T\left(F_{\infty}\right)$ is the stabilizer of x_{0} we may identify $X \cong G\left(F_{\infty}\right) / T\left(F_{\infty}\right)$. Writing $\mathcal{H}=\mathbb{C}-\mathbb{R}$ and choosing an isomorphism $G\left(F_{\infty}\right) \cong \mathrm{GL}_{2}(\mathbb{R})^{[F: \mathbb{Q}]}$, we may fix a point in $\mathcal{H}^{[F: \mathbb{Q}]}$ whose stabilizer under the action of $G\left(F_{\infty}\right)$ is $T\left(F_{\infty}\right)$. This allows us to identify $X \cong \mathcal{H}^{[F: \mathbb{Q}]}$. Endowing \mathcal{H} with the usual hyperbolic volume form $y^{-2} d x d y$, we obtain a measure on X. Define

$$
S_{U}=G(F) \backslash X \times G\left(\mathbb{A}_{f}\right) / U
$$

endowed with the quotient measure induced from that on $G\left(\mathbb{A}_{f}\right) / U$ giving each coset volume 1. The map $G\left(\mathbb{A}_{f}\right) \rightarrow X \times G\left(\mathbb{A}_{f}\right)$ defined by $g \mapsto\left(x_{0}, g\right)$ restricts to a function on $T\left(\mathbb{A}_{f}\right)$ and determines an embedding $C_{U} \rightarrow S_{U}$.

If ϕ is a weight 0 Maass form on $\mathrm{GL}_{2}(\mathbb{A})$ with parameter t_{v} in the sense of $[36, \S 4]$ at an archimedean place v, we then set

$$
B_{v}(a ; \phi)=|a|_{v}^{1 / 2} \int_{0}^{\infty} e^{-\pi|a|_{v}\left(y+y^{-1}\right)} y^{i t_{v}} d^{\times} y
$$

Define $B_{\infty}(a ; \phi)=\prod_{v \mid \infty} B_{v}(a ; \phi)$ and define $\widehat{B}(\mathfrak{a} ; \phi)$ for $\mathfrak{a}=a \mathcal{O}_{F}$ by

$$
B(a ; \phi)=B_{\infty}(a ; \phi) \cdot \widehat{B}(\mathfrak{a} ; \phi)
$$

Let Π^{\prime} be the automorphic representation of $G(\mathbb{A})$ whose Jacquet-Langlands lift is Π, and let $\phi_{\Pi^{\prime}}^{\chi}$, be the toric newvector in Π^{\prime} normalized by $\int_{S_{U}}\left|\phi_{\Pi^{\prime}}^{\chi}\right|=1$

Proposition 4.4.1 Let $\phi_{\Pi}^{\#}$ be the orthogonal projection of the normalized newform $\phi_{\Pi} \in \Pi$ to the quasi-new line in Π. Then

$$
\begin{aligned}
2^{|S|} H_{F} \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) & L\left(1 / 2, \Pi \times \Pi_{\chi}\right) \\
& =|d|^{1 / 2} 4^{[F: \mathbb{O}]}\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\partial r)}^{2} \cdot\left|\int_{C_{U}} P_{\chi}(t) \phi_{\Pi^{\prime}}^{\chi}(t) d t\right|^{2}
\end{aligned}
$$

in which S is the set of prime divisors of D .
Proof Fix $a \in \mathbb{A}^{\times}$and assume that $\mathfrak{a}=a \Theta_{F}$ is prime to \mathfrak{c}. We abbreviate $\Theta_{\mathfrak{r}}^{*}=$ $\Theta_{r, 1 / 2}^{*}$. Suppose v is an infinite place of F. For each $a \in \mathbb{A}^{\times}, \gamma \in G\left(F_{v}\right)$, and η, ξ as in (3.1) define the multiplicity function

$$
m_{v}^{*}(a, \gamma)= \begin{cases}4 e^{2 \pi a_{v}(\xi-\eta)} & \text { if } \xi a_{v} \leq 0 \text { and } \eta a_{v} \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

If $\gamma \in G\left(F_{\infty}\right)$ set $m_{\infty}^{*}(a, \gamma)=\prod_{v \mid \infty} m_{v}^{*}\left(a, \gamma_{v}\right)$. Exactly as in Proposition 4.3.1, using the formulas of $\S 2.7$ to supplement those of $\S 2.4$, we find

$$
\begin{equation*}
\frac{H_{F}}{\lambda_{U}}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \cdot B\left(a ; \Theta_{\mathfrak{r}}^{*}\right)=|d|^{1 / 2}|a| \sum_{\gamma \in T(F) \backslash G(F) / T(F)}\left\langle P_{\chi, \mathfrak{a}}, P_{\chi}\right\rangle_{U}^{\gamma} \cdot m_{\infty}^{*}(a ; \gamma) \tag{4.7}
\end{equation*}
$$

The remainder of the proof is similar to that of Proposition 4.3.2; see [34, §4.4] for details. Briefly, for any Maass form ϕ on S_{U} the kernel

$$
k_{U}(a ; x, y)=\sum_{\gamma \in G(F) /(Z(F) \cap U)} \mathbf{1}_{U}\left(x_{f}^{-1} \gamma y_{f}\right) m_{\infty}^{*}\left(a ; x_{\infty}^{-1} \gamma y_{\infty}\right)
$$

satisfies

$$
\int_{S_{U}} k_{U}(a ; x, y) \phi(y) d y=\int_{X} m_{\infty}^{*}\left(a ; y_{\infty}\right) \phi\left(x y_{\infty}\right) d y_{\infty}=4^{[F: \mathbb{Q}]} B_{\infty}(a ; \phi) \cdot \phi(x)
$$

Exactly as in [34, Lemma 4.4.3] or [36, §16] this leads to a spectral decomposition of the kernel $k_{U}(a ; x, y)$, and the proposition follows from (4.7), which is our analogue of $[36,(16.1)]$, exactly as in $[36, \S 16]$.

Theorem 4.4.2 Let $\phi_{\Pi} \in \Pi$ be the normalized newvector (in the sense of $\S 2.1$) and let $\phi_{\Pi^{\prime}} \in \Pi^{\prime}$ be the newvector (in the sense of Definition 4.2.2) normalized by $\int_{S_{V}}\left|\phi_{\Pi^{\prime}}\right|^{2}=1$. Then

$$
\frac{L\left(1 / 2, \Pi \times \Pi_{\chi}\right)}{\left\|\phi_{\Pi}\right\|_{K_{0}(\mathfrak{n})}^{2}}=\frac{4^{[F: \mathbb{Q}]}}{H_{F, \mathfrak{s}} \sqrt{\mathrm{~N}_{F / \mathbb{Q}(}\left(\mathrm{DC}^{2}\right)}}\left|\int_{C_{V}} Q_{\chi}(t) \phi_{\Pi^{\prime}}(t) d t\right|^{2}
$$

where $H_{F, \mathfrak{s}}$ is the order of the ray class group of F of conductor \mathfrak{s}.
Proof The proof is postponed until $\S 4.6$.

4.5 A Particular Family of Maass Forms

Fix a $\tau \in \mathbb{C}$, and if χ_{0} is trivial, assume that $\tau \neq 0$, 1 . Let Π_{τ} denote the (irreducible) weight zero principal series representation $\Pi_{\tau}=\Pi\left(|\cdot|^{\tau-1 / 2}, \chi_{0}^{-1}|\cdot|^{1 / 2-\tau}\right)$ of $\mathrm{GL}_{2}(\mathbb{A})$ of conductor \mathfrak{s} and central character χ_{0}^{-1}. We construct an Eisenstein series $\mathcal{E}_{\tau} \in \Pi_{\tau}$ as follows. Define a Schwartz function $\Omega=\prod_{v} \Omega_{v}$ on $\mathbb{A} \times \mathbb{A}$ by

$$
\Omega_{v}(x, y)= \begin{cases}\mathbf{1}_{\mathcal{O}_{F, v}}(x) \mathbf{1}_{\mathcal{O}_{F, v}}(y) & \text { if } v \nmid \mathfrak{s} \infty \\ \chi_{0, v}^{-1}(y) \mathbf{1}_{\mathfrak{S}_{v}}(x) \mathbf{1}_{\mathcal{O}_{F, v}}^{\times}(y) & \text { if } v \mid \mathfrak{s} \\ e^{-\pi\left(x^{2}+y^{2}\right)} & \text { if } v \mid \infty\end{cases}
$$

The function $\mathscr{F}_{\tau}(g)=|\operatorname{det}(g)|^{\tau} \int_{\mathbb{A}^{\times}} \Omega([0, x] \cdot g)|x|^{2 \tau} \chi_{0}(x) d^{\times} x$ is a newvector in the induced representation $\mathcal{B}\left(|\cdot|^{\tau-1 / 2}, \chi_{0}^{-1}|\cdot|^{1 / 2-\tau}\right)$ defined in [34, §2.2] and therefore the Eisenstein series (initially defined for $\operatorname{Re}(\tau) \gg 0$ and continued analytically)

$$
\mathcal{E}_{\tau}(g)=\sum_{\gamma \in B(F) \backslash \mathrm{GL}_{2}(F)} \mathcal{F}_{\tau}(\gamma g)
$$

is a newvector in Π_{τ}. The discrepancy between \mathcal{E}_{τ} and the normalized newvector is determined by the following.

Lemma 4.5.1

$$
\int_{\mathbb{A} \times} B\left(a ; \mathcal{E}_{\tau}\right) \cdot|a|^{s-1 / 2} d^{\times} a=\frac{|\delta|^{\tau-1 / 2} \epsilon\left(1 / 2, \chi_{0}\right)}{\mathrm{N}_{F / \mathbb{Q}}(\mathfrak{s})^{2 \tau-1 / 2}} L\left(s, \Pi_{\tau}\right) .
$$

Proof As in §2.2, using

$$
B\left(a ; \mathcal{E}_{\tau}\right)=\int_{\mathbb{A}} \mathcal{F}_{\tau}\left(\begin{array}{ll}
& 1 \\
-a \delta^{-1} & y
\end{array}\right) \psi(-y) d y
$$

we see that $B\left(a ; \mathcal{E}_{\tau}\right)=\prod_{v} B_{v}\left(a ; \mathcal{E}_{\tau}\right)$ where

$$
B_{v}\left(a ; \mathcal{E}_{\tau}\right)=|\delta|_{v}^{\tau-1 / 2}|a|_{v}^{\tau} \chi_{0, v}(\delta) \int_{F_{v}} \psi_{v}^{0}(y) \int_{F_{v}^{\times}} \Omega_{v}(a x, x y)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x d y
$$

If $v \nmid s \infty$, then a short calculation shows

$$
\int_{F_{v}} \psi_{v}^{0}(y) \int_{F_{v}^{\times}} \Omega_{v}(a x, x y)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x d y=|\delta|_{v}^{1 / 2} \sum_{k=0}^{\operatorname{ord}_{v}(a)}\left|\varpi^{k}\right|_{v}^{1-2 \tau} \chi_{0, v}^{-1}\left(\varpi^{k}\right)
$$

from which we deduce

$$
\int_{F_{v}^{\times}} B_{v}\left(a ; \mathcal{E}_{\tau}\right) \cdot|a|_{v}^{s-1 / 2} d^{\times} a=\chi_{0, v}(\delta)|\delta|_{v}^{\tau-1 / 2} L_{v}\left(s, \bar{\chi}_{0}|\cdot|^{1 / 2-\tau}\right) L_{v}\left(s,|\cdot|_{v}^{\tau-1 / 2}\right) .
$$

If $v \mid \mathfrak{s}$, then choose $\sigma \in F_{v}^{\times}$with $\sigma \mathcal{O}_{F, v}=\mathfrak{s}_{v}$. We have

$$
\begin{aligned}
\int_{F_{v}} \psi_{v}^{0}(y) & \int_{F_{v}^{\times}} \Omega_{v}(a x, x y)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x d y \\
& =\int_{F_{v}^{\times}}\left[\int_{F_{v}} \psi_{v}^{0}(y)(y x) \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}(y x) d y\right] \mathbf{1}_{\mathfrak{S}_{v}}(a x)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x \\
& =|\delta \sigma|_{v}^{1 / 2} \epsilon_{v}\left(\chi_{0}, \psi_{v}^{0}\right) \int_{F_{v}^{\times}} \mathbf{1}_{\mathcal{O}_{F, v}^{\times}}\left(\sigma x^{-1}\right) \mathbf{1}_{\mathfrak{S}_{v}}(a x)|x|_{v}^{2 \tau-1} d^{\times} x \\
& =|\delta|_{v}^{1 / 2}|\sigma|_{v}^{2 \tau-1 / 2} \epsilon_{v}\left(\chi_{0}, \psi_{v}^{0}\right) \mathbf{1}_{\mathcal{O}_{F, v}}(a) .
\end{aligned}
$$

Therefore,

$$
\int_{F_{v}^{\times}} B_{v}\left(a ; \mathcal{E}_{\tau}\right) \cdot|a|_{v}^{s-1 / 2} d^{\times} a=\chi_{0, v}(\delta)|\delta|_{v}^{\tau-1 / 2}|\sigma|_{v}^{2 \tau-1 / 2} \epsilon_{v}\left(\chi_{0}, \psi_{v}^{0}\right) L_{v}\left(s,|\cdot|^{\tau-1 / 2}\right)
$$

If $v \mid \infty$, then

$$
\begin{aligned}
& \int_{F_{v}} \psi_{v}^{0}(y) \int_{F_{v}^{\times}} \Omega_{v}(a x, x y)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x d y \\
&=|\delta|_{v}^{1 / 2} \int_{-\infty}^{\infty} e^{2 \pi i y} \int_{-\infty}^{\infty} e^{-\pi x^{2}\left(a^{2}+y^{2}\right)}|x|_{v}^{2 \tau-1} d^{\mathrm{Leb}} x d^{\mathrm{Leb}} y
\end{aligned}
$$

We therefore have

$$
\begin{aligned}
\chi_{0, v}\left(\delta^{-1}\right) \mid & \left.\delta\right|_{v} ^{1 / 2-\tau} \int_{F_{v}^{\times}} B_{v}\left(a ; \mathcal{E}_{\tau}\right) \cdot|a|_{v}^{s-1 / 2} d^{\times} a \\
& =\int_{\mathbb{R}^{\times}} \int_{-\infty}^{\infty}\left(\int_{\mathbb{R}^{\times}}|a|^{\tau+s-1 / 2} e^{-\pi x^{2} a^{2}} d^{\times} a\right) e^{2 \pi i y} e^{-\pi x^{2} y^{2}}|x|^{2 \tau} d^{\mathrm{Leb}} y d^{\times} x \\
& =G_{1}(s+\tau-1 / 2) \int_{\mathbb{R}^{\times}}\left(\int_{-\infty}^{\infty} e^{-2 \pi i y x} e^{-\pi y^{2}} d^{\mathrm{Leb}} y\right)|x|^{s-\tau+1 / 2} d^{\times} x \\
& =G_{1}(s+\tau-1 / 2) \int_{\mathbb{R}^{\times}} e^{-\pi x^{2}}|x|^{s-\tau+1 / 2} d^{\times} x \\
& =G_{1}(s+\tau-1 / 2) G_{1}(s-\tau+1 / 2) .
\end{aligned}
$$

Combining these calculations proves the lemma.

We now assume that Π_{τ} satisfies Hypothesis 1.1.1, which is really just the condition that χ_{v} factors through $\mathrm{N}: E_{v}^{\times} \rightarrow F_{v}^{\times}$for each $v \mid \mathfrak{s}$. Choosing $\Pi=\Pi_{\tau}$ in the introduction to $\S 4$, we wish to prove an analogue (Corollary 4.5.3) of Theorem 4.4.2 for the noncuspidal representation Π_{τ} by brute force. Note that now $\mathfrak{m}=\mathcal{O}_{F}$ and $\epsilon(1 / 2, \mathrm{r})=(-1)^{[F: \mathbb{Q}]}$. To put ourselves in the situation of $\S 4.4$, suppose B is a split quaternion algebra over F (so that (4.1) holds for all finite v) and as always fix an embedding $E \rightarrow B$. Let W be a two dimensional F-vector space on which B acts on the left, and fix an isomorphism of F-vector spaces $W \cong F \times F$. Writing elements of W as row vectors, there is an isomorphism $\rho: B \cong M_{2}(F)$ determined by $b \cdot[x, y]=[x, y] \cdot \rho(b)^{t}$, where the action on the left is the action of B on W, the action on the right is matrix multiplication, and the superscript t indicates transpose. The element $w_{0}=[0,1] \in W$ generates W as a left E-module, and we define $L=\mathcal{O}_{\mathfrak{c s}}{ }^{-1} \cdot w_{0}$ and $L^{\prime}=\mathcal{O}_{\mathfrak{c}} \cdot w_{0}$. We may pick a $j \in \mathrm{GL}_{2}(\mathbb{A})$ having the following properties:

- if $v \mid \mathfrak{s}$, then j_{v} satisfies $[0,1] \cdot j_{v}^{-1}=w_{0}$ and

$$
L_{v}=\left(\mathcal{O}_{F, v} \times \mathcal{O}_{F, v}\right) \cdot j_{v}^{-1}, \quad L_{v}^{\prime}=\left(\mathfrak{s}_{v} \times \mathcal{O}_{F, v}\right) \cdot j_{v}^{-1}
$$

- if $v \nmid \mathfrak{s}$ is a finite place of F, then $j_{f} \cdot K_{0}(\mathfrak{m}) \cdot j_{f}^{-1}=\rho\left(V_{v}\right)$,
- if v is an archimedean place, then $j_{v} \cdot \mathrm{SO}\left(F_{v}\right) \cdot j_{v}^{-1}$ is set of norm one elements of $\rho\left(T\left(F_{v}\right)\right)$.
For every automorphic form ϕ on $\mathrm{GL}_{2}(\mathbb{A})$ we define an automorphic form ϕ^{\prime} on $G(\mathbb{A})$ by $\phi^{\prime}(g)=\phi(\rho(g) j)$. The space Π_{τ} of automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$ thereby determines a space Π_{τ}^{\prime} of automorphic forms on $G(\mathbb{A})$. Of course, $G \cong \mathrm{GL}_{2}$ and $\Pi_{\tau}^{\prime} \cong \Pi_{\tau}$, but it is useful to maintain these notational distinctions. Under the definition of $\S 4.2, \Pi_{\tau}$ is the Jacquet-Langlands lift of Π_{τ}^{\prime} (a highly degenerate case). If $\phi \in \Pi_{\tau}$ is a newvector in the sense of $\S 2.1$ then $\phi^{\prime} \in \Pi_{\tau}^{\prime}$ is a newvector in the sense of $\S 4.2$.
Proposition 4.5.2 Normalize the Haar measures on $T\left(\mathbb{A}_{f}\right)$ and $Z\left(\mathbb{A}_{f}\right)$ to give $\widehat{\mathcal{O}}_{c} \times$ and $\widehat{\mathcal{O}}_{F}^{\times}$each volume one and give $T(F) \backslash T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)$ the induced quotient measure. For every $\tau \in \mathbb{C}$,

$$
\mathrm{N}_{F / \mathbb{Q} \mathbb{Q}}\left(\mathrm{Dc}^{2} \mathfrak{s}^{-2}\right)^{\tau / 2} \frac{1}{2^{[F: \mathbb{Q}]}} L(\tau, \chi)=\int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)} \chi(t) \mathcal{E}_{\tau}^{\prime}(t) d t
$$

Proof The restriction of $\mathcal{E}_{\tau}^{\prime}$ to $T\left(\mathbb{A}_{f}\right)$ does not depend on the choice of embedding $E \rightarrow B$, and this embedding may be chosen so that

$$
\rho(\alpha+\beta \sqrt{-\Delta})=\left(\begin{array}{cc}
\alpha & \beta \Delta \\
-\beta & \alpha
\end{array}\right)
$$

where $E=F[\sqrt{-\Delta}]$ with $\Delta \in F$ totally positive. As the embedding $\rho: T \rightarrow \mathrm{GL}_{2}$ identifies $Z(F) \backslash T(F)$ with $B(F) \backslash \mathrm{GL}_{2}(F)$ we have

$$
\int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)} \chi(t) \mathcal{E}_{\tau}^{\prime}(t) d t=\int_{T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)} \chi(t) \mathcal{F}_{\tau}(\rho(t) j) d t
$$

Combining this with

$$
\chi(t) \mathcal{F}_{\tau}(\rho(t) j)=|\operatorname{det}(j)|^{\tau} \int_{Z(\mathbb{A})} \Omega([0,1] \cdot \rho(t x) j)|\mathrm{N}(t x)|^{\tau} \chi(t x) d x
$$

we find

$$
\begin{aligned}
& \int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)} \chi(t) \mathcal{E}_{\tau}^{\prime}(t) d t=|\operatorname{det}(j)|^{\tau} \int_{T\left(\mathbb{A}_{f}\right)} \Omega([0,1] \cdot \rho(t) j)|\mathrm{N}(t)|^{\tau} \chi(t) d t \\
& \times \prod_{v \mid \infty} \int_{F_{v}^{\times}} \Omega_{v}([0,1] \cdot x)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x
\end{aligned}
$$

We now compute the right-hand side place-by-place. For an archimedean place v we may take $j_{v}=\left(\begin{array}{cc}\sqrt{\Delta_{v}} & 0 \\ 0 & 1\end{array}\right)$ so that

$$
\int_{F_{v}^{\times}} \Omega_{v}([0,1] \cdot x j)|x|_{v}^{2 \tau} \chi_{0, v}(x) d^{\times} x=\int_{-\infty}^{\infty} e^{-\pi x^{2}}|x|^{2 \tau-1} d^{\text {Leb }} x
$$

The integral on the right is $2^{\tau-1} G_{2}(\tau)=2^{\tau-1} L_{v}(\tau, \chi)$. If v is a finite place of F with $v \nmid \mathfrak{s}$, then

$$
\begin{aligned}
\int_{T\left(F_{v}\right)} \Omega_{v}([0,1] \cdot \rho(t) j)|\mathrm{N}(t)|_{v}^{\tau} \chi_{v}(t) d t & =\int_{T\left(F_{v}\right)} \mathbf{1}_{L_{v}}\left(\bar{t} \cdot w_{0}\right)|\mathrm{N}(t)|_{v}^{\tau} \chi_{v}(t) d t \\
& =\int_{T\left(F_{v}\right)} \mathbf{1}_{\mathcal{O}_{\mathrm{c}, v}}(\bar{t})|\mathrm{N}(t)|_{v}^{\tau} \chi_{v}(t) d t \\
& =\operatorname{Vol}\left(\mathcal{O}_{\epsilon, v}^{\times}\right) \cdot L_{v}(\tau, \chi),
\end{aligned}
$$

the final equality by the argument of [36, p. 238]. Finally suppose that $v \mid \mathfrak{s}$. For any $t \in E_{v}^{\times}$the value of $\Omega_{v}([0,1] \cdot \rho(t) j)$ is nonzero if and only if $[0,1] \rho(t) j$ generates the $\mathcal{O}_{F, v}$-module $\left(\mathfrak{s}_{v} \times \mathcal{O}_{F, v}\right) /\left(\mathfrak{s}_{v} \times \mathfrak{s}_{v}\right)$, and when this is the case $\Omega_{v}([0,1] \cdot \rho(t) j)=\chi_{0, v}^{-1}(y)$ where $y \in \mathcal{O}_{F, v}^{\times}$satisfies $[0,1] \rho(t) j \in[0, y]+\mathfrak{s}_{v}^{2}$. This condition is equivalent to $t w_{0}$ being an $\mathcal{O}_{F, w^{-}}$-generator of $L_{v}^{\prime} / \mathfrak{s}_{v} L_{v}$, in which case the $y \in \mathcal{O}_{F, v}^{\times}$above satisfies $\bar{t} w_{0} \in y w_{0}+\mathfrak{s}_{v} L_{v}$. Thus $y \equiv \vartheta_{v}(\bar{t}) \equiv \vartheta_{v}(t)\left(\bmod \mathfrak{s}_{v}\right)$ in the notation of $\S 4.1$. By Lemma 4.1.2 $\chi_{0, v}^{-1}(y)=\chi_{v}^{-1}(t)$. As the generators of $\mathcal{O}_{\mathfrak{c}, v} / \mathfrak{s}_{v} \mathcal{O}_{\mathfrak{c s}^{-1}, v}$ are exactly the units of $\mathcal{O}_{\mathfrak{c}, v}$, we find

$$
\begin{aligned}
\int_{T\left(F_{v}\right)} \Omega_{v}([0,1] \cdot \rho(t) j) \cdot|\mathrm{N}(t)|_{v}^{\tau} \chi_{v}(t) d t & =\int_{\mathcal{O}_{\mathrm{C}, v}^{\times}} \chi_{v}^{-1}(t) \cdot|\mathrm{N}(t)|_{v}^{\tau} \chi_{v}(t) d t \\
& =\operatorname{Vol}\left(\mathcal{O}_{\substack{\mathrm{c}, v}}^{\times}\right)
\end{aligned}
$$

It only remains to compute $\operatorname{det}(j)$. From the relation

$$
\left[\left(\mathcal{O}_{F}+\mathcal{O}_{F} \sqrt{-\Delta}\right) \cdot w_{0}\right] \cdot j^{-1}=\mathcal{O}_{\mathfrak{c s}} \cdot w_{0}
$$

we find

$$
4 \Delta \operatorname{det}(j)^{-2} \mathcal{O}_{F}=\operatorname{disc}\left(\mathcal{O}_{F}+\mathcal{O}_{F} \sqrt{-\Delta}\right) \cdot \operatorname{det}(j)^{-2} \mathcal{O}_{F}=\operatorname{disc}\left(\mathcal{O}_{\mathfrak{c}-1}\right)=\mathfrak{D}(\mathfrak{c} / \mathfrak{s})^{2}
$$

Using $|\operatorname{det}(j)|_{v}^{2}=\Delta_{v}$ for $v \mid \infty$, we obtain $2^{[F: Q]]}|\operatorname{det}(j)|=\sqrt{\mathrm{N}\left(b \mathrm{C}^{2} \mathfrak{s}^{-2}\right)}$. The proposition follows by combining these calculations.
Corollary 4.5.3 Suppose $\operatorname{Re}(\tau)=1 / 2$ and let $\phi_{\tau} \in \Pi_{\tau}$ be the normalized newvector. Then

$$
L\left(1 / 2, \Pi_{\tau} \times \Pi_{\chi}\right)=\frac{4^{[F: \mathbb{Q}]}}{\sqrt{\mathrm{N}_{F / \mathbb{Q}}\left(\mathrm{Dc}^{2}\right)}}\left|\frac{1}{H_{F, \mathfrak{5}}} \int_{C_{V}} Q_{\chi}(g) \phi_{\tau}^{\prime}(g) d g\right|^{2}
$$

where S_{V} is the measure space of $\S 4.4$ defined with V in place of U.
Proof Using $\widehat{\mathcal{O}}_{c}^{\times} / V_{T} \cong\left(\mathcal{O}_{F} / \mathfrak{s}\right)^{\times}$, the measures on $T(F) \backslash T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)$ and C_{V} are related by

$$
\int_{C_{V}} Q_{\chi}(t) \phi_{\tau}^{\prime}(t) d g=H_{F, \mathfrak{s}} \int_{T(F) \backslash T\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)} Q_{\chi}(t) \phi_{\tau}^{\prime}(t) d g
$$

while Lemma 4.5 .1 implies $\epsilon\left(1 / 2, \chi_{0}\right) \cdot \phi_{\tau}=\mathrm{N}_{F / \mathbb{Q} 2}(\mathfrak{s})^{2 \tau-1 / 2} \cdot \mathcal{E}_{\tau}$. The corollary now follows immediately from $|L(\tau, \chi)|^{2}=L\left(1 / 2, \Pi_{\tau} \times \Pi_{\chi}\right)$, Proposition 4.5.2, and the fact that the restriction of Q_{χ} to $T\left(\mathbb{A}_{f}\right)$ is simply χ.

4.6 Descent to Low Level

Assume that either Π_{v} is a weight 2 discrete series at each archimedean v or that Π_{v} is a weight 0 principal series at each archimedean v. In the weight 2 case we assume that $\epsilon(1 / 2, r)=1$ and B is totally definite, as in $\S 4.3$, and in the weight 0 case we assume that $\epsilon(1 / 2, r)=(-1)^{[F: \mathbb{Q}]}$ and B is totally indefinite, as in $\S 4.4$. For each $v \mid \mathfrak{D C}$ the representation Π_{v} is isomorphic to a principal series $\Pi\left(\mu_{v}, \chi_{0, v}^{-1} \mu_{v}^{-1}\right)$ with μ_{v} unramified, and we set $\alpha_{v}=\mu_{v}(\varpi)$ for any uniformizer ϖ of F_{v}. By the argument of [36, §17], for each $v \mid \mathfrak{D c}$ there are rational functions $\mathbf{a}_{v}, \mathbf{b}_{v}, \mathbf{c}_{v}$, which, crucially, depend only on the data $\left(F_{v}, E_{v}, \chi_{v}\right)$ and not on the representation Π, such that

$$
\widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right)=\widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}\right) \cdot \prod_{v \mid \mathfrak{D} \mathfrak{c}} \mathbf{a}_{v}\left(\alpha_{v}\right) \quad \text { and } \quad\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\triangleright \mathrm{r})}=\left\|\phi_{\Pi}\right\|_{K_{0}(\mathfrak{n})}^{2} \cdot \prod_{v \mid \boldsymbol{D} \mathrm{c}} \mathbf{b}_{v}\left(\alpha_{v}\right),
$$

where $\phi_{\Pi} \in \Pi$ is the normalized newvector and $\phi_{\Pi}^{\#} \in \Pi$ is the projection of ϕ_{Π} to the quasi-new line. Using (4.1) in place of [36, Lemma 17.2], the rational function \mathbf{c}_{v} is defined by the relation

$$
\frac{1}{\left\|\phi_{\Pi^{\prime}}\right\|^{2}}\left|\int_{C_{U}} Q_{\chi}(g) \phi_{\Pi^{\prime}}(g) d g\right|^{2}=\frac{1}{\left\|\phi_{\Pi^{\prime}}^{\chi}\right\|^{2}}\left|\int_{C_{U}} P_{\chi}(g) \phi_{\Pi^{\prime}}^{\chi}(g) d g\right|^{2} \cdot \prod_{v \mid \dot{\mathfrak{c}}} \mathbf{c}_{v}\left(\alpha_{v}\right)
$$

where Π^{\prime} is the automorphic representation of $G(\mathbb{A})$ whose Jacquet-Langlands lift is $\Pi, \phi_{\Pi^{\prime}}^{\chi}$ is a toric newvector in Π^{\prime} in the sense of Definition 4.2.4, $\phi_{\Pi^{\prime}} \in \Pi^{\prime}$ is a
newvector in the sense of Definition 4.2.2, and $\|\cdot\|$ is any $G(\mathbb{A})$-invariant norm on $\Pi^{\prime}\left(\right.$ e.g., $\|\cdot\|^{2}=\int_{S_{U}}|\cdot|^{2}$). If $v \nmid s$, then $\chi_{0, v}$ is unramfied, and we must have $\mathbf{a}_{v}\left(\alpha_{v}\right)=$ $\mathbf{a}_{v}\left(\alpha_{v}^{-1} \chi_{0, v}^{-1}(\varpi)\right)$ due to the the isomorphism $\Pi\left(\mu_{v}, \chi_{0, v}^{-1} \mu_{v}^{-1}\right) \cong \Pi\left(\chi_{0, v}^{-1} \mu_{v}^{-1}, \mu_{v}\right)$, and similarly for \mathbf{b}_{v} and \mathbf{c}_{v}. Set $\mathbf{a}_{\Pi}=\prod_{v \mid \text { oc }} \mathbf{a}_{v}\left(\alpha_{v}\right)$ and define \mathbf{b}_{Π} and \mathbf{c}_{Π} similarly. Proposition 4.3.2 (for the weight 2 case) and Proposition 4.4.1 (for the weight 0 case) give

$$
\begin{aligned}
& 2^{|S|} H_{F} \lambda_{U}^{-1}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] \widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) L\left(1 / 2, \Pi \times \Pi_{\chi}\right) \\
& \quad=|d|^{1 / 2} 2^{f \cdot[F: \mathbb{Q}]}\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\mathrm{\partial r})}^{2} \cdot \frac{\left|\int_{C_{U}} P_{\chi}(g) \phi_{\Pi^{\prime}}^{\chi}(g) d g\right|^{2}}{\int_{S_{U}}\left|\phi_{\Pi^{\prime}}^{\chi}(g)\right|^{2} d g}
\end{aligned}
$$

where $f=1$ in the weight 2 case and $f=2$ in the weight 0 case. As $\widehat{B}\left(\mathcal{O}_{F}, \phi_{\Pi}\right)=1$ we find, using $\lambda_{V} H_{F, 5}=H_{F}\left[\widehat{\mathcal{O}}_{\mathfrak{c}}^{\times}: V_{T}\right]$ and (3.3) (which holds also with C_{U} and C_{V} replaced by S_{U} and S_{V}), that

$$
\begin{equation*}
\kappa \cdot \mathbf{a}_{\Pi} \mathbf{c}_{\Pi} \cdot \frac{L\left(1 / 2, \Pi \times \Pi_{\chi}\right)}{\left\|\phi_{\Pi}\right\|_{K_{0}(\mathfrak{n})}^{2}}=\frac{\mathbf{b}_{\Pi} \cdot 2^{f \cdot[F: \mathbb{Q}]}}{H_{F, \mathfrak{s}} \sqrt{\mathrm{~N}_{F / \mathbb{Q} 2}\left(\mathfrak{b c}^{2}\right)}} \cdot \frac{\left|\int_{C_{V}} Q_{\chi}(t) \phi_{\Pi^{\prime}}(t) d t\right|^{2}}{\int_{S_{V}}\left|\phi_{\Pi^{\prime}}(g)\right|^{2} d g} \tag{4.8}
\end{equation*}
$$

Here $\kappa=\prod_{v \mid \text { dc }} \kappa_{v}$ with

$$
\kappa_{v}=\frac{\left[\mathcal{O}_{E, v}^{\times}: U_{T, v}\right]}{\left[\widehat{\mathcal{O}}_{\mathfrak{c}, v}^{\times}: V_{T, v}\right]} \cdot \frac{|c|_{v}}{\left[V_{v}: U_{v}\right]} \begin{cases}2 & \text { if } v \mid \mathfrak{D}, \\ 1 & \text { if } v \mid \mathfrak{c},\end{cases}
$$

where $c \in \mathbb{A}^{\times}$satisfies $c \mathcal{O}_{F}=\mathfrak{c}$.
Proof of Theorems 4.3.3 and 4.4.2 It follows from the definition of the quasi-new line that $\phi_{\Pi}^{\#} \neq 0$ (in the notation of $\S 2.8$ we have $\Lambda_{v}\left(\phi_{\Pi, v}\right) \neq 0$ for each $v \mid \mathfrak{D r}$, and so $\phi_{\Pi, v}$ has nontrivial projection to the quasi-new line in Π_{v}), and hence $\mathbf{b}_{\Pi} \neq 0$. It therefore suffices by (4.8) to prove that $\kappa \cdot \mathbf{a}_{\Pi} \mathbf{c}_{\Pi}=\mathbf{b}_{\Pi}$. Let us suppose for the moment that Π is of parallel weight 0 and that $\mathfrak{m}=\mathcal{O}_{F}$. Thus $\epsilon(1 / 2, \mathfrak{r})=(-1)^{[F: \mathbb{Q}]}$, and we are in the situation of $\S 4.4$. The quaternion algebra B is split, and we let $\rho: G \cong \mathrm{GL}_{2}$ and $j \in \mathrm{GL}_{2}(\mathbb{A})$ be as in $\S 4.5$. Set $\Pi^{\prime}=\Pi$ and for each $\phi \in \Pi$ set $\phi^{\prime}(g)=\phi(\rho(g) j)$. Fix a Haar measure on $\mathrm{GL}_{2}\left(\mathbb{A}_{f}\right)$ and, as always, normalize the Haar measure on $Z\left(\mathbb{A}_{f}\right)$ to give $\widehat{\mathcal{O}}_{F}^{\times}$volume 1. Define a Haar measure on $G\left(\mathbb{A}_{f}\right)$ by demanding that ρ be an isomorphism of measure spaces. For any $\phi \in \Pi$ we now have, tediously keeping track of the normalizations of measures,

$$
\begin{aligned}
\int_{S_{V}}\left|\phi^{\prime}\right|^{2} & =\operatorname{Vol}(V)^{-1} \int_{G(F) \backslash X \times G\left(\mathbb{A}_{f}\right) / V}\left|\phi^{\prime}\right|^{2} \\
& =\operatorname{Vol}(V)^{-1} \frac{1}{\left[Z(F) \cap \widehat{\mathcal{O}}_{F}^{\times}: Z(F) \cap V\right]} \int_{G(F) \backslash X \times G\left(\mathbb{A}_{f}\right) / \widehat{\mathcal{O}}_{F}^{\times}}\left|\phi^{\prime}\right|^{2} \\
& =\operatorname{Vol}(V)^{-1} \frac{\left[Z\left(\mathbb{A}_{f}\right): Z(F) \widehat{\mathcal{O}}_{F}^{\times}\right]}{\left[Z(F) \cap \widehat{\mathcal{O}}_{F}^{\times}: Z(F) \cap V\right]} \int_{G(F) \backslash X \times G\left(\mathbb{A}_{f}\right) / Z\left(\mathbb{A}_{f}\right)}\left|\phi^{\prime}\right|^{2}
\end{aligned}
$$

Using $j K j^{-1}=\rho(V)$ and $V_{Z}=\left\{x \in \widehat{\mathcal{O}}_{F}^{\times} \mid x \in 1+\widehat{s}\right\}$, we find that

$$
\int_{S_{V}}\left|\phi^{\prime}\right|^{2}=H_{F} \lambda_{V}^{-1}\|\phi\|_{K}^{2}=H_{F, 5}\|\phi\|_{K_{0}(\mathfrak{n})}^{2}
$$

We may now write (4.8) as

$$
\begin{equation*}
\kappa \cdot \mathbf{a}_{\Pi} \mathbf{c}_{\Pi} \cdot L\left(1 / 2, \Pi \times \Pi_{\chi}\right)=\frac{\mathbf{b}_{\Pi} \cdot 2^{f \cdot[F: \mathbb{Q}]}}{\sqrt{\mathrm{N}_{F / \mathbb{Q}}\left(\mathrm{DC}^{2}\right)}} \cdot\left|\frac{1}{H_{F, \mathfrak{s}}} \int_{C_{V}} Q_{\chi}(t) \phi_{\Pi}^{\prime}(t) d t\right|^{2} \tag{4.9}
\end{equation*}
$$

The point is that in this formulation no L^{2} norms appear, and the statement of the formula makes sense even if Π is noncuspidal. The argument of $[36, \S 18]$ shows that the equality (4.9) can be extended to the principal series representation Π_{τ} of $\S 4.5$ for any $\tau \in \mathbb{C}$ with $\operatorname{Re}(\tau)=1 / 2$ (so that Π_{τ} is unitary), provided that χ does not factor through the norm map $\mathbb{A}_{E}^{\times} \rightarrow \mathbb{A}^{\times}$(so that Π_{χ} is cuspidal by Lemma 2.3.3 and (2.11) still holds).

For each $v \mid \mathfrak{D C}$ we let q_{v} denote the cardinality of the residue field of v. Then taking $\Pi=\Pi_{\tau}$ and $\phi_{\Pi}=\phi_{\tau}$ in (4.9) and comparing with Lemma 4.5.3 (and still assuming that Π_{χ} is cuspidal), gives

$$
\prod_{v \mid \dot{\mathfrak{C}}} \kappa_{v} \mathbf{a}_{v}\left(q_{v}^{1 / 2-\tau}\right) \mathbf{c}_{v}\left(q_{v}^{1 / 2-\tau}\right)=\prod_{v \mid \mathfrak{D}} \mathbf{b}_{v}\left(q_{v}^{1 / 2-\tau}\right)
$$

As in the proof of [36, Proposition 19.2], letting τ vary and letting χ vary over characters which do not factor through the norm while holding the components χ_{v} for $v \mid \operatorname{Dc}$ fixed, we find the equality of rational functions $\kappa \prod \mathbf{a}_{v} \mathbf{c}_{v}=\prod \mathbf{b}_{v}$, where each product is over all $v \mid \boldsymbol{D C}$.

5 Central Derivatives

In this section we relate the Néron-Tate heights of certain CM points on Shimura curves to derivatives of automorphic L-functions. As in [34] the method is to compute the arithmetic intersection pairings of various CM-divisors and compare these intersection multiplicities to the Whittaker coefficients of the automorphic form Φ_{r} of $\S 2.6$. These intersection multiplicities decompose as a sum of local intersection multiplicities, and the calculations of $[34, \S 5, \S 6]$ show that the calculation of local multiplicities can be reduced to the calculation of linking numbers of CM-cycles on totally definite quaternion algebras. Fortunately for us, this reduction step is done in [34] in a very general context, and includes not only Shimura curves with arbitrary level structure but also Shimura curves associated with the algebraic group G below (as opposed to the group G / Z). Thus we may cite from Zhang the crucial Propositions 5.3.1 and 5.4.1 below, which reduce the local intersection theory at nonsplit primes to the calculations we have done in $\S 3$.

Throughout $\S 5$ we assume that the representation Π of $\S 1.1$ satisfies Hypothesis 1.1 .1 and that Π_{v} lies in the discrete series of weight 2 for every archimedean v. Set $\mathfrak{r}=\mathfrak{m} \mathfrak{c}^{2}$ and assume that $\omega(\mathfrak{m})=(-1)^{[F: \mathbb{O}]-1}$. The epsilon factor of $\S 2.4$ then
satisifies $\epsilon(1 / 2, r)=-1$ and so $L\left(1 / 2, \Pi \times \Pi_{\chi}\right)=0$ by the functional equation (2.6) and the Rankin-Selberg integral representation (2.8) with $b=1$. Fix an archimedean place w_{∞} of F and let B be the quaternion algebra over F characterized by

$$
B_{v} \text { is split } \Longleftrightarrow \epsilon_{v}(1 / 2, \mathrm{r}, \psi)=1 \text { or } v=w_{\infty}
$$

for every place v. Thus B is indefinite at w_{∞} and definite at all other archimedean places. The reduced discriminant of B divides \mathfrak{m} and, as E_{v} is a field whenever B_{v} is nonsplit, there is an embedding $E \rightarrow B$ which we fix. Let G, T, and Z be the algebraic groups over F defined at the beginning of $\S 3$. For any ideal $\mathfrak{b} \subset \mathcal{O}_{F}$ let $\mathcal{O}_{\mathfrak{b}}=\mathcal{O}_{F}+\mathfrak{b} \mathcal{O}_{E}$ denote the order of \mathcal{O}_{E} of conductor \mathfrak{b}. Fix an algebraic closure $F^{\text {alg }}$ of F containing E and an embedding $F^{\text {alg }} \hookrightarrow\left(\mathbb{C}\right.$ lying above w_{∞}.

General references for Shimura curves include [3, 23, 24, 27, 34, 35].

5.1 Shimura Curves

Throughout $\S 5.1$ we let U be an arbitrary compact open subgroup of $G\left(\mathbb{A}_{f}\right)$. The chosen embedding $E \rightarrow \mathbb{C}$ determines an isomorphism of real algebraic groups $\mathbb{S} \cong$ $T \times_{F} \mathbb{R}$, where $\mathbb{S}=\operatorname{Res}_{\mathbb{C} / \mathbb{R}}\left(G_{m}\right.$. The embedding $T \rightarrow G$ therefore determines an embedding of real algebraic groups $x_{0}: \mathbb{S} \rightarrow G \times_{F} \mathbb{R} \rightarrow\left(\operatorname{Res}_{F / \mathbb{Q}} G\right) \times_{\mathbb{Q}} \mathbb{R}$. Let X be the $G(\mathbb{R})$-conjugacy class of x_{0} in the set of all such embeddings. If $F \neq \mathbb{O}$) or if $B \not \neq M_{2}(F)$ we define a compact Riemann surface

$$
\begin{equation*}
X_{U}(\mathbb{C})=G(F) \backslash X \times G\left(\mathbb{A}_{f}\right) / U \tag{5.1}
\end{equation*}
$$

For $x \in X$ and $g \in G\left(\mathbb{A}_{f}\right)$ let $[x, g]$ denote the image of (x, g) in $X_{U}(\mathbb{C})$. If $F=\mathbb{O}$) and B is split, then the right-hand side of (5.1) is noncompact, and $X_{U}(\mathbb{C})$ is defined as the usual compactification of the right-hand side obtained by adjoining finitely many cusps. The connected components of $X_{U}(\mathbb{C})$ are indexed by the set

$$
Z_{U}(\mathbb{C})=Z(F)^{+} \backslash Z\left(\mathbb{A}_{f}\right) / \mathrm{N}(U)
$$

where $Z(F)^{+} \subset Z(F) \cong F^{\times}$is the subgroup of totally positive elements and $\mathrm{N}(U)$ is the image of U under the reduced norm $G\left(\mathbb{A}_{f}\right) \rightarrow Z\left(\mathbb{A}_{f}\right)$. The canonical map $X_{U}(\mathbb{C}) \rightarrow Z_{U}(\mathbb{C})$ is given by $[x, g] \mapsto \mathrm{N}(g)$.

Let X_{U} denote Shimura's canonical model of $X_{U}(\mathbb{C})$ over $\operatorname{Spec}(F)$. Let F_{U} / F be the abelian extension of F which, under the reciprocity map of class field theory, has $\operatorname{Gal}\left(F_{U} / F\right) \cong Z_{U}(\mathbb{C})$. The component map $X_{U}(\mathbb{C}) \rightarrow Z_{U}(\mathbb{C})$ arises from a morphism of F-schemes $X_{U} \rightarrow Z_{U}$ where Z_{U} is (noncanonically) isomorphic to $\operatorname{Spec}\left(F_{U}\right)$. For each geometric point $\alpha: \operatorname{Spec}\left(F^{\text {alg }}\right) \rightarrow Z_{U}$ define a smooth connected projective curve over $F^{\mathrm{alg}}, X_{U}^{\alpha}=X_{U} \times{ }_{Z_{U}} \operatorname{Spec}\left(F^{\mathrm{alg}}\right)$. The Jacobian J_{U} of X_{U} is the abelian variety over F defined by $J_{U}=\operatorname{Res}_{Z_{U} / F}\left(\operatorname{Pic}_{X_{U} / Z_{U}}^{0}\right)$ so that the geometric fiber of J_{U} decomposes as

$$
J_{U} \times_{F} F^{\mathrm{alg}} \cong \prod_{\alpha \in Z_{U}\left(F^{\mathrm{alg}}\right)} J_{U}^{\alpha}
$$

where J_{U}^{α} is the Jacobian of X_{U}^{α}. There is a $\operatorname{Gal}\left(F^{\mathrm{alg}} / F\right)$ invariant function

$$
\mathrm{Hg}: X_{U}\left(F^{\mathrm{alg}}\right) \rightarrow J_{U}\left(F^{\mathrm{alg}}\right) \otimes_{\mathbb{Z}}(\mathbb{O})
$$

the Hodge embedding, described in detail in [5, §3.5]. Briefly, Zhang [34, §6.2] constructs the Hodge class $\mathcal{L} \in \operatorname{Pic}\left(X_{U}\right) \otimes_{\mathbb{Z}}(\mathbb{O})$ having degree 1 on every geometric component. Each $P \in X_{U}\left(F^{\text {alg }}\right)$ determines a geometric point $\alpha \in Z_{U}\left(F^{\text {alg }}\right)$, and we let \mathcal{L}_{P} denote the restriction of \mathcal{L} to X_{U}^{α}. Letting $\mathcal{O}(P) \in \operatorname{Pic}\left(X_{U} \times_{F} F^{\text {alg }}\right)$ denote the class of P, we define

$$
\operatorname{Hg}(P)=\mathcal{O}(P) \otimes \mathcal{L}_{P}^{-1} \in J_{U}^{\alpha}\left(F^{\mathrm{alg}}\right) \otimes_{\mathbb{Z}}(\mathbb{O})
$$

For any finite extension L / F let $\langle\cdot, \cdot\rangle_{U, L}^{N T}$ denote the Néron-Tate height on $J_{U}(L)$. The normalized Néron-Tate height on $J_{U}\left(F^{\mathrm{alg}}\right)$ is defined by

$$
\langle x, y\rangle_{U}^{\mathrm{NT}}=\frac{1}{[L: F]}\langle x, y\rangle_{U, L}^{\mathrm{NT}}
$$

where L is any finite extension of F large enough that x and y are defined over L. Fix two points $P, Q \in X_{U}\left(F^{\text {alg }}\right)$ and choose a finite Galois extension L / F large enough that P and Q are both defined over L. To compute the Néron-Tate pairing of $\operatorname{Hg}(P)$ and $\operatorname{Hg}(Q)$ we use the arithmetic intersection theory of Gillet-Soule $[8,29]$ as in [34, $\S 5.3, \S 6.1]$. Suppose that U is small enough that X_{U} admits a canonical regular model \underline{X}_{U}, proper and flat over \mathcal{O}_{F} as in [35, $\left.\S 1.2 .5\right]$. Let \underline{Z}_{U} be the normalization of $\operatorname{Spec}\left(\mathcal{O}_{F}\right)$ in Z_{U}, so that $\underline{Z}_{U} \cong \operatorname{Spec}\left(\mathcal{O}_{F_{U}}\right)$ (noncanonically) and the component map $X_{U} \rightarrow Z_{U}$ extends to a map of \mathcal{O}_{F}-schemes $\underline{X}_{U} \rightarrow \underline{Z}_{U}$. As $Z_{U}(L) \neq \varnothing$ there are $\left[F_{U}: F\right]$ distinct embeddings $F_{U} \rightarrow L$, and so $\left[F_{U}: F\right]$ distinct morphisms $\operatorname{Spec}\left(\mathcal{O}_{L}\right) \rightarrow \underline{Z}_{U}$. Let \mathcal{Z}_{U} denote the disjoint union of $\left[F_{U}: F\right]$ copies of $\operatorname{Spec}\left(\mathcal{O}_{L}\right)$ so that \mathcal{Z}_{U} is naturally an \mathcal{O}_{L}-scheme which admits an \mathcal{O}_{F}-morphism $\mathcal{Z}_{U} \rightarrow \underline{Z}_{U}$. Let \mathcal{X}_{U} be the minimal resolution of singularities of the \mathcal{O}_{L}-scheme $\underline{X}_{U} \times_{Z_{U}} \mathcal{Z}_{U}$. The scheme X_{U} has generic fiber $X_{U} \times_{F} L$ and is a disjoint union of $\left[F_{U}: F\right]$ proper and flat curves over \mathcal{O}_{L} indexed by $Z_{U}\left(F^{\text {alg }}\right)$, each with geometrically connected generic fiber. The Hodge class \mathcal{L} on X_{U} admits a natural extension to \underline{X}_{U} [35, §4.1.4] which we pull back to a class $\mathcal{L} \in \operatorname{Pic}\left(X_{U}\right) \otimes_{\mathbb{Z}}(\mathbb{O}$. For each embedding $i: L \rightarrow \mathbb{C}$ the Riemann surface $\left(X_{U} \times{ }_{\mathcal{O}_{L}}(\mathbb{C})(\mathbb{C})\right.$ has a canonical volume form μ which on each connected component has total volume 1 and whose pull back to the upper half-plane (under any such parametrization) is a multiple of the hyperbolic volume form $y^{-2} d x d y$. By [19, Theorem I.4.2] there is a Hermitian metric ρ_{i}, unique up to scaling, on the pullback of \mathcal{L} to $X_{U} \times{ }_{\mathcal{O}_{L}} \mathbb{C}$ whose Chern form is μ. Letting ρ denote the tuple $\left(\rho_{i}\right)$ indexed by embeddings i as above, the pair $\widehat{\mathcal{L}}=(\mathcal{L}, \rho)$ is then an element of $\widehat{\operatorname{Pic}}\left(\mathcal{X}_{U}\right)$ as in [34, §6.1].

Going back to the point $P \in X_{U}(L)$, let X_{U}^{α} be the connected component of X_{U} containing P. The arithmetic closure (as in [34, §6.1] or [36, $\S 9]) \widehat{P} \in \widehat{\operatorname{Div}}\left(\mathcal{X}_{U}\right)$ of P with respect to $\widehat{\mathcal{L}}$ is a pair $\widehat{P}=\left(\mathcal{P}+D_{P}, g_{P}\right)$ where \mathcal{P} is the Zariski closure of P on X_{U} and $g_{P}=\left(g_{P, i}\right)$ is a tuple indexed by embeddings $i: L \rightarrow \mathbb{C}$ with $g_{P, i}$ a smooth function on the complement of P in $\left(X_{U} \times{\mathcal{\mathcal { O } _ { L }}}(\mathbb{C})(\mathbb{C})\right.$ such that $2 \cdot g_{P, i}$ is a Green's function for P with respect to μ (in the sense of $[19, \S$ II.1]) on the component indexed by α, and is identically 0 on the other components. Lang and Zhang use different normalizations for Green's functions, hence the factor of 2; our g_{P} is Zhang's $g(P, \cdot)$. Finally D_{P} is a vertical divisor on X_{U}^{α} chosen so that $\mathcal{P}+D_{P}$ has trivial intersection multiplicity with every vertical divisor, and so that for any finite place w of L the restriction of \mathcal{L} to the
sum of the components of D_{P} above w has degree 0 . One defines $\widehat{Q}=\left(\mathbb{Q}+D_{Q}, g_{Q}\right)$ in the same way. The Hodge index theorem now tells us that

$$
\langle\operatorname{Hg}(P), \operatorname{Hg}(Q)\rangle_{U}^{\mathrm{NT}}=\frac{-1}{[L: F]}\left\langle\widehat{P}-\widehat{\mathcal{L}}_{P}, \widehat{Q}-\widehat{\mathcal{L}}_{Q}\right\rangle_{X_{U}}^{\mathrm{Ar}}
$$

where $\widehat{\mathcal{L}}_{P}$ is the restriction of $\widehat{\mathcal{L}}$ to the component of X_{U} containing P (and similarly with P replaced by Q) and the pairing on the right is the Gillet-Soule arithmetic intersection pairing on $\widehat{\operatorname{Pic}}\left(X_{U}\right)$ defined by [36, (9.3)].

For each place w of F fix an extension $w^{\text {alg }}$ to $F^{\text {alg }}$. As we assume that $P \neq Q$, there is a decomposition of the arithmetic intersection pairing as a sum of local Green's functions

$$
\langle\widehat{P}, \widehat{Q}\rangle_{X_{U}}^{\mathrm{Ar}_{U}}=\sum_{w} \sum_{\sigma \in \mathrm{Gal}(L / F)} d_{w} \cdot g\left(P^{\sigma}, Q^{\sigma}\right)_{U, w^{\text {als }}}
$$

where the sum is over all places of F and terms on the right are as follows. If $w \mid$ ∞, then $d_{w}=1$ and $g(P, Q)_{U, w^{\text {alg }}}=g_{P, i}(Q)$, where $i: L \rightarrow \mathbb{C}$ is the embedding determined by w^{alg}. If w is nonarchimedean, then $d_{w}=\log q_{w}$ where q_{w} is the size of the residue field of w, and

$$
g(P, Q)_{U, w^{\mathrm{alg}}}=e\left(L_{w^{\mathrm{alg}}} / F_{w}\right)^{-1} i_{w^{\mathrm{alg}}}\left(\mathcal{P}+D_{P}, Q+D_{\mathrm{Q}}\right) x_{U}
$$

where $e\left(L_{w^{\text {alg }}} / F_{w}\right)$ is the ramification index and $i_{w^{\text {alg }}}(\cdot, \cdot) x_{U}$ is the intersection pairing on $X_{U} \times{ }_{\mathcal{O}_{L}} \mathcal{O}_{L, w^{\text {alg }}}$ defined in [19, III.2] for divisors with no common components and extended in [19, III.3] to divisors with common vertical components. The Green's function $g(P, Q)_{U, w^{\text {alg }}}$ does not depend on the choice of L and extends biadditively to a Hermitian pairing on divisors with complex coefficients on $X_{U} \times{ }_{F} F^{\text {alg }}$ having disjoint support.

If U is not sufficiently small in the sense of [35, §1.2.5], then choose $U^{\prime} \subset U$ which is sufficiently small and define

$$
g(P, Q)_{U, w^{\operatorname{alg}}}=\frac{1}{\operatorname{deg}(\pi)} g\left(\pi^{*} P, \pi^{*} Q\right)_{U^{\prime}, w^{\text {alg }}}
$$

where $\pi: X_{U^{\prime}} \rightarrow X_{U}$ is the degeneracy map with $\operatorname{deg}(\pi)=\left[F^{\times} U: F^{\times} U^{\prime}\right]$. This does not depend on the choice of sufficiently small U^{\prime}.

5.2 Special Cycles and Hecke Correspondences

For the remainder of $\S 5$ we let U and V denote the compact open subgroups of $G\left(\mathbb{A}_{f}\right)$ constructed in $\S 4.1$ and recall that we constructed there CM cycles P_{χ} and $P_{\chi, \mathfrak{a}}$ of level U (for \mathfrak{a} any ideal of \mathcal{O}_{F} prime to \mathfrak{c}) and a CM cycle Q_{χ} of level V. Let $\epsilon_{v} \in B_{v}$ be the element of Lemma 4.1.3 used in the construction of U, and note that U_{v} is a maximal compact open subgroup of $G\left(F_{v}\right)$ for $v \nmid \operatorname{Dr} \infty$. For a prime to $\mathfrak{b r}$ there are algebraic Hecke correspondence $T_{\mathfrak{a}}^{\text {Pic }}$ and $T_{\mathfrak{a}}^{\mathrm{Alb}}$ on X_{U} characterized by their action on points of $X_{U}(\mathbb{C})$

$$
T_{\mathfrak{a}}^{\mathrm{Pic}}[x, g]=\sum_{h \in U \backslash H(\mathfrak{a})}\left[x, g h^{-1}\right] \quad \text { and } \quad T_{\mathfrak{a}}^{\mathrm{Alb}}[x, g]=\sum_{h \in H(\mathfrak{a}) / U}[x, g h],
$$

where $H(\mathfrak{a})$ was defined in $\S 4.1$. We also have diamond automorphisms of X_{U} defined by

$$
\langle\mathfrak{a}\rangle^{\text {Pic }}[x, g]=\left[x, g a^{-1}\right] \quad \text { and } \quad\langle\mathfrak{a}\rangle^{\mathrm{Alb}}[x, g]=[x, g a]
$$

where $a \in \mathbb{A}^{\times}$satisfies $a \mathcal{O}_{F}=\mathfrak{a}$ and $a_{v}=1$ for $v \mid \infty$. Restricting $T_{\mathfrak{a}}^{\mathrm{Pic}}, T_{\mathfrak{a}}^{\mathrm{Alb}}$, and the diamond automorphisms to divisors on X_{U} which have degree zero on every geometric component we obtain endomorphisms, denoted the same way, of J_{U}.

We view the set of CM points of level U on G as a subset of $X_{U}(\mathbb{C})$ using the injection $C_{U} \rightarrow X_{U}(\mathbb{C})$ defined by $T(F) g U \mapsto\left[x_{0}, g\right]$. By Shimura's reciprocity law [24, §12], all points of C_{U} are defined over the maximal abelian extension of E in \mathbb{C} and satisfy $\left[x_{0}, g\right]^{\sigma}=\left[x_{0}, t^{-1} g\right]$, where $\sigma=[t, E]$ is the arithmetic Artin symbol of t as in $[28, \S 5.2]$. Any CM-cycle P of level U can be written as a sum of characteristic functions of CM points, and so can be viewed as a divisor (with complex coefficients) on $X_{U} \times_{F} F^{\text {alg }}$ in an obvious way. Setting $P=\left[x_{0}, 1\right]$, we then have

$$
P_{\chi}=\sum_{t \in T(F) \backslash T\left(\mathbb{A}_{f}\right) / U_{T}} \overline{\chi(t)} \cdot P^{[t, E]}
$$

This divisor is rational over the abelian extension E_{χ} / E cut out by χ. As divisors on $X_{U} \times_{F} E_{\chi}$ we have $T_{\mathfrak{a}}^{\text {Pic }} P_{\chi}=P_{\chi, \mathfrak{a}}$ and $\langle\mathfrak{a})^{\text {Pic }} P_{\chi}=\chi_{0}(\mathfrak{a}) P_{\chi}$.

For a prime to $\mathfrak{D r}$ let $P_{\chi, \mathfrak{a}}^{0}$ denote the restriction of $P_{\chi, \mathfrak{a}}$ to the complement of the image of $T\left(\mathbb{A}_{f}\right) \rightarrow C_{U}$. In particular $P_{\chi, a}^{0}$ and P_{χ} have disjoint support. Fix $a \in \mathbb{A}^{\times}$with $a \Theta_{F}=\mathfrak{a}$ and define $r_{\chi}(\mathfrak{a})=\prod_{v \nmid \infty}|a|_{v}^{-1 / 2} B_{v}(a ; \theta)$. We note that r_{χ} is a derivation of $\Pi_{\chi} \otimes|\cdot|^{1 / 2}$ in the sense of [34, Definition 3.5.3]. Exactly as in [34, Lemma 6.2.1], (using our Corollaries 3.3.8 and 3.4.5 to evaluate $P_{\chi, \mathrm{a}}(1)$ instead of [34, Lemma 4.2.1]) we have

$$
\begin{equation*}
P_{\chi, \mathfrak{a}}=P_{\chi, \mathfrak{a}}^{0}+r_{\chi}(\mathfrak{a}) \cdot P_{\chi} \tag{5.2}
\end{equation*}
$$

5.3 Intersections at Nonsplit Primes Away from or

Suppose $w \nmid \mathfrak{D r}$ is a finite place of F which is inert in E and fix a place $w^{\text {alg }}$ of $F^{\text {alg }}$ above w. Note that the quaternion algebra B_{w} is split and, as $R_{w}=\mathcal{O}_{E, w}+\mathcal{O}_{E, w} \epsilon_{w}$ is a maximal order of $B_{w}, U_{w}=R_{w}^{\times}$is a maximal compact open subgroup $G\left(F_{w}\right)$. We wish to compute $g\left(P_{\chi}, P_{\chi, \mathfrak{a}}^{0}\right)_{U, w^{\text {alg }}}$. Let \tilde{B} be the totally definite quaternion algebra obtained from B by interchanging invariants at w_{∞} and w. That is, \tilde{B} is defined by \{places v of $\left.F \mid \tilde{B}_{v} \not \neq B_{v}\right\}=\left\{w, w_{\infty}\right\}$. As E_{v} is a field for every place v at which \tilde{B} is nonsplit, we may fix an embedding $E \rightarrow \tilde{B}$. Denote by \tilde{G} the algebraic group over F defined by $\tilde{G}(A)=\left(\tilde{B} \otimes_{F} A\right)^{\times}$.

For each finite place $v \neq w$ fix an isomorphism $\sigma_{v}: G\left(F_{v}\right) \cong \tilde{G}\left(F_{v}\right)$ compatible with the embeddings of $T\left(F_{v}\right)$ into $G\left(F_{v}\right)$ and $\tilde{G}\left(F_{v}\right)$ and define $\tilde{\epsilon}_{v}=\sigma_{v}\left(\epsilon_{v}\right)$ and $\tilde{U}_{v}=\sigma_{v}\left(U_{v}\right)$. Pick $\tilde{\epsilon}_{w} \in \tilde{B}_{w}$ so that $E_{w} \tilde{\epsilon}_{w}=\tilde{B}_{w}^{-}$and $\operatorname{ord}_{w}\left(\tilde{\mathrm{~N}}\left(\tilde{\epsilon}_{w}\right)\right)=1$, where $\tilde{\mathrm{N}}$ is the reduced norm on \tilde{B}_{w}. Then $\tilde{R}_{w}=\mathcal{O}_{E, w}+\mathcal{O}_{E, w} \tilde{\epsilon}_{w}$ is the unique maximal order in \tilde{B}_{w}, and we define $\tilde{U}_{w}=\tilde{R}_{w}^{\times}$. Define a function $\sigma_{w}: G\left(F_{v}\right) \rightarrow \tilde{G}\left(F_{w}\right) / \tilde{U}_{w}$ by $\sigma_{w}(g)=\tilde{g} \tilde{U}_{w}$ for any $\tilde{g} \in \tilde{G}\left(F_{w}\right)$ satisfying $\operatorname{ord}_{w}(\mathrm{~N}(g))=\operatorname{ord}_{w}(\tilde{\mathrm{~N}}(\tilde{g}))$. Set $\tilde{U}=\prod_{v} \tilde{U}_{v}$, a compact open subgroup of $\tilde{G}\left(\mathbb{A}_{f}\right)$. Taking the product of the σ_{v},
we obtain a map of left $T\left(\mathbb{A}_{f}\right)$-sets $\sigma: G\left(\mathbb{A}_{f}\right) / U \rightarrow \tilde{G}\left(\mathbb{A}_{f}\right) / \tilde{U}$ and a push-forward map $f \mapsto \sigma_{*} f$ from finitely supported functions on $G\left(\mathbb{A}_{f}\right) / U$ to finitely supported functions on $\tilde{G}\left(\mathbb{A}_{f}\right) / \tilde{U}$ defined by $\left(\sigma_{*} f\right)(x)=\sum_{\sigma(y)=x} f(y)$. As the natural projection $G\left(\mathbb{A}_{f}\right) / U \rightarrow C_{U}$ has finite fibers, any CM-cycle of level U may be viewed as a finitely supported function on $G\left(\mathbb{A}_{f}\right) / U$. The push-forward is then a left $T(F)$ invariant function on $\tilde{G}\left(\mathbb{A}_{f}\right) / \tilde{U}$, and so there is an induced push-forward σ_{*} from CM-cycles on G of level U to CM-cycles on \tilde{G} of level \tilde{U}.

Fix a uniformizer ϖ of F_{w} and for each $k \geq 0$ let $A_{k}=\mathcal{O}_{F, w}+\varpi^{k} \mathcal{O}_{E, w}$. For each $x \in C_{U}$ define the w-conductor of $x=T(F) g U$ to be the integer k determined by

$$
A_{k}^{\times}=g_{w} U_{w} g_{w}^{-1} \cap T\left(F_{w}\right)
$$

Proposition 5.3.1 Suppose that P and Q are disjoint $C M$-cycles of level U with P supported on points of w-conductor k and Q supported on points of w-conductor 0 . Then

$$
g(P, Q)_{U, w^{\operatorname{alg}}}=\sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}\left\langle\sigma_{*} P, \sigma_{*} Q\right\rangle_{\tilde{U}}^{\gamma} \cdot M_{k}(\gamma),
$$

where

$$
M_{k}(\gamma)= \begin{cases}\frac{\operatorname{ord}_{w}(\xi \varpi)}{2} & \text { if } k=0 \text { and } \xi \neq 0 \\ 0 & \text { if } k=0 \text { and } \xi=0, \\ {\left[\mathcal{O}_{E, w}^{\times}: A_{k}^{\times}\right]^{-1}} & \text { if } k>0\end{cases}
$$

Proof See [34, Lemmas 5.5.2, 6.3.5].
Suppose \mathfrak{a} is an ideal of \mathcal{O}_{F} prime to $\mathfrak{D r}$. For any finite place v we may replace B_{v} by \tilde{B}_{v} and ϵ_{v} by $\tilde{\epsilon}_{v}$ everywhere in $\S 3.3$ and $\S 3.4$, giving a function $\tilde{P}_{\chi, \mathfrak{a}, v}$ on $\tilde{G}\left(F_{v}\right) / \tilde{U}_{v}$. Taking the product over all finite v gives a CM-cycle $\tilde{P}_{\chi, \mathfrak{a}}$ of level \tilde{U} on \tilde{G}. When $\mathfrak{a}=\mathcal{O}_{F}$, we omit it from the notation. Define an ideal \mathfrak{e} of \mathcal{O}_{F} by $\operatorname{ord}_{v}(\mathfrak{e})=$ $\operatorname{ord}_{v}\left(\mathrm{~N}\left(\tilde{\epsilon}_{v}\right)\right)$ for all finite places v, so that

$$
\operatorname{ord}_{v}(\mathfrak{e})=\operatorname{ord}_{v}(\mathfrak{r})+ \begin{cases}1 & \text { if } v=w \tag{5.3}\\ 0 & \text { otherwise }\end{cases}
$$

Proposition 5.3.2 Suppose \mathfrak{a} is prime to \mathfrak{c}. There is a constant κ, independent of \mathfrak{a}, such that

$$
g\left(P_{\chi, \mathfrak{a}}^{0}, P_{\chi}\right)_{U, w^{\text {alg }}}=\kappa \cdot r_{\chi}(\mathfrak{a})+\sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot m_{\mathfrak{a}}(\gamma),
$$

where

$$
m_{\mathfrak{a}}(\gamma)=\frac{1}{2} \begin{cases}\operatorname{ord}_{w}(\xi \mathfrak{a})+1 & \text { if } \xi \neq 0 \text { and } \operatorname{ord}_{w}(\xi \mathfrak{a}) \text { is odd and nonnegative, } \\ \operatorname{ord}_{w}(\mathfrak{a}) & \text { if } \xi=0 \text { and } \operatorname{ord}_{w}(\mathfrak{a}) \text { is even and nonnegative, } \\ 0 & \text { otherwise }\end{cases}
$$

Proof This is our analogue of [34, Lemma 6.3.5]. Decompose

$$
P_{\chi, \mathfrak{a}}^{0}=\sum_{k=0}^{\infty} \mathfrak{P}_{k}^{0} \quad \text { and } \quad P_{\chi, \mathfrak{a}}=\sum_{k=0}^{\infty} \mathfrak{P}_{k}
$$

where \mathfrak{P}_{k}^{0} is the restriction of $P_{\chi, \mathfrak{a}}^{0}$ to points of w-conductor k, and similarly for \mathfrak{P}_{k}. By (5.2)

$$
\mathfrak{B}_{k}=\mathfrak{B}_{k}^{0}+ \begin{cases}r_{\chi}(\mathfrak{a}) P_{\chi} & \text { if } k=0 \\ 0 & \text { otherwise }\end{cases}
$$

and Proposition 5.3.1 gives

$$
\begin{aligned}
g\left(P_{\chi, \mathfrak{a}}^{0}, P_{\chi}\right)_{U, w^{\text {alg }}}= & \sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}
\end{aligned} \sum_{k=0}^{\infty}\left\langle\sigma_{*} \mathfrak{P}_{k}, \sigma_{*} P_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot M_{k}(\gamma), ~\left(r_{\chi}(\mathfrak{a}) \sum_{\gamma \in T(F) \backslash \backslash \tilde{G}(F) / T(F)}\left\langle\sigma_{*} P_{\chi}, \sigma_{*} P_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot M_{0}(\gamma) .\right.
$$

The next claim is that $\sigma_{*} \mathfrak{P}_{k}=c_{k} \tilde{P}_{\chi, \mathfrak{a}}$ where

$$
c_{k}= \begin{cases}{\left[\mathcal{O}_{E, w}^{\times}: A_{k}^{\times}\right]} & \text {if } \operatorname{ord}_{w}(\mathfrak{a})-k \text { is even and nonnegative } \\ 0 & \text { otherwise }\end{cases}
$$

To prove this define

$$
\begin{aligned}
H_{w}^{k}(\mathfrak{a}) & =\left\{h \in H_{w}(\mathfrak{a}) \mid h U_{w} h^{-1} \cap T\left(F_{w}\right)=A_{k}^{\times}\right\} \\
H^{k}(\mathfrak{a}) & =\left\{h \in H(\mathfrak{a}) \mid h_{w} \in H_{w}^{k}(\mathfrak{a})\right\} \\
\tilde{H}(\mathfrak{a}) & =\tilde{H}_{w}(\mathfrak{a}) \cdot \prod_{v \neq w} \sigma_{v}\left(H_{v}(\mathfrak{a})\right)
\end{aligned}
$$

where $\tilde{H}_{w}(\mathfrak{a})=\left\{h \in \tilde{R}_{w} \mid \tilde{\mathrm{N}}(h) \mathcal{O}_{F}=\mathfrak{a}_{v}\right\}$. The CM-cycles in question are now given by

$$
\begin{aligned}
& \mathfrak{P}_{k}(g)=\chi_{0}(\mathfrak{a}) \sum_{t \in T\left(\mathbb{A}_{f}\right) / U_{T}} \chi(t) \mathbf{1}_{H^{k}(\mathfrak{a})}\left(t^{-1} g\right), \\
& \tilde{P}_{\chi, \mathfrak{a}}(g)=\chi_{0}(\mathfrak{a}) \sum_{t \in T\left(\mathbb{A}_{f}\right) / U_{T}} \chi(t) \mathbf{1}_{\tilde{H}(\mathfrak{a})}\left(t^{-1} g\right)
\end{aligned}
$$

As in the proof of [34, Lemma 6.3.5] there is a decomposition

$$
G\left(F_{w}\right)=\bigsqcup_{k=0}^{\infty} T\left(F_{w}\right) h_{k} U_{w}
$$

where each $h_{k} \in R_{w}$ satisfies $\operatorname{ord}_{w}\left(\mathrm{~N}\left(h_{k}\right)\right)=k$ and $h_{k} U_{w} h_{k}^{-1} \cap T\left(F_{w}\right)=A_{k}^{\times}$. Fixing a uniformizer $\varpi \in F_{w}^{\times}$, we therefore find

$$
H_{w}^{k}(\mathfrak{a})= \begin{cases}\varpi^{\frac{\operatorname{ord}_{w}(\mathfrak{a})-k}{2}} \mathcal{O}_{E, w}^{\times} h_{k} U_{w} & \text { if } \operatorname{ord}_{w}(\mathfrak{a})-k \text { is even and nonnegative } \\ \varnothing & \text { otherwise }\end{cases}
$$

From this it follows that $\#\left(H_{w}^{k}(\mathfrak{a}) / U_{w}\right)=c_{k}$. Write $H_{w}^{k}(\mathfrak{a})=\bigsqcup_{i=1}^{c_{k}} s_{i} U_{w}$. For any $t \in T\left(\mathbb{A}_{f}\right)$ we have $\sigma_{w}\left(t s_{i}\right)=t \tilde{H}_{w}(\mathfrak{a})$, and hence $\sigma_{*} \mathbf{1}_{t H^{k}(\mathfrak{a})}=c_{k} \cdot \mathbf{1}_{t \tilde{H}(\mathfrak{a})}$ from which $\sigma_{*} \mathfrak{B}_{k}=c_{k} \tilde{P}_{\chi, \mathfrak{a}}$ follows immediately.

It follows from the above that

$$
\sum_{k=0}^{\infty}\left\langle\sigma_{*} \mathfrak{B}_{k}, \sigma_{*} P_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot M_{k}(\gamma)=\left\langle\tilde{P}_{\chi, \mathrm{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot \sum_{k=0}^{\infty} c_{k} \cdot M_{k}(\gamma)
$$

Assume $\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \neq 0$. Suppose first that γ is nondegenerate. In particular

$$
O_{\tilde{U}}^{\gamma}\left(\tilde{P}_{\chi, a, w}\right) \neq 0
$$

by (3.6), and so Proposition 3.3.1 implies that $\operatorname{ord}_{w}(\eta \mathfrak{a})$ and $\operatorname{ord}_{w}(\xi \mathfrak{a})-1$ are both even and nonnegative. If $\operatorname{ord}_{w}(\mathfrak{a})$ is odd, then $\operatorname{ord}_{w}(\eta)$ is odd, and as $\eta+\xi=1$, we must have $\operatorname{ord}_{w}(\xi)=0$. Thus

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{k} \cdot M_{k}(\gamma)=\#\left\{k \mid 1 \leq k \leq \operatorname{ord}_{w}(\mathfrak{a}), k \text { odd }\right\}=m_{\mathfrak{a}}(\gamma) \tag{5.4}
\end{equation*}
$$

If $\operatorname{ord}_{w}(\mathfrak{a})$ is even, then

$$
\sum_{k=0}^{\infty} c_{k} \cdot M_{k}(\gamma)=\frac{\operatorname{ord}_{w}(\xi)+1}{2}+\#\left\{k \mid 1 \leq k \leq \operatorname{ord}_{w}(\mathfrak{a}), k \text { even }\right\}=m_{\mathfrak{a}}(\gamma)
$$

Now suppose γ is degenerate, so that $\tilde{P}_{\chi, \mathfrak{a}}(\gamma) \neq 0$ by Lemma 3.2.1. If $\xi=0$, then we may assume $\gamma=1$ so that Lemma 3.3.5 $\operatorname{implies}^{\operatorname{ord}}{ }_{w}(\mathfrak{a})$ is even. Thus

$$
\sum c_{k} \cdot M_{k}(\gamma)=\#\left\{k \mid 1 \leq k \leq \operatorname{ord}_{w}(\mathfrak{a}), k \text { even }\right\}=m_{\mathfrak{a}}(\gamma)
$$

If $\xi=1$, then similarly $\operatorname{ord}_{w}\left(\mathfrak{a e}^{-1}\right)=\operatorname{ord}_{w}(\mathfrak{a})-1$ is even and so again (5.4) holds.

Corollary 5.3.3 Suppose \mathfrak{a} is prime to $\mathfrak{d r}$. Then

$$
2^{[F: \mathbb{Q}]+1} \log |\varpi|_{w} \cdot g\left(P_{\chi}, P_{\chi, \mathfrak{a}}^{0}\right)_{U, w^{\operatorname{ldg}}}=\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] H_{F} \lambda_{U}^{-1} \cdot \mathrm{~N}(\mathfrak{a}) \widehat{B}^{w}\left(\mathfrak{a} ; \Phi_{\mathfrak{r}}\right)+A(\mathfrak{a})
$$

where $A(\mathfrak{a})$ is a derivation of $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}$ in the sense of $[34$, Definition 3.5.3].

Proof Fix a nondegenerate $\gamma \in \tilde{G}(F)$ and an $a \in \mathbb{A}^{\times}$with $a \mathcal{O}_{F}=\mathfrak{a}$. For any place v of F, Lemma 3.1.1 and the definition of \tilde{B} give

$$
\omega_{v}(-\eta \xi)=\epsilon_{v}(1 / 2, \mathfrak{r}) \cdot \begin{cases}-1 & \text { if } v=w \\ 1 & \text { if } v \neq w\end{cases}
$$

Thus $\operatorname{Diff}_{\mathrm{r}}(\eta, \xi)=\{w\}$, and conversely a pair $\eta, \xi \in F^{\times}$with $\eta+\xi=1$ arises from some choice of nondegenerate $\gamma \in \tilde{G}(F)$ if and only if $\operatorname{Diff}_{\mathfrak{r}}(\eta, \xi)=\{w\}$. Comparing Propositions 2.6.1 and 3.3.1, and recalling (5.3), we find

$$
B_{w}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}^{\prime}\right)=|a|_{w} \tau_{w}(\gamma) \cdot O_{\tilde{U}}^{\gamma}\left(\tilde{P}_{\chi, \mathfrak{a}, w}\right) \cdot m_{\mathfrak{a}}(\gamma) \log \left|\varpi^{2}\right|_{w}
$$

On the other hand, for any finite place $v \neq w$ we have, using (5.3) and Corollaries 3.3.4 and 3.4.3,

$$
\left[\mathcal{O}_{E, v}^{\times}: \mathcal{O}_{F, v}^{\times} U_{T, v}\right] B_{v}\left(a, \eta, \xi ; \Theta_{\mathfrak{r}}\right)=|a|_{v} \tau_{v}(\gamma) \cdot O_{\tilde{U}}^{\gamma}\left(\tilde{P}_{\chi, \mathfrak{a}, v}\right)
$$

Using (2.9), Lemma 3.1.2, and (3.6) we find

$$
\left[\widehat{\mathcal{O}_{E}^{\times}}: U_{T}\right] H_{F} \lambda_{U}^{-1} \cdot \mathrm{~N}(\mathfrak{a}) \widehat{B}^{w}\left(\mathfrak{a}, \Phi_{\mathfrak{r}}\right)=2^{[F: \mathbb{Q}]+1} \log |\varpi|_{w} \sum\left\langle\tilde{P}_{\chi}, \tilde{P}_{\chi, \mathfrak{a}}\right\rangle_{\tilde{U}}^{\gamma} \cdot m_{\mathfrak{a}}(\gamma)
$$

where the sum is over all nondegenerate $\gamma \in T(F) \backslash \tilde{G}(F) / T(F)$. If γ is degenerate, then $\left\langle\tilde{P}_{\chi}, \tilde{P}_{\chi, \mathfrak{a}}\right\rangle_{\tilde{U}}^{\gamma} \cdot m_{\mathfrak{a}}(\gamma)$ is a derivation of $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}$ (using Lemma 3.2.1 and Corollaries 3.3.8 and 3.4.5). Thus the claim follows from Proposition 5.3.2.

5.4 Intersections at Nonsplit Primes Dividing br

Suppose that w is a place of F which is nonsplit in E with $w \mid \mathfrak{D r}$ and fix a place $w^{\text {alg }}$ of $F^{\text {alg }}$ above w. Again let \tilde{B} be the quaternion algebra over F obtained from B by interchanging invariants at w and w_{∞}, so that $\left\{\right.$ places v of $\left.F \mid \tilde{B}_{v} \not \approx B_{v}\right\}=\left\{w, w_{\infty}\right\}$. Fix an embedding $E \rightarrow \tilde{B}$ and for each finite place $v \neq w$ let σ_{v} and $\tilde{\epsilon}_{v}$ be as in $\S 5.3$. Choose $\tilde{\epsilon}_{w}$ so that $\tilde{B}_{w}^{-}=E_{w} \tilde{\epsilon}_{w}$ and

$$
\operatorname{ord}_{w}\left(\mathrm{~N}\left(\tilde{\epsilon}_{w}\right)\right)=\operatorname{ord}_{w}(\mathfrak{r})+ \begin{cases}1 & \text { if } w \nmid \mathfrak{D} \\ 0 & \text { otherwise }\end{cases}
$$

Let \mathfrak{a} be prime to $\mathfrak{d r}$. As in $\S 5.3$, for any finite place v we may repeat the constructions of $\S 3.3$ and $\S 3.4$ with B replaced by \tilde{B} and ϵ_{v} replaced by $\tilde{\epsilon}_{v}$, giving a compact open subgroup $\tilde{U}_{v} \subset \tilde{G}\left(\mathbb{A}_{f}\right)$ and a function $\tilde{P}_{\chi, \mathfrak{a}, v}$ on $\tilde{G}\left(F_{v}\right) / \tilde{U}_{v}$ for each v. Taking the product over all finite v gives a CM-cycle $\tilde{P}_{\chi, \mathfrak{a}}$ of level \tilde{U}.

Define the w-special CM points of level U, denoted C_{U}^{0}, to be the image of

$$
T\left(F_{w}\right) \times G\left(\mathbb{A}_{f}^{w}\right) \rightarrow C_{U}
$$

where $\mathbb{A}_{f}^{w}=\left\{x \in \mathbb{A}_{f} \mid x_{w}=0\right\}$. By a w-special CM cycle we mean a CM cycle supported on w-special points. Define $C_{\tilde{U}}^{0}$ similarly, and note that there are bijections

$$
C_{U}^{0} \cong T^{0}(F) \backslash G\left(\mathbb{A}_{f}^{w}\right) / U^{w} \cong T^{0}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}^{w}\right) / \tilde{U}^{w} \cong C_{\tilde{U}}^{0}
$$

where $U^{w}=\prod_{v \neq w} U_{v}$ and similarly for \tilde{U}^{w}, and $T^{0}(F)$ is defined as

$$
T(F) \cap U_{w}=T(F) \cap\left(1+\mathfrak{c} \mathcal{O}_{E, w}\right)^{\times}=T(F) \cap \tilde{U}_{w}
$$

Thus we may identify w-special cycles of level U with w-special cycles of level \tilde{U}, and we denote this bijection by $P \mapsto \sigma_{*} P$. As \mathfrak{a} is prime to $\mathfrak{d r}, \operatorname{ord}_{w}(\mathfrak{a})=0$, and it follows from the construction that $P_{\chi, \mathfrak{a}}$ is w-special. It is easy to see that $\sigma_{*} P_{\chi, \mathfrak{a}}=\tilde{P}_{\chi, \mathfrak{a}}$ (as one only needs to check equality locally at $v \neq w$).

Proposition 5.4.1 Suppose P and Q are w-special CM cycles of level U with disjoint support. There is a locally constant function (independent of P and Q) $K(x, y)$ on $\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)$ such that

$$
\begin{aligned}
& g(P, Q)_{U, \text { walg }}=\sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}\left\langle\sigma_{*} P, \sigma_{*} Q\right\rangle_{\tilde{U}}^{\gamma} \cdot M(\gamma) \\
&+\int_{\left[T(F) \backslash \tilde{G}\left(A_{f}\right)\right]^{2}}\left(\sigma_{*} P\right)(x) K(x, y) \overline{\left(\sigma_{*} Q\right)(y)} d x d y
\end{aligned}
$$

where

$$
M(\gamma)= \begin{cases}\frac{\operatorname{ord}_{w}(\xi)}{2} & \text { if } \xi \neq 0 \text { and } \operatorname{ord}_{w}(\xi)>0 \\ 0 & \text { otherwise }\end{cases}
$$

Proof See [34, Lemmas 6.3.7, 6.3.8].
Proposition 5.4.2 If a is prime to $\mathfrak{d r}$, then

$$
\begin{aligned}
g\left(P_{\chi, \mathfrak{a}}^{0}, P_{\chi}\right)_{U, w^{\text {alg }}}=\kappa \cdot r_{\chi}(\mathfrak{a})+ & \sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot m(\gamma) \\
& +\int_{\left[T(F) \backslash \tilde{G}\left(A_{f}\right)\right]^{2}} \tilde{P}_{\chi, \mathfrak{a}}(x) K(x, y) \tilde{P}_{\chi}(y) \\
& d x d y
\end{aligned}
$$

where $K(x, y)$ is a locally constant function on $\left[\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)\right]^{2}$ and

$$
m(\gamma)=\frac{1}{2} \begin{cases}\operatorname{ord}_{w}\left(\xi \mathfrak{r}^{-1}\right)+1 & \text { if } \xi \neq 0, \operatorname{ord}_{w}(\xi) \geq 0, \text { and } w \mid \mathfrak{r} \\ \operatorname{ord}_{w}(\xi \mathfrak{D}) & \text { if } \xi \neq 0, \operatorname{ord}_{w}(\xi) \geq 0, \text { and } w \mid \mathfrak{D} \\ 0 & \text { otherwise }\end{cases}
$$

Proof It follows from (5.2) and Proposition 5.4.1 that the claim holds if one replaces $m(\gamma)$ with $M(\gamma)$. Thus if we set $m^{\prime}=m-M$, it suffices to show that

$$
\sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot m^{\prime}(\gamma)=\int_{T(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)} \tilde{P}_{\chi, \mathfrak{a}}(x) k(x, y) \overline{\tilde{P}_{\chi}(y)} d x d y
$$

for k some locally constant function on $\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)$. Note that m^{\prime} is locally constant for the topology on $G(F)$ induced from $G\left(F_{w}\right)$ (i.e., m and M have the same singularity near $\xi=0$) and let $\tilde{U}_{w}^{\prime} \subset \tilde{U}_{w}$ be small enough that m^{\prime} is a constant, μ, on \tilde{U}_{w}^{\prime}. Let \tilde{U}^{\prime} be the subgroup obtained by shrinking the w-component of \tilde{U} from \tilde{U}_{w} to \tilde{U}_{w}^{\prime}. The crucial point is that on the image of $\{1\} \times \tilde{G}\left(\mathbb{A}^{w}\right) \rightarrow C_{\tilde{U}}$, we have

$$
k_{\tilde{U}}^{m^{\prime}}(x, y)=k_{\tilde{U}}^{\mu}(x, y)
$$

where $k_{\tilde{U}}^{\mu}$, is the kernel (3.2) constructed with constant multiplicity function μ. The w-special CM-cycles $\tilde{P}_{\chi, \mathfrak{a}}$ and \tilde{P}_{χ} are supported on the image of $T\left(F_{w}\right) \times \tilde{G}\left(\mathbb{A}^{w}\right)$ in $C_{\tilde{U}^{\prime}}$, which equals the image of $\{1\} \times \tilde{G}\left(\mathbb{A}^{w}\right)$ as $T\left(F_{w}\right) \subset T(F) \tilde{U}_{w}^{\prime}$. Therefore the pairings (3.4) satisfy

$$
\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}^{\prime}}^{m^{\prime}}=\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}^{\prime}}^{\mu}
$$

and it follows that $\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{m^{\prime}}=\left\langle\tilde{P}_{\chi, \mathfrak{a}}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\mu}$ (replacing \tilde{U}^{\prime} by \tilde{U} changes each pairing by a constant depending on the normalizations of measures in $\S 3.2$ but not on the multiplicity function). As the multiplicity function μ is constant, the kernel $k_{\tilde{U}}^{\mu}$ is right $\tilde{G}(F)$-invariant, and we take $k=k_{\tilde{U}}^{\mu}$.

Corollary 5.4.3 Define a function $\mathcal{P}_{\bar{\chi}}$ on $S_{\tilde{U}}=\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right) / \tilde{U}$ by

$$
\mathcal{P}_{\bar{\chi}}(g)=\sum_{\gamma \in T(F) \backslash G(F)} \overline{\tilde{P}_{\chi}(\gamma g)} .
$$

For any a prime to $\mathfrak{b r}$

$$
\begin{aligned}
& 2^{[F: \mathbb{Q}]+1}|d|^{1 / 2} \log |\varpi|_{w} \cdot g\left(P_{\chi}, P_{\chi, \mathfrak{a}}^{0}\right)_{U, w^{\text {alg }}} \\
& \quad=\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] H_{F} \lambda_{U}^{-1} \cdot \mathrm{~N}(\mathfrak{a}) \widehat{B}^{w}\left(\mathfrak{a} ; \Phi_{\mathfrak{r}}\right)+A(\mathfrak{a})+\int_{\tilde{G}(F) \backslash \tilde{G}\left(A_{f}\right)}\left(T_{\mathfrak{a}} \mathcal{P}_{\bar{\chi}}\right)(x) \cdot g(x) d x,
\end{aligned}
$$

where $A(\mathfrak{a})$ is a derivation of $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}, g(x)$ is a locally constant function on $\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)$, and $T_{\mathfrak{a}}$ is the Hecke operator on $L^{2}\left(S_{\tilde{U}}\right)$ defined in §4.3.
Proof This is deduced from Proposition 5.4.2 exactly as in the proof of Corollary 5.3.3, taking $g(x)=\int_{T(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)} \overline{K(x, y)} \tilde{P}_{\chi}(y) d y$.

5.5 Archimedean Intersections

Let w be an archimedean place of F and choose a place $w^{\text {alg }}$ of $F^{\text {alg }}$ above w. If $w=w_{\infty}$ is the archimedean place at which B is split, then set $\tilde{B}=B$. If $w \neq w_{\infty}$, then let \tilde{B} be the quaternion algebra obtained from B be interchanging invariants at w and w_{∞} as in $\S 5.3$. As in $\S 5.3$ fix an embedding $E \rightarrow \tilde{B}$ and, for every finite place v of F, choose $\sigma_{v}: B_{v} \cong \tilde{B}_{v}$ compatible with the embeddings of E_{v} into B_{v} and \tilde{B}_{v}. Define $\tilde{\epsilon}_{v}=\sigma_{v}\left(\epsilon_{v}\right)$, set $\tilde{U}_{v}=\sigma_{v}\left(U_{v}\right)$, and let σ_{*} denote the induced isomorphism from CM cycles of level U on G to CM cycles of level \tilde{U} on \tilde{G}.

For $\gamma \in \tilde{G}(F)$ view $\xi \in F$ as a real number using the embedding $F \rightarrow \mathbb{R}$ determined by w and define

$$
m_{s}(\gamma)= \begin{cases}Q_{s}(1-2 \xi) & \text { if } \xi<0 \\ 0 & \text { otherwise }\end{cases}
$$

where Q_{s} is defined by $[34,(6.3 .3)]$, and a function on $\tilde{G}\left(\mathbb{A}_{f}\right) \times \tilde{G}\left(\mathbb{A}_{f}\right)$

$$
k_{\tilde{U}}^{s}(x, y)=\sum_{\gamma \in \tilde{G}(F) /(Z(F) \cap \tilde{U})} \mathbf{1}_{\tilde{U}}\left(x^{-1} \gamma y\right) m_{s}(\gamma)
$$

We now recall the statement of [34, Lemma 6.3.1]. For any distinct points $P, Q \in C_{U}$ the sum defining $k_{\tilde{U}}^{s}\left(\sigma_{*} P, \sigma_{*} Q\right)$ is convergent for $\operatorname{Re}(s)>0$ and extends to a meromorphic function in a neighborhood of $s=0$ with a simple pole at $s=0$. Thus for any CM-cycles P and Q of level U the pairing $\left\langle\sigma_{*} P, \sigma_{*} Q\right\rangle_{\tilde{U}}^{m_{s}}$ of (3.4) has meromorphic continuation with a pole of order at most 1 at $s=0$, and moreover

$$
g(P, Q)_{U, w^{\mathrm{alg}}}=\operatorname{const}_{s \rightarrow 0}\left\langle\sigma_{*} P, \sigma_{*} Q\right\rangle_{\tilde{U}}^{m_{s}} .
$$

In particular, if \mathfrak{a} is prime to $\mathfrak{d r}$, then

$$
\begin{equation*}
g\left(P_{\chi, \mathfrak{a}}^{0}, P_{\chi}\right)_{U, w^{\operatorname{ldg}}}=\text { const }_{s \rightarrow 0} \sum_{\gamma \in T(F) \backslash \tilde{G}(F) / T(F)}\left\langle\tilde{P}_{\chi, \mathfrak{a}}^{0}, \tilde{P}_{\chi}\right\rangle_{\tilde{U}}^{\gamma} \cdot m_{s}(\gamma), \tag{5.5}
\end{equation*}
$$

where $\tilde{P}_{\chi, \mathfrak{a}}^{0}=\sigma_{*} P_{\chi, \mathfrak{a}}^{0}$ is the cycle defined by replacing U by \tilde{U} and B by \tilde{B} in the definition of $P_{\chi, \alpha}^{0}$, and similarly for \tilde{P}_{χ}.
Corollary 5.5.1 For any a prime to $\mathfrak{b r}$

$$
-2^{[F: \mathbb{Q}]+1}|d|^{1 / 2} g\left(P_{\chi}, P_{\chi, \mathfrak{a}}^{0}\right)_{U, w^{\text {ald }}}=\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] H_{F} \lambda_{U}^{-1} \mathrm{~N}(\mathfrak{a}) \cdot \operatorname{const}_{s \rightarrow 0} \widehat{B}^{w}\left(s, \mathfrak{a} ; \Phi_{\mathfrak{r}}\right)
$$

up to a derivation of $\Pi_{\bar{\chi}} \otimes|\cdot|{ }^{1 / 2}$.
Proof Suppose $\operatorname{Re}(\sigma)>0$ and for any $\gamma \in \tilde{G}(F)$ write $M_{s}(\gamma)=M_{s}\left(\xi_{w}\right)$ where the M_{σ} on the right is the function on \mathbb{R} defined in $\S 2.6$. Combining (2.10) with Corollaries 3.3.4 and 3.4.3, and arguing as in the proof of Corollary 5.3.3, we find

$$
\begin{aligned}
{\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T} \widehat{\mathcal{O}_{F}^{\times}}\right] } & \mathrm{N}(\mathfrak{a}) \widehat{B}^{w}\left(s, \mathfrak{a} ; \Phi_{\mathfrak{r}}\right) \\
& =(-2 i)^{[F: \mathbb{Q}]} \omega_{\infty}(\delta)|d|^{1 / 2} \sum|\eta \xi|_{\infty}^{1 / 2} M_{s}(\gamma) \prod_{v \nmid \infty} \overline{\tau_{v}(\gamma)} \cdot \overline{O_{v}^{\gamma}\left(\tilde{P}_{\chi, \mathfrak{a}, v}\right)},
\end{aligned}
$$

where the sum is over all nondegenerate $\gamma \in T(F) \backslash \tilde{G}(F) / T(F)$. By Lemma 3.1.2 we have

$$
\prod_{\nu \nmid \infty} \tau_{v}(\gamma)=\omega_{\infty}(\delta)(-i)^{[F: \mathbb{Q}]}|\eta \xi|_{\infty}^{-1 / 2}
$$

and combining this with (3.6) gives

$$
\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] H_{F} \lambda_{U}^{-1} \mathrm{~N}(\mathfrak{a}) \widehat{B}^{W}\left(s, \mathfrak{a} ; \Phi_{\mathrm{r}}\right)=2^{[F: \mathbb{Q}]}|d|^{1 / 2} \sum\left\langle\tilde{P}_{\chi}, \tilde{P}_{\chi, \mathfrak{a}}\right\rangle_{\tilde{U}}^{\gamma} \cdot M_{s}(\gamma),
$$

where the sum is again over all nondegenerate γ as above. By the argument in the proof of [34, Lemma 6.4.1], the constant term as $s \rightarrow 0$ is unchanged if we replace $M_{s}(\gamma)$ by $-2 m_{s}(\gamma)$. Adding in the terms corresponding to the two degenerate choices of γ add derivations of $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}$, as in the proof of Corollary 5.3.3, and replacing $\tilde{P}_{\chi, \mathrm{a}}$ by $\tilde{P}_{\chi, \mathrm{a}}^{0}$ also adds a derivation of $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}$, by (5.2) with P replaced by \tilde{P}. Thus the claim follows from (5.5).

5.6 The Twisted Gross-Zagier Theorem

Let \mathbb{T} denote the \mathbb{Z}-algebra generated by the Hecke operators $T_{\mathfrak{a}}$ and the nebentype operators $(\langle\mathfrak{a}\rangle \phi)(g)=\phi(g a)$, where $a \mathcal{O}_{F}=\mathfrak{a}$ and $a_{v}=1$ for $v \mid \infty$, acting on holomorphic automorphic forms on $\mathrm{GL}_{2}(\mathbb{A})$ of parallel weight 2 and level $K_{1}(\mathrm{Dr})$. Let ϕ_{Π} denote the normalized newform in Π. The \mathbb{C}-algebra $\mathbb{T}_{\mathbb{C}}=\mathbb{T} \otimes_{\mathbb{Z}} \mathbb{C}$ is semisimple, and we let \mathbb{T}_{Π} be the maximal summand of $\mathbb{T}_{\mathbb{C}}$ in which

$$
T_{\mathfrak{a}}=\widehat{B}\left(\mathcal{O}_{F} ; T_{\mathfrak{a}} \phi_{\Pi}\right) \quad\langle\mathfrak{a}\rangle=\chi_{0}^{-1}(\mathfrak{a}) .
$$

Let e_{Π} be the idempotent in $\mathbb{T}_{\mathbb{C}}$ satisfying $e_{\Pi} \mathbb{T}_{\mathbb{C}}=\mathbb{T}_{\Pi}$. It follows from the JacquetLanglands correspondence and the Eichler-Shimura theory that there is a ring homomorphism $\mathbb{T} \rightarrow \operatorname{End}\left(J_{U}\right)$ taking $T_{\mathfrak{a}} \mapsto T_{\mathfrak{a}}^{\mathrm{Alb}}$ and $\langle\mathfrak{a}\rangle \mapsto\langle\mathfrak{a}\rangle^{\mathrm{Alb}}$, and so $\mathbb{T}_{\mathbb{C}}$ acts on $J_{U}\left(E_{\chi}\right) \otimes_{\mathrm{Z}} \mathbb{C}$.

Proposition 5.6.1 Abbreviating $P_{\chi, \Pi}=e_{\Pi} \cdot \operatorname{Hg}\left(P_{\chi}\right)$,

$$
\frac{2^{|S|} H_{F}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right]}{\lambda_{U}\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\mathfrak{D r})}^{2}} \widehat{B}\left(\mathcal{O}_{F}, \phi_{\Pi}^{\#}\right) L^{\prime}\left(1 / 2, \Pi \times \Pi_{\chi}\right)=2^{[F: \mathbb{Q}]+1}|d|^{1 / 2}\left\langle P_{\chi, \Pi}, P_{\chi, \Pi}\right\rangle_{U}^{\mathrm{NT}}
$$

Proof This follows easily from the formulae of the previous subsections, exactly as in $[34, \S 6.4]$, "Conclusion of the Proof of Theorem 1.3.2". We quickly sketch the argument.

Suppose \mathfrak{a} is prime to $\mathfrak{d r}$. Using the argument of [34, Lemma 6.2.2], up to sums of derivations of principal series and $\Pi_{\bar{\chi}} \otimes|\cdot|^{1 / 2}$ we have

$$
\begin{aligned}
\left\langle T_{\mathfrak{a}}^{\mathrm{Alb}} \operatorname{Hg}\left(P_{\chi}\right), \operatorname{Hg}\left(P_{\chi}\right)\right\rangle_{U}^{\mathrm{NT}} & =\left\langle\operatorname{Hg}\left(P_{\chi}\right), T_{\mathfrak{a}}^{\mathrm{Pic}} \operatorname{Hg}\left(P_{\chi}\right)\right\rangle_{U}^{\mathrm{NT}} \\
& =\left\langle\operatorname{Hg}\left(P_{\chi}\right), \operatorname{Hg}\left(P_{\chi, \mathfrak{a}}\right)\right\rangle_{U}^{\mathrm{NT}} \\
& =-\sum_{w} d_{w} \cdot g\left(P_{\chi}, P_{\chi, \mathfrak{a}}^{0}\right)_{U, w^{\mathrm{alg}}}
\end{aligned}
$$

where the sum is over all places w of F, and where for each w we fix an extension $w^{\text {alg }}$ to $F^{\text {alg }}$. Exactly as in [34, Lemma 6.3.4], the nonarchimedean places w, which split in E, contribute derivations of principal series and $\Pi_{\bar{\chi}} \otimes|\cdot|{ }^{1 / 2}$, and so we may omit
such places in the above summation. Combining Corollaries 5.3.3, 5.4.3, and 5.5.1 with Proposition 2.6.2, we find

$$
2^{[F: \mathbb{Q}]+1}|d|^{1 / 2}\left\langle T_{\mathfrak{a}}^{\mathrm{Alb}} \operatorname{Hg}\left(P_{\chi}\right), \operatorname{Hg}\left(P_{\chi}\right)\right\rangle_{U}^{\mathrm{NT}}=\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] H_{F} \lambda_{U}^{-1} \widehat{B}\left(\mathcal{O}_{F} ; T_{\mathfrak{a}} \Phi_{\mathrm{r}}\right)
$$

up to a sum of derivations of principal series, derivations of $\Pi_{\bar{\chi}} \otimes|\cdot|{ }^{1 / 2}$, and functions of the form

$$
\begin{equation*}
\int_{\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right)}\left(T_{\mathfrak{a}} \mathcal{P}_{\bar{\chi}}\right)(x) \cdot g(x) d x \tag{5.6}
\end{equation*}
$$

for $w \mid \mathfrak{D r}$ as in Corollary 5.4.3.
Let us consider (5.6) in more detail. Fix $w \mid \operatorname{Dr}$ and let \tilde{U}, \tilde{G}, and so on be as in $\S 5.4$. Let $S_{\tilde{U}}=\tilde{G}(F) \backslash \tilde{G}\left(\mathbb{A}_{f}\right) / \tilde{U}$ as in $\S 4.3$. It follows from the Jacquet-Langlands correspondence that the \mathbb{C}-algebra generated by the operators $T_{\mathfrak{a}}$ acting on $L^{2}\left(S_{\tilde{U}}\right)$ is a quotient of $\mathbb{T}_{\mathbb{C}}$. Thus it makes sense to form $e_{\Pi} \cdot \mathcal{P}_{\bar{\chi}} \in L^{2}\left(S_{\tilde{U}}\right)$, which is nothing more than the projection of $\mathcal{P}_{\bar{\chi}}$ to the automorphic representation $\tilde{\Pi}$ of $\tilde{G}(\mathbb{A})$ whose Jacquet-Langlands lift is Π. By construction the function $e_{\Pi} \cdot \mathcal{P}_{\bar{\chi}}$ has character χ_{w}^{-1} under right multiplication by $T\left(F_{w}\right)$. On the other hand, if Π^{\prime} is the automorphic representation of $G(\mathbb{A})$ whose Jacquet-Langlands lift is Π, then Π^{\prime} contains a nonzero vector on which $T\left(F_{w}\right)$ acts through χ_{w}^{-1} (as Π_{w}^{\prime} admits a toric newvector in the sense of $\S 4.2$). Thus if $e_{\Pi} \mathcal{P}_{\bar{\chi}} \neq 0$ we would have nonzero vectors in both $\tilde{\Pi}_{w}$ and Π_{w}^{\prime} on which $T\left(F_{w}\right)$ acts through χ_{w}^{-1}. This contradicts results of Saito, Tunnell, and Waldspurger (as described in [11, §10] or [12, Proposition 1.1], and using [32, Lemme 9 (iii)] to relate $T\left(E_{w}\right)$-invariants to $T\left(E_{w}\right)$-coinvariants), and so $e_{\Pi} \mathcal{P}_{\bar{\chi}}=0$.

We now deduce, using [35, Proposition 4.5.1] for the vanishing of derivations of principal series and theta series, that

$$
2^{[F: \mathbb{Q}]+1}|d|^{1 / 2}\left\langle e_{\Pi} \operatorname{Hg}\left(P_{\chi}\right), \operatorname{Hg}\left(P_{\chi}\right)\right\rangle_{U}^{\mathrm{NT}}=\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right] H_{F} \lambda_{U}^{-1} \widehat{B}\left(\mathcal{O}_{F} ; e_{\Pi} \Phi_{\mathrm{r}}\right)
$$

As $e_{\Pi} \Phi_{\mathrm{r}}$ is the projection of Φ_{r} to Π, the proof now follows from

$$
\widehat{B}\left(\mathcal{O}_{F} ; e_{\Pi} \Phi_{\mathrm{r}}\right) \cdot\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\mathrm{or})}^{2}=2^{|S|} \widehat{B}\left(\mathcal{O}_{F} ; \phi_{\Pi}^{\#}\right) L^{\prime}\left(1 / 2, \Pi \times \Pi_{\chi}\right)
$$

as in the proof of Proposition 4.3.2.
As above there is a ring homomorphism $\llbracket \rightarrow \operatorname{End}\left(J_{V}\right)$ taking $T_{\mathfrak{a}} \mapsto T_{\mathfrak{a}}^{\mathrm{Alb}}$ and $\langle\mathfrak{a}\rangle \mapsto\langle\mathfrak{a}\rangle^{\mathrm{Alb}}$, and so $\mathbb{T}_{\mathbb{C}}$ acts on $J_{V}\left(E_{\chi}\right) \otimes_{\mathbb{Z}} \mathbb{C}$.
Theorem 5.6.2 Abbreviate $Q_{\chi, \Pi}=e_{\Pi} H g\left(Q_{\chi}\right) \in J_{V}\left(E_{\chi}\right) \otimes_{\mathbb{Z}}(\mathbb{C}$.

$$
\frac{L^{\prime}\left(1 / 2, \Pi \times \Pi_{\chi}\right)}{\left\|\phi_{\Pi}\right\|_{K_{0}(\mathfrak{n})}^{2}}=\frac{2^{[F: \mathbb{Q}]+1}}{H_{F, \mathfrak{s}} \sqrt{\mathrm{~N}_{F / \mathbb{Q}}\left(\mathfrak{b c}^{2}\right)}}\left\langle Q_{\chi, \Pi}, Q_{\chi, \Pi}\right\rangle_{V}^{\mathrm{NT}}
$$

Proof Recall the constants $\mathbf{a}_{\Pi}, \mathbf{b}_{\Pi}$, and \mathbf{c}_{Π} of $\S 4.6$. The argument of $[36, \S 17]$ gives the first equality of

$$
\left\langle P_{\chi, \Pi}, P_{\chi, \Pi}\right\rangle_{U}^{N \mathrm{~T}} \cdot \mathbf{c}_{\Pi}=\left\langle\pi^{*} Q_{\chi, \Pi}, \pi^{*} Q_{\chi, \Pi}\right\rangle_{U}^{\mathrm{NT}}=\operatorname{deg}(\pi) \cdot\left\langle Q_{\chi, \Pi}, Q_{\chi, \Pi}\right\rangle_{V}^{\mathrm{NT}}
$$

where $\pi^{*}: J_{V} \rightarrow J_{U}$ is the morphism induced by the natural projection $\pi: X_{U} \rightarrow X_{V}$ of degree $\left[F^{\times} V: F^{\times} U\right]=[V: U] \lambda_{V} \lambda_{U}^{-1}$. It therefore follows from Proposition 5.6.1 that

$$
\mathbf{a}_{\Pi} \mathbf{c}_{\Pi} \frac{2^{|S|} H_{F}\left[\widehat{\mathcal{O}}_{E}^{\times}: U_{T}\right]}{[V: U] \lambda_{V}} \frac{L^{\prime}\left(1 / 2, \Pi \times \Pi_{\chi}\right)}{\left\|\phi_{\Pi}^{\#}\right\|_{K_{0}(\mathfrak{n})}^{2}}=\frac{\mathbf{b}_{\Pi} 2^{[F: \mathbb{Q}]+1}}{\sqrt{\mathrm{~N}_{F / \mathbb{Q}}(\mathfrak{D})}}\left\langle Q_{\chi, \Pi}, Q_{\chi, \Pi}\right\rangle_{V}^{\mathrm{NT}^{2}}
$$

and so the theorem follows from the equality of rational functions $\kappa \prod \mathbf{a}_{v} \mathbf{c}_{v}=\prod \mathbf{b}_{v}$ proved in §4.6.

Acknowledgement The author thanks Shou-Wu Zhang for many very helpful conversations.

References

[1] M. Bertolini and H. Darmon, The p-adic L-functions of modular elliptic curves. In: Mathematics Unlimited-2001 and Beyond, Springer, Berlin, 2001 pp. 109-170.
[2] \longrightarrow Iwasawa's main conjecture for elliptic curves over anticyclotomic \mathbb{Z}_{p}-extensions. Ann. of Math. 162(2005), no. 1, 1-64.
[3] H. Carayol, Sur la mauvaise réduction des courbes de Shimura. Compositio Math. 59(1986), no. 2, 151-230.
[4] C. Cornut and V. Vatsal, CM points and quaternion algebras. Doc. Math. 10(2005), 263-309 (electronic).
[5] ,Nontriviality of Rankin-Selberg L-functions and CM points. In: L-Functions and Galois Representations, London Math. Soc. Lecture Note Ser. 320. Cambridge University Press, Cambridge, 2007, pp. 121-186.
[6] S. Gelbart, Lectures on the Arthur-Selberg Trace Formula. University Lecture Series 9. American Mathematical Society, Providence, RI, 1996.
[7] S. Gelbart and H. Jacquet, Forms of GL(2) from the analytic point of view. In: Automorphic Forms, Representations and L-Functions, Proc. Sympos. Pure Math. 33, American Mathematical Society, Providence, RI, 1979, pp. 213-251.
[8] H. Gillet and C. Soulé, Arithmetic intersection theory. Inst. Hautes Études Sci. Publ. Math. 72(1990), 93-174.
[9] B. Gross, Heights and the special values of L-series. In: Number Theory, CMS Conf. Proc. 7, American Mathematical Society, Providence, RI, 1987, pp. 115-187.
[10] Local orders, root numbers, and modular curves. Amer. J. Math. 110(1988), no. 6, 1153-1182.
[11] , Heegner points and representation theory. In: Heegner points and Rankin L-series, Math. Sci. Res. Inst. Publ. 49, Cambridge University Press, Cambridge, 2004, pp. 37-65.
[12] B. Gross and D. Prasad, Test vectors for linear forms. Math. Ann. 291(1991), no. 2, 343-355.
[13] B. Gross and D. Zagier, Heegner points and derivatives of L-series. Invent. Math. 84(1986), NO. 2, 225-320.
[14] B. Howard, Central derivatives of L-functions in Hida families. Math. Ann. 399(2007), no. 4, 803-818.
[15] \longrightarrow, Variation of Heegner points in Hida families. Invent. Math. 167(2007), no. 1, 91-129.
[16] H. Jacquet and R. P. Langlands, Automorphic forms on GL(2). Lecture Notes in Mathematics 114, Springer-Verlag, Berlin, 1970.
[17] B. Jordan and R. Livné, Integral Hodge theory and congruences between modular forms. Duke Math. J. 80(1995), no. 2, 419-484.
[18] S. Kudla, Tate's thesis. In: An Introduction to the Langlands Program, Birkhäuser Boston, Boston, MA, 2003, pp. 109-131..
[19] S. Lang, Introduction to Arakelov Theory. Springer-Verlag, New York, 1988.
[20] A. Lubotzky, Discrete Groups, Expanding Graphs and Invariant Measures. Progress in Mathematics 125, Birkhäuser Verlag, Basel, 1994.
[21] W. R. Mann, Appendix to B. Conrad, Gross-Zagier revisited. In: Heegner points and Rankin L-series, Math. Sci. Res. Inst. Publ. 49, Cambridge University Press, Cambridge, 2004, pp. 67-163.
[22] B. Mazur and A. Wiles, Class fields of abelian extensions of $(\mathbb{O}$. Invent. Math. 76(1984), no. 2, 179-330.
[23] J. Milne, Canonical models of (mixed) Shimura varieties and automorphic vector bundles. In: Automorphic Forms, Shimura Varieties, and L-Functions, Perspect. Math. 10, Academic Press, Boston, MA, 1990, pp. 283-414.
$[24] \longrightarrow$ Introduction to Shimura varieties. In: Harmonic Analysis, The Trace Formula, And Shimura Varieties, Clay Math. Proc. 4, American Mathematical Society, Providence, RI, 2005, pp. 265-378.
[25] T. Miyake, Modular Forms. Translated from the Japanese by Yoshitaka Maeda. Springer-Verlag, Berlin, 1989.
[26] J. Nekovář, Selmer Complexes. Astérisque, No. 310, 2006.
[27] The Euler system method for CM points on Shimura curves. In: L-Functions and Galois Representations. London Math. Soc. Lecture Note Ser. 320, Cambridge University Press, Cambridge, 2007, pp. 471-547.
[28] G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions. Publications of the Mathematical Society of Japan, No. 11, Iwanami Shoten, Tokyo, 1971.
[29] C. Soulé, Lectures on Arakelov geometry. Cambridge Studies in Advanced Mathematics 33, Cambridge University Press, Cambridge, 1992.
[30] V. Vatsal, Special values of anticyclotomic L-functions. Duke Math. J. 116(2003), no. 2. 219-261.
[31] \longrightarrow, Special value formulae for Rankin L-functions. In: Heegner Points and Rankin L-Serie Math. Sci. Res. Inst. Publ. 49, Cambridge University Press, Cambridge, 2004, pp. 165-190.
[32] J.-L. Waldspurger, Quelques propriétés arithmétiques de certaines formes automorphes sur GL(2). Compositio Math. 54(1985), no. 2, 121-171.
[33] A. Weil, Basic Number Theory. Reprint of the second (1973) edition. Classics in Mathematics. Springer-Verlag, Berlin, 1995.
[34] S.-W. Zhang, Gross-Zagier formula for GL 2 . Asian J. Math. 5(2001), no. 2, 183-290.
[35] —, Heights of Heegner points on Shimura curves. Ann. of Math. 153(2001), no. 1, 27-147.
[36] , Gross-Zagier formula for GL(2). II. In: Heegner Points and Rankin L-Series, Math. Sci. Res. Inst. Publ. 49, Cambridge University Press, Cambridge, 2004, pp. 191-214.

Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA
e-mail: howardbe@bc.edu

[^0]: Received by the editors November 20, 2006.
 This research was supported in part by NSF grant DMS-0556174.
 AMS subject classification: Primary: 11G18; secondary: 14G35.
 (C)Canadian Mathematical Society 2009.

