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BOUNDED ENDOMORPHISMS OF LATTICES OF 
FINITE HEIGHT 

M. E. ADAMS AND J. SICHLER 

Every monoid M is isomorphic to the monoid Endo,i(£) of all (0,1)-preserving 
endomorphisms of a bounded lattice L, see [3]. The lattices L with 
M ~ Endo,i(£) that are constructed there are of an arbitrary infinite cardi
nality not smaller than that of M, and they all have infinite chains. The aim of 
the present article is to supplement these results. It will be shown that every 
finite monoid M is representable as Endo,i(£) of a finite lattice. In addition, an 
account of the difficulties involved in attempting to characterize endomorphism 
monoids of lattices of a fixed finite height will be given. 

1. Definitions and notation. A bounded lattice L is, as usual, a lattice with 
a largest element 1 and a smallest element 0; only bounded lattices will be 
considered here. An endomorphism f of L is a bounded endomorphism, or a (0,1)-
preserving endomorphism if /(0) = 0 a n d / ( l ) = 1; if {a, b} is a complemented 
pair of elements of L, so is the pair {/(#),/(&)}. The set C(L) of all comple
mented pairs of a bounded lattice L can be viewed as an undirected graph 
whose vertex set is the underlying set of L. If L is nontrivial, then C(L) is a 
graph with no loops, and one of the components (i.e., maximal connected 
subsets) of C(L) is the two-element set {0, 1}. It is clear that every bounded 
endomorphism of L induces a unique graph endomorphism of C(L). Let 
G = (AT, R) be a graph without loops; i.e., let X be the vertex set of G and let 
the set R of all edges of G consist of two-element subsets of X. The chromatic 
number of G is the smallest number n > 1 for which there exists a graph homo-
morphism (compatible mapping) of G into the complete graph Kn without 
loops on n vertices. A finite set Y C X is said to be an independent set of G if it 
contains no element of R. Thus 0 and every singleton {x} are independent sets 
of a graph G without loops and the system 1(G) oc all independent sets of G is 
hereditary. 

A chain Cn+\ of n + 1 elements is said to have length n. A lattice L has finite 
height n if Cn+i C L and no chain of L is of length exceeding n. Any finite 
lattice is an example of a bounded lattice of finite height. 

A semigroup with an identity element is called a monoid] a transformation 
monoid is a pair (AT, M) in which X is a set and M C Xx is a set of transforma
tions of X closed under composition and containing the identity transformation 
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lx of X. If L is a bounded lattice, then (L, End0 , i ( i )) is a transformation 
monoid. 

2. Endomorphism monoids of lattices of finite height. 

Definition. Let En be the class consisting of all (pairwise nonisomorphic) 
monoids M isomorphic to End0 ti(^) of a lattice L of height not larger than 
n ^ 1. Fn will denote the set of all M £ En representable by bounded endo-
morphisms of a finite lattice of height ^n. 

It is clear that Ei = Fi (each contains only the trivial monoid), and that 
En Ç En+1 and Fn Ç Fn+1 for all n ^ 1. The lattices of length two are exactly all 
lattices Ma with a > 0 atoms. Since Ma is simple for every cardinal a > 2, E2 

consists of the trivial monoid, End0)i(C3), Endo,i(C2 X C2), and all monoids of 
all one-to-one mappings into itself of a set X with more than two elements. 
Thus, for instance, the cyclic group of order two is not in E2, and F2 contains 
every finite symmetric group with more than two elements. Every En(n ^ 2) 
has infinite members; hence Fn is a proper subset of En for all n ^ 2. 

The following lemma is needed to show that En ^ En+i. 

LEMMA 1. For every n > 1 there is a finite monoid An such that An Ç M £ Ek 

only if k > n. 

Proof. Let An be generated by {a} and let an = an+l, that is, An = 
{I, a, a2, ... , an). Let An be isomorphic to a submonoid of Endo,i(£) and let 
/ G Endo,i(£) represent a; as an~l ^ an, there is an x G £ such that/n_10*0 ^ 
fn(x). Denote x = /°(x) and for every k Ç {0, 1, . . . , n} set 

&*=/*(*) V/*+*(*) V . . . V f ( x ) ( 

OK = /*(*) Af+1(x) A . . . A/ n (x) . 

It is easy to see that f(bk) = bk+i,f(ck) = ck+i for every & Ç {0, . . . , n — l j , and 
that 

(1) Co ^ ci ^ . . . ^ cn = /n(x) = 6„ g 6n_i ^ . . . ^ 60. 

We will show that the set of elements listed in (1) contains a chain of length n; 
this is certainly true if all elements bjy ck are distinct. If, on the other hand, 
bj = bj-i for some j £ {1, . . . , n], then/»- 1 ^) V fn(x) = &n_-i = fn-j(bj^) = 
fn~j(bj) = }n(x) and hencefn~l(x) ^ fnipc). In a similar way, ck^i = ^ for some 
& G {1, • . . , n\ impliesfn~l{x) ^ fn(x). Thus either {bn, . . . , b0] or {c0, . . . , cn) 
is a chain of length n contained inZ,. If the height of L is n, then either /w(0) = 1 
o r / n ( l ) = 0; therefore the height of L is strictly larger than n. 

PROPOSITION 2. En 7^ En+1 and Fn ^ Fn+1for all n ^ 1. 

Proof. The claim is clearly true for n = 1. If « > 1, let X = {x0, #1, . . . , xn\ 
be an (n + 1)-element set. It is well known that the distributive lattice 2X has 
height n + 1 and that End0,i(2x) = Bn+i is dually isomorphic to the monoid 
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Xx of all transformations of X into itself. If / 6 Xx is the mapping defined by 
f(Xi) = Xi+i for every i £ {0, . . . , n — l},f(xn) = xnj t h e n / generates a sub-
monoid of Xx isomorphic to the monoid An from Lemma 1. An is a commuta t ive 
monoid and therefore An Q Bn+i as well. Applying Lemma 1 now shows t ha t 
Bn+i Ç Fn+i\En, which proves both claims. 

Litt le else is known about the classes En and Fn. I t will be seen, however, t ha t 

£ 3 is considerably larger than E2, and t ha t lattices of height three are no 

longer in a one-to-one correspondence with their monoids of bounded endo-

morphisms. 

Definition. A one-to-one graph homomorphism / : (X\, R\) —> (X2, R2) is 

called algebraic if {x,y} Ç i?i is equivalent to {f(x),f(y)\ Ç i?2. Let A 

denote the category whose objects are all undirected graphs (X, R) wi thout 

loops such tha t for every x G X there are distinct 3/1, y2, 3>3 with {x, 3^} Ç /^, 

{x, y2} £ i?, {x, 3/3} (f_ R; the morphisms of A will be all one-to-one algebraic 

homomorphisms. 

Note tha t every isomorphism is algebraic and tha t the (algebraic) one-to-one 

endomorphisms of a finite graph are exactly its automorphisms. 

LEMMA 3. There is a one-to-one functor H from A to the category of all lattices 
of height three and all their bounded homomorphisms such that every g : H(Xi, R\) 
-> H(X2, R2) is of the form g = H(f) for some f : (Xu Rx) -> (X2, R2) in A ; 
in other words, H is a full embedding. 

Proof. Let I2{X, R) denote the set of all those independent sets of an 
(X,R) G A which have less than three elements. Set H(X,R) = I2{X,R)\J { 1 | , 
where 1 (f_ I2(X, R). Let H(X, R) be ordered by the inclusion order of elements 
of I2(X,R) together with the requirement t ha t 1 be the largest element of 
H(X, R). T h u s H(X, R) is a lattice of height three, with 0 as its least element. 
For every m o r p h i s m / : (Xu Rx) -> (X2, R2) of A define H{f) by H(f) (1) = 1, 
H (f)(0) = 0,H(f)({x}) = {f(x)}iov3\lx^Xt3LndH(f)(ixiy}) = [f(x),f(y)\ 
for every two-element independent subset of (Xi, Ri). As / is a one-to-one 
algebraic homomorphism, H(f) is well-defined; it is easy to see tha t H(f) is a 
bounded lattice homomorphism and tha t H is, indeed, a one-to-one functor. 

T o show tha t H is full, choose an arbi t rary bounded lattice homomorphism 
g : H(XU Ri) ~> H(X2, R2) and assume tha t g (a) = g(b) for some elements 
a < b of H(Xi, Ri). As every nonzero element of H(XU Ri) is a join of its 
a toms, there is an x0 G X\ such tha t {x0} ^ b and a A {x0} = 0. If y\ 9^ y2 are 
such t ha t [Xf),yi}, {x0, y2} G R, then 0 = g(0) = g({x0\) A g (a) = g({xQ] A b) 
= g({x0}), and 1 = g(l) = g({x0} V {yt}) = g({yt)} for i = 1, 2. However, 
b i } A {3̂ 2} = 0and ,consequent ly , 0 = g({yi) A {3^}) = g([yi\) A ^({3^2}) = 1, 
which is a contradiction. T h u s g is a one-to-one homomorphism. Since every 
a tom {x} of H(Xi, R\) is covered by some {x, 3^}, g({x}) must be an a tom 
again; denote g({x}) = {f(x)\. Accord ing ly , / is a one-to-one mapping of X\ 
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into X2 and if {x, y] G Ru then [x] V {y} = 1 in H(XU / ^ ) . Hence {/(*)} V 
{/(?)} = *({*}) V g ( b } ) = g ( l ) = 1 , which means tha t { / (*) , / (?)} € i?2. If, 
on the other hand, {x, j } g i?i, then {x, y] < 1 in i ï ( Z i , i?i) and j / ( x ) } V 
{/(?)} = g ( W ) V g{{y\) = g({x,y}) < g ( l ) = 1. Hence g({x,y}) (2 £ 2 and 
g({x, y}) = {f(x),f(y)\. A l toge ther , / is an algebraic one-to-one graph homo-
morphism and H(f) = g. 

A monoid M is left cancellative if xy = xz implies 3; = z for all x, 3/, z G Af, or, 
equivalently, if all left translations of M are one-to-one mappings of M into 
itself. Since the left translations of M form the endomorphism monoid of the 
mult i-unary algebra on M whose operations are all right translations of M, 
Lemma 7 and Lemma 8 of [5] imply tha t M is isomorphic to the monoid of all 
one-to-one endomorphisms of an algebra B with two unary operations; B is 
finite for a finite (group) M, and the cardinalities of M and B are equal if M is 
an infinite left-cancellative monoid. The main result of [4] implies tha t for 
every infinite cardinal c ^ ca rd (M) there are exactly 2C pairwise noniso-
morphic algebras B{ with two unary operations and card (2?*) = c tha t repre
sent M in this way. If M is a finite group, then an application of [4] will give 
Ko pairwise nonisomorphic finite such algebras Bn. The full embedding ^ o $ 
defined in [5] translates one-to-one homomorphisms of algebras with two unary 
operations into one-to-one algebraic homomorphisms of graphs from A. Since 
the composite full embedding H o ^ o $ does not increase infinite cardinalities 
and since it assigns finite lattices to finite algebras, these remarks can be 
combined to obtain the following s ta tement . 

PROPOSITION 4. £3 contains all left-cancellative monoids and F% contains all 
finite groups. Moreover, for any left-cancellative monoid M and any infinite 
cardinal c ^ ca rd (M) there are exactly 2C pairwise nonisomorphic lattices Lt of 
height three and card(Z^) = c such that M ~ End0,i(2>z) for every i G 2e. If M 
is a finite group, then there are infinitely many pairwise nonisomorphic finite 
lattices Ln of height three with M = End0,1 (Ai) for every n Ç co. 

Hence, in particular, £3 includes all groups and every group appears as the 
endomorphism monoid of a proper class of pairwise nonisomorphic lattices of 
height three. 

As no En contains all monoids, it is, perhaps, natural to ask whether bounded 
lattices whose chains are all finite (with no common bound for their lengths) can 
be utilized as representing lattices for the class of all monoids. The last theorem 
of this section gives a negative answer to this question. 

Notation. Define a binary operation * on the interval [0, 1] of real numbers by 
a * b = min(a + b, 1). The operation * is associative and commutat ive ; the 
set D of all rational numbers d = m • 2~n f [0, 1] contains 0 and is closed 
under *. Therefore, M = (D, *) is a countable commutat ive monoid. 

PROPOSITION 5. If M = M' Ç End 0 , i (L) , then L has an infinite chain. 
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Proof. For every n ^ 0, let /n denote the endomorphism of L corresponding 
to 2~n e D. Note that /n

2 = /n_i for all « . è 1, so that 0 ^ m < n implies that 
fm = fnk for some fe è 2. Further, observe that if y £ L is such thatfn+ik(y) ^ 
fo(y), then/n+1 '(:y) = fn+ij-kfn+i*(y) £ fn+ij~kfo(y) = My) for every j ^ fe. 

There must be an x f L for which fo(x) j* fi(x). For every n ^ 1 set 

bn=fl(x) V/ 2(*) V . . . V/ n (x) , 

cn = /i(*0 A f2(x) A . . . A /„(*) 

and observe that 

(2) . . . ^ Cn+1 g Cn g . . . g Ci = / l ( x ) = 6i g &2 g • . • g &n ^ • • • 

We will show that the set in (2) contains an infinite chain. If all elements listed 
under (2) are distinct, there is nothing to prove. If bn+i = bn for some n ^ 1, 
then 

(3) /n+1(*) g / i W V . . . V/B(x). 

By a previous observation, there is a ko such tha.tfn+iko+l(x) S /o(#)> namely 
&o = 2W+1 — 1. Assuming that k ^ 2 and/n+ifc+1(^) ^ /o(#), w e wiU n r s t show 
that/n+i^(x) g /o(x). To this end, apply the mapping/w+ifc-1 to both sides of (3) 
to obtain 

( 4 ) / „ + ! * ( * ) ^ fn+l^Mx) V / n + l f c - V 2 ( x ) V . . . V fn+l^fnto. 

If m ^ w, then fn+ik~lfm = /w+i^ for some j ^ & + 1 and, consequently, using a 
previous observation and the inductive hypothesis, fn+ik~lJm(x) ^ fo(x) for all 
m Ç {1, . . . , n}. This, together with (4), gives fn+1

k(x) g /o(x). A simple induc
tion based on this argument leads to the inequality fn(x) = fn+i2(x) ^ fo(x). As 
n ^ l , / i = / r e

j for some j ^ 1; thus/ifr) = fn
3~%(x) ^ fn

j~lfo(x) = fo(x). Now 
{cn : w ^ 1} is the desired infinite chain, for if cm = cm+i for some w ^ 1, then 
an argument dual to that given above yields fi(x) ^ fo(x), contradicting the 
choice of x. 

3. Endomorphisms of finite lattices. This section is concerned with the 
construction of a finite lattice L with End0,i(X) isomorphic to a given finite 
monoid M. 

The starting point is a result, used already in [3], stating that every finite 
monoid M is isomorphic to the full endomorphism monoid of a finite connected 
graph G without loops and of a chromatic number at least three. The full 
embedding ^ o <ï> of [5] can again be used (in conjunction with arguments ana
logous to those of the preceding section) to show that every finite monoid 
possesses infinitely many pairwise nonisomorphic finite graphs Gn of this type 
with End(Gn) ^ M for each Gn. 

To explain the method used here, we return to the basic construction of [3]: 
given a graph G = (X, R) satisfying the requirements listed above, define a 
congruence 6G on the bounded lattice F(X) freely generated by X as the 
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smallest congruence that identifies x V y with 1 and x A y with 0 for any pair 
{x,y} QX which belongs to R; let M(G) = F(X)/6G,Sinà\et w : F(X) -> M(G) 
be the canonical homomorphism whose kernel is 6G. If F(f) is the free extension 
of a graph endomorphism/of G, then dG is contained in the kernel of -w o F(f) ; 
hence there is a unique endomorphism Af (/) of M(G) defined by -K O 7X/) = 
Af(/) o 7T. It is easy to see t h a t / ^ M(f) is a homomorphism of End(G) into 
Endo.i(Af(G)). It is proved in [3] that the restriction of w to the set X of 
generators of F(X) is a one-to-one mapping, so that M is a one-to-one monoid 
homomorphism. If ir(x) is denoted as x for every x £ X, then C(M(G)) 2 
i? U {{0, 1}}. Once it is known [3] that C(M(G)) = R U {{0, 1}}, then every 
bounded endomorphism g of M(G) must map the set I U {0, 1} into itself. 
There are just two components of C(M(G))\ the component (X,R) whose 
chromatic number is larger than two, and the 2-colourable component {0, 1}. 
Therefore g(X) C X and the restriction/ of g to X is an endomorphism of G. 
As X generates M(G), g — M(f); hence M is an isomorphism of End(G) onto 
End0ti(M(G)). 

This construction can obviously be performed in any nontrivial variety V 
of lattices once F(X) is replaced by the bounded lattice V(X) generated freely 
by X in V. The relation 6G is now interpreted as the smallest congruence on 
V(X) which turns edges of G into complemented pairs. If, moreover, V is a 
locally finite variety, then V(G) — V(X)/6G will be finite for every finite 
graph G. If BG separates elements of X and if C( V(G) ) = R U {{0, 1}}, then an 
argument identical to that concerning M{G) will show that End(G) ~ 
End0 ,i(F(G)). The task on hand is, therefore, to find a locally finite variety V 
of lattices in which V(G) will satisfy these requirements for a given finite 
graph G. 

Definition and notation. Let 1(G) denote the set of independent sets of a 
nontrivial connected finite graph G = (X,R) without loops. Set I*(G) = 
1(G) yj {1}, where 1 (? 1(G). If the elements of 1(G) are ordered by inclusion 
and if 1 is the largest element of /*(G), then I*(G) is a lattice in which the join 
of independent sets a, b is their union a U b if the latter set is independent, and 
a V b = 1 ii a*U b is dependent. Let /*(G) denote the dual of I*(G) and let 
A (G) be the sublattice of 7* (G) X i* (G) generated by the set 

S = {(0,0)} U {({x}, {x}):x G X). 

Figure 1 gives an example of the lattice A (G) for the four-element graph G 
shown there. If 8* : F(X) —• I*(G) and 5* : F(X) —> 7* (G) are homomorphisms 
for which Ô*(x) = <5*(x) = {x\ for all x G X C F(X), then 5 = Ô* X 5* maps 
F(J*T) into i4 (G) ; let A be the kernel of Ô. 

If 6 3 0G is a congruence on F(JT) a n d r : p(x) -> F(X)/6 = T(G) is the 
canonical homomorphism, then T(G) is a bounded lattice generated by r(X) 
such that 0 ^ r(x) ^ 1 for all x G X; note also that V(V(x) : x G F) = 1, 
/ \ (r(x) : x Ç F) = 0 if F is a dependent set of G. 
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<!,</>> 

F I G . 1. A generator ({#}, {x} ) of A(G) is denoted by x. 

LEMMA 6. For every x £ X and every P £ F(X) 

(i) {x} ^ Ô*(P) imi tes r(x) g T(P), 

(ii) {x} è ô»(P) implies r(x) ^ r (P ) . 

Proof. We will prove (i) by an induction on the rank of P—see, for instance, 
[2]. 

If rank(P) = 1, then P = y £ X and {%} ^ <5*(P) = {y} implies x = y as 
the elements of I*(G) are ordered by inclusion. Thus, in this case, r(x) = r(y). 
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Assume (i) to be true for all elements of F(X) of rank smaller than n and 
let r a n k ( P ) = n > 1. 

If P = Q V R in F(X), then Q and R have rank smaller than n. Let 
{xj ^ Ô*(P). If Ô*(Ç) = 1, then [x] g Ô*(Ç) and, by the induction hypo
thesis, r (x ) ^ r (Ç) ^ T ( P ) . We may therefore assume tha t 8*(Q) < 1 and 
<5*(P) < l.If<5*(P) = 1, then <5* (Ç) and ô*(P) are independent sets of G whose 
union is dependent ; the induction hypothesis implies tha t r(y) ^ r{Q) for all 
J £ S*(<2), and tha t r(y) ^ r ( P ) for all 3/ G <5*(P). Hence r(y) S r(Q) V 
r ( P ) = T(P) for all 3; £ 5*(Ç) W <5*(P) and, consequently, 

T(P) §; V ( r ( y ) : y G Ô*(Q) U Ô*(P)) = 1, 

since 5* (Q)}Uô*(R) is dependent. Thus r (x) g r(P) for all x G X.Uô*(P) < 1, 
then Ô*(P) = ô*(Q)\J <5*(P) is independent. Hence {x} ^ <5*(P) and the 
induction hypothesis imply tha t r (x) ^ r (Ç) or T(X) ^ r ( P ) ; in either case, 
T{X) ^T(Q) V r ( P ) = r(P) as required. 

If P = Q A P and \x) ^ Ô*(P), then {x} ^ Ô*(Q) and {x} ^ <5*(P); the 
induction hypothesis gives r (x) ^ r(Q) a n d r ( x ) ^ r ( P ) , so tha t r (x) :§ r((?) A 
T(R) = T(P) as was to be shown. 

This finishes the proof, for (ii) is a s ta tement Avhich is dual to (i). 

LEMMA 7. If 6 C A, /feew r(X) is an antichain of T(G) bijective to X; if r (x) 
is denoted as x for every x Ç X, then C(T(G)) = R W {{0, 1 j j . 

Proof. Ker r C A implies the existence of a unique homomorphism 
e : T{G) —> ^1 (G) such tha t <5 = e o r ; as r is onto, e = ei X e2, where ei O T = ? 
and e2 o r = ô*. 

I f r ( x ) ^ r ( ^ ) , t h e n { x } = 5*(x) = 6i(r(x)) ^ €1(7(3;)) = ô* (y) = {3;}, t ha t 
is, x = y. Thus r ( X ) is an antichain bijective to X; set x = r (x ) . 

If {x, y] e R, then e i ( l ) = ei(x V y) = ei(r(x V y)) = <5*(x V y ) = l and, 
similarly, e2(0) = 1 in i*(G) . 

Let a, 6 G P(G) be such tha t a V 6 = 1 and a A 6 = 0, let a = r ( 4 ) , 
& = r ( P ) , w h e r e , 4 , P G P ( X ) . Then 1 = € l (a V 6) = ô*(,4) V <5*(P) in 7*(G) 
and if d*(A) = 1, then {xj ^ 5* (.4) and {3/} ^ d*(A) for every {x, y} Ç P . 
Lemma 6 implies tha t r (x ) V T ( ^ ) ^ T(A) = a; since {x, 3;} is dependent, 
r (x ) V r(y) = 1 in P(G) . Hence a = 1 and & = 0. Now if 0*04), <5*(P) are 
independent sets of G whose union is dependent, then there is an {xx, 3/1} G P 
such tha t {xi} ^ 5*(A) and {3̂ 1} ^ 5*(P). Lemma 6 now implies tha t Xi = 
r (x i ) ^ r(^4) = a and 3^ = r(yi) S T{B) = 6. 

Fur thermore , 5*(^) A 5*(P) = e2(a A b) = 1 i n / * ( G ) . If Ô*(A) = 1, then 
{x} ^ ô*(^4) and {3;} ^ 5* (^4) hold in J*(G) for every {x, 3'} G P . An applica
tion of Lemma 6 yields 0 = r (x) A r (y) ^ r(A) = a and this contradicts the 
inequality a ^ Xi obtained earlier. Therefore 5* (A ), ô* (P) are independent sets ; 
as ô*(A) U 5* (P) is dependent, there must be x2 ë 5* (^4), y2 G 5* (P) such tha t 
{x2, 3̂ 2} G P . Now Lemma 6 implies x2 = r(x 2) ^ r(A) = a and 3̂2 = T ( ^ 2 ) ^ 
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T(B) = b. Altogether, since X forms an antichain in T(G), X\ ^ a ^ x2 and 

J\ ^ b ^ y<i imply a = %\ = x2 and b = y\ = y<i. This finishes the proof. 

Remark. I t should be pointed out t ha t since 6G itself is contained in A, 
Lemma 7 applied to T(G) = M(G) implies t ha t M(G) has only the comple
ments induced by the graph G. If the definition of A (G) is suitably extended in 
order to accommodate infinite connected graphs, the basic result of [3] would 
become a special case of Lemma 7. 

T H E O R E M 8. For every finite monoid M there are countably many pairwise 

nonisomorphic finite lattices Ln with End 0 ) i (L n ) = M. 

Proof. Let (Gn : n £ co) be a set of pairwise nonisomorphic finite connected 
graphs of chromatic number a t least three, let Endo,i(Gw) = M for every n G w. 
Let \ n be the var iety generated by A (Gn) ; as A (Gn) is finite, V n is a locally 
finite variety. T h e fully invar iant congruence 0W, such t ha t F(Xn)/Bn = Fn(Xn) 
is the lattice freely generated by Xn in \ n , is clearly contained in A; the same is 
t rue for 6G. T h u s the finite latt ice Vn{Gn) = F(Xn)/dGn V Bn satisfies the 
hypothesis of Lemma 7. T o show tha t Endo,i(Vn(Gn)) = End(G n ) ~ M, it is 
enough to use the conclusion of Lemma 7 in an a rgument duplicating t ha t which 
concerns M(G). Finally, if Vn(Gn) ~ Vm(Gm), then the components of 
C(Vn(Gn))j C(Vm(Gm)) of chromatic number > 2 must be isomorphic, t ha t is, 
Gn = Gm or, equivalently, n = m. 

4. C o n c l u d i n g r e m a r k s . Interest ingly enough, latt ices A(G) themselves 
cannot be used to represent E n d ( G ) : all bu t finitely many lattices I*(G) are 
simple and, consequently, End0,i(^4 (G)) = Aut (G) for almost every finite 
connected graph G. For a similar reason, no essential advantage is to be 
gained by an increase in height, obtained by including larger independent sets, 
of lattices used to prove Lemma 3. 

A natural ly arising question of whether all lattices Ln in Theorem 8 may be 
chosen in a single locally finite var iety, thereby turning the present construc
tion into a functorial one, is answered positively in [1], where lattices A (G) and 
somewhat more general cover set lattices are investigated and employed to 
generalize some well-known theorems on ^ - r e d u c e d free products. 

Theorem 8 together with Lemma 1 enable us to define meaningfully a lattice 
rank of a finite monoid M as the smallest natural n for which M G Fn (e.g., the 
dual of the monoid Xx with ca rd (X) = n is of lattice rank n). T h u s it appears 
to be natural enough to ask for a characterizat ion of finite monoids of rank n\ 
a problem little understood by the authors . 

A different approach to t ha t given here is to consider nonconstant endo-
morphisms of lattices. However, for a given finite lattice L, it is not too 
difficult to construct a finite lattice, extending L, whose nonconstant endo-
morphisms are closed under composition and form a monoid isomorphic to 
Endo. i (L) . 
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