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m-embedded Subgroups and p-nilpotency
of Finite Groups

Yong Xu and Xinjian Zhang

Abstract. Let A be a subgroup of a finite group G and Σ = {G0 ≤ G1 ≤ · · · ≤ Gn} some subgroup
series of G. Suppose that for each pair (K,H) such that K is a maximal subgroup of H and Gi−1 ≤
K < H ≤ Gi , for some i, either A ∩ H = A ∩ K or AH = AK. Then A is said to be Σ-embedded in
G. And A is said to be m-embedded in G if G has a subnormal subgroup T and a {1 ≤ G}-embedded
subgroup C in G such that G = AT and T∩A ≤ C ≤ A. In this article, some sufficient conditions for a
finite group G to be p-nilpotent are given whenever all subgroups with order pk of a Sylow p-subgroup
of G are m-embedded for a given positive integer k.

1 Introduction

All groups considered in this paper are finite, and G always denotes a group. The
symbol [A]B denotes the semidirect product of the groups A and B, where B is an
operator group of A. The notions and notation are standard as in [3].

Let A be a subgroup of G, K ≤ H ≤ G, and let p be a prime. Then we say that A
covers the pair (K,H) if AH = AK, and A avoids (K,H) if A ∩H = A ∩ K. (K,H) is
said to be a maximal pair of G if K is a maximal subgroup of H. In [2], the authors
introduced the following concepts.

Definition 1.1 Let A be a subgroup of G and let Σ = {G0 ≤ G1 ≤ · · · ≤ Gn} be
some subgroup series of G. Then we say that A is Σ-embedded in G if A either covers
or avoids every maximal pair (K,H) such that Gi−1 ≤ K < H ≤ Gi , for some i.

Definition 1.2 Let A be a subgroup of G.

(i) A is m-embedded in G if G has a subnormal subgroup T and a {1 ≤ G}-em-
bedded subgroup C in G such that G = AT and T ∩ A ≤ C ≤ A.

(ii) A is nearly m-embedded in G if G has a subgroup T and a {1 ≤ G}-embedded
subgroup C in G such that G = AT and T ∩ A ≤ C ≤ A.

Guo and Skiba in [2] get the following result.
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Theorem 1.3 ([2, Theorem 4.1]) Let p be a prime dividing |G| such that
(|G|, p − 1) = 1, and let P be a Sylow p-subgroup of G with |P| = pn. Then G is
p-nilpotent if and only if either the Sylow p-subgroups of G have order p or there is an
integer k such that 1 ≤ k < n and every subgroup of G of order pk and every subgroup
of G of order 4 (if pk = 2 and P is non-abelian) are m-embedded in G.

A celebrated theorem of Frobenius [3, Satz. IV.5.8] asserts that G is p-nilpotent
if NG(H) is p-nilpotent for every p-subgroup H of G. In this paper we replace some
of the conditions of Frobenius’ theorem and Theorem 1.3. We shall investigate the
p-nilpotency of a group G if every subgroup H with order pk of a Sylow p-subgroup
of G is m-embedded in G for a fixed positive integer k, and NG(H) is p-nilpotent.
Some interesting results related to the p-nilpotency of a finite group are obtained.

2 Preliminaries

Lemma 2.1 ([7, p. 59, Proposition 2.6]) Let P be a p-subgroup of G, N � G, and
(|N|, p) = 1. Then NG/N (PN/N) = NG(P)N/N.

Lemma 2.2 ([2, Lemma 2.3]) Let M ≤ G, N and R be normal subgroups of G.

(i) If E ≤ V and M is {E ≤ G}-embedded in G, then M ∩V is {E ≤ V}-embedded
in V .

(ii) If R ≤ N and M is {R ≤ G}-embedded in G, then NM is {R ≤ G}-embedded in
G and NM/N is {1 ≤ G/N}-embedded in G/N.

Lemma 2.3 ([2, Lemma 2.13]) Let U be a m-embedded subgroup of G and let N be
a normal subgroup of G.

(i) If U ≤ H ≤ G, then U is m-embedded in H.
(ii) If N ≤ U , then U/N is m-embedded in G/N.
(iii) Let π be a set of primes, let U be a π-subgroup, and let N be a π′-subgroup.

Then U N/N is m-embedded in G/N.

Lemma 2.4 ([2, Lemma 2.14]) Let P be a normal non-identity p-subgroup of G with
|P| = pn and P∩Φ(G) = 1. Suppose that either every maximal subgroup of P is nearly
m-embedded in G or there is an integer k such that 1 ≤ k < n and the subgroups of P of
order pk are m-embedded in G. Then some maximal subgroup of P is normal in G.

Lemma 2.5 ([3, III, 5.2 and IV, 5.4]) Suppose p is a prime and G is not a p-nilpotent
group, but its proper subgroups are all p-nilpotent.

(i) G has a normal Sylow p-subgroup P and G = PQ, where Q is a non-normal cyclic
q-subgroup for some prime q 6= p.

(ii) P/Φ(P) is a minimal normal subgroup of G/Φ(P).
(iii) The exponent of P is p or 4.
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3 Main Results

Theorem 3.1 Let G be a group and let P be a Sylow p-subgroup of G, where p is
an odd prime. If each maximal subgroup P1 of P is m-embedded in G and NG(P1) is
p-nilpotent, then G is p-nilpotent.

Proof Assume that the result is false and let G be a counterexample of minimal
order. Then we have the following series of conclusions.

(a) Op′(G) = 1 : Suppose that Op′(G) 6= 1. Consider G/Op′(G). Let K/Op′(G) be a
maximal subgroup of POp′(G)/ Op′(G). Then K = K ∩ POp′(G) = (K ∩ P)Op′(G).
Let P1 = K ∩ P. It is easy to see that P1 is a maximal subgroup of P. By the hy-
pothesis, P1 is m-embedded in G and NG(P1) is p-nilpotent. By Lemma 2.1, we have
NG/Op′ (G)(P1Op′(G))/Op′(G) = NG(P1)Op′(G)/Op′(G). So NG(P1)Op′(G)/Op′(G)
is p-nilpotent. By Lemma 2.3(iii), K/Op′(G) is m-embedded in G/Op′(G). Then
G/Op′(G) satisfies the hypothesis of the theorem. The choice of G yields that
G/Op′(G) is p-nilpotent, which implies that G is p-nilpotent, a contradiction.

(b) Let W be a subgroup of G such that P ≤W < G; then W is p-nilpotent : Let P1

be a maximal subgroup of P. Obviously NW (P1) ≤ NG(P1). By the hypothesis, we
have NW (P1) is p-nilpotent and by Lemma 2.3(i), P1 is m-embedded in W . Hence
W satisfies the hypothesis of the theorem. The minimality of G implies that W is
p-nilpotent.

(c) L = Op(G) is the unique minimal normal subgroup of G, G/Op(G) is p-nilpo-
tent, and Φ(G) = 1 : Since G is not p-nilpotent, by the Glauberman–Thompson
Theorem, NG(Z( J(P))) is not p-nilpotent, where J(P) is the Thompson subgroup
of P. Noticing that Z( J(P)) is a characteristic subgroup of P, and P ≤ NG(P) ≤
NG(Z( J(P))). By (b), we have NG(Z( J(P))) = G, and so Op(G) 6= 1. Let L be a
minimal normal subgroup of G contained in Op(G). If L = P, then obviously G/L is
p-nilpotent. If L is a maximal subgroup of P, then by the hypothesis, G = NG(L) is
p-nilpotent, a contradiction. Hence we may assume that |P :L| ≥ p2. Let P1/L be a
maximal subgroup of P/L. Then P1 is a maximal subgroup of P. By the hypothesis
and Lemma 2.3(ii), P1/L is m-embedded in G/L. Suppose that NG/L(P1/L) = K/L.
Then P1/L � K/L, so P1 � K, hence K ≤ NG(P1). Clearly, NG(P1)/L ≤ K/L. Thus
NG/L(P1/L) = NG(P1)/L. By the hypothesis, we get that NG/L(P1/L) is p-nilpotent.
Then G/L satisfies the hypothesis of the theorem, so the choice of G yields that G/L
is p-nilpotent. The uniqueness of L and Φ(G) = 1 are obvious. Now by [4, Lemma
2.6], we have L = Op(G).

(d) CG(Op(G)) ≤ Op(G) and G = PQ, where Q is a Sylow q-subgroup of G with
q 6= p : By (c), G is p-solvable. So CG(Op(G)) ≤ Op(G) follows from (a) and
[5, Theorem 9.3.1]. For each prime q ∈ π(G) and q 6= p, there exists a Sylow q-
subgroup Q of G such that G1 = PQ is a subgroup of G by [1, Theorem 6.3.5].
If G1 < G, then (b) forces G1 to be p-nilpotent, and so Q � G1. Thus we have
LQ = L × Q. It follows that Q ≤ CG(L) = CG(Op(G)) ≤ Op(G), a contradiction.
Hence G1 = G; that is, G = PQ.
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(e) |L| = p and P ∩M is a maximal subgroup of P : By (c), Φ(G) = 1. Then G has
a maximal subgroup M such that G = ML and M ∩ L = 1. Clearly, P = L(P ∩M).
Since P ∩M < P, there exists a maximal subgroup P1 of P such that P ∩M ≤ P1.
By the hypothesis, there are a subnormal subgroup T of G and a {1 ≤ G}-embedded
subgroup C of G such that G = P1T and P1 ∩ T ≤ C ≤ P1. Thus C either covers
or avoids (M,G). But CM ≤ P1M 6= G, hence C ∩ M = C ; that is, C ≤ M. By
[2, Lemma 2.3], C is subnormal in G. Then C ≤ Op(G) = L. Hence, C ≤ M∩L = 1,
and then |T|p = p. Since |G :T| is a power of p, Op(G) ≤ T. By the minimality of L,
we have L ≤ Op(G) ≤ T, thus |L| = p, and so P ∩M is a maximal subgroup of P.

(f) The final contradiction : Let Q1 be a Sylow q-subgroup of M such that M =
(P ∩ M)Q1. If p < q, then by [6, Lemma 2.8], Op(G)Q1 is p-nilpotent, and so
Q1 ≤ CG(Op(G)), which contradicts (d). So q < p. Then by (c) and (d), we have
F(G) = L = CG(L). It follows that M ∼= G/L = NG(L)/CG(L), which is isomorphic
to a subgroup of Aut(L). Because |L| = p by (e), Aut(L) is a cyclic group of order
p− 1. It follows that M is cyclic, and so Q1 ≤ NG(P ∩M). Since P ∩M is a maximal
subgroup of P, we have P ∩M � P and G = PM = PQ1 ≤ NG(P ∩M). Now by the
hypothesis, G = NG(P ∩M) is p-nilpotent, the final contradiction.

This completes the proof.

Theorem 3.2 Let G be a group and let P be a Sylow p-subgroup of G, where p is
an odd prime. If P has a subgroup D with 1 < |D| < |P| such that all subgroups H
of P with order |H| = |D| are m-embedded in G and NG(H) is p-nilpotent, then G is
p-nilpotent.

Proof Assume that the result is false and let G be a counterexample of minimal
order. Now, arguing as in the proof of Theorem 3.1, the following statements (a) and
(b) about G are true.

(a) Op′(G) = 1.

(b) Let W be a subgroup of G such that P ≤W < G; then W is p-nilpotent.

Again, we have a series of conclusions.

(c) |P :D| > p and |D| > p : That |P :D| > p follows from Theorem 3.1. Now
assume that |D| = p. By Lemma 2.3, it is easy to see that each proper subgroup of
G satisfies the hypothesis. By the choice of G, we have that each proper subgroup of
G is p-nilpotent. So by Lemma 2.5(i), G = [P]Q, where Q is a Sylow q-subgroup
of G and q 6= p. Denote Φ = Φ(P). Let X/Φ be a subgroup of P/Φ of order p,
x ∈ X \ Φ, and S = 〈x〉. Then S is of order p by Lemma 2.5(iii). By the hypothesis,
S is m-embedded in G, then there are a subnormal subgroup T of G and a {1 ≤ G}-
embedded subgroup C of G such that G = ST and S ∩ T ≤ C ≤ S. Since S has
order p, if S ∩ T = 1, then |G :T| = p. Since T is p-nilpotent, G is p-nilpotent, a
contradiction. Thus T = G and then S = C is {1 ≤ G}-embedded in G. It follows
that X/Φ = SΦ/Φ is {1 ≤ G/Φ}-embedded in G/Φ by Lemma 2.2. Now Lemmas
2.4 and 2.5 imply that |P/Φ| = p. It follows immediately that P is cyclic. So P has
a unique minimal subgroup, say P1. Then P1 is a characteristic subgroup of P. Since
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P �G, we get P1 �G. It follows from the hypothesis that G = NG(P1) is p-nilpotent,
a contradiction. Hence |D| > p.

(d) Op(G) 6= 1. Let L be a minimal normal subgroup of G contained in Op(G); then
|L| < |D| : Since G is not p-nilpotent, by the Glauberman–Thompson Theorem,
NG(Z( J(P))) is not p-nilpotent, where J(P) is a Thompson subgroup of P. Noticing
that Z( J(P)) is a characteristic subgroup of P, NG(P) ≤ NG(Z( J(P))). By (b), we have
NG(Z( J(P))) = G and then Op(G) 6= 1. If |L| = |D|, then by the hypothesis, G =
NG(L) is p-nilpotent, a contradiction. Suppose that |L| > |D|. Since L ≤ Op(G), L
is elementary abelian. By Lemma 2.4, L has a maximal subgroup that is normal in G,
contrary to the minimality of L. Hence |L| < |D|.

(e) G/L is p-nilpotent, and L is the unique minimal normal subgroup of G and
Φ(G) = 1 : By (d) and Lemma 2.3, it is easy to see that G/L satisfies the hypoth-
esis of the theorem, so the choice of G yields that G/L is p-nilpotent. The uniqueness
of L and Φ(G) = 1 are obvious.

(f) The final contradiction : By (e), G has a maximal subgroup M such that G = ML,
M∩L = 1, and M ∼= G/L is p-nilpotent. Since Op(G)∩M is normalized by L and M,
the uniqueness of L yields Op(G)∩M = 1, and so L = Op(G). Clearly, P = L(P∩M).
Since P ∩M < P, there exists a maximal subgroup P1 of P such that P ∩M ≤ P1.
Then P = LP1.

If M ∩ P = 1, then L = P, a contradiction. Now we suppose that 1 < |M ∩ P| ≤
|D|. Pick H ≤ P such that M ∩ P ≤ H and |H| = |D|. By the hypothesis, there
are a subnormal subgroup T of G and a {1 ≤ G}-embedded subgroup C of G such
that G = HT and H ∩ T ≤ C ≤ H. If T < G, since |G :T| is a power of p and
T is subnormal in G, there exists a normal subgroup V of G such that T ≤ V and
|G :V | = p. It follows that P ∩ V is a Sylow p-subgroup of V and it is a maximal
subgroup of P. By (c), |P :D| > p, then |D| < |P ∩ V |. Now by the hypothesis,
all subgroups H of P ∩ V with order |H| = |D| are m-embedded in G then in V by
Lemma 2.3(i), and NV (H) ≤ NG(H) is p-nilpotent. Thus V satisfies the hypothesis.
The choice of G yields that V is p-nilpotent, we have G is p-nilpotent, a contradiction.
Hence T = G, so H = C is a {1 ≤ G}-embedded subgroup. By [2, Lemma 2.3], H
is subnormal in G. Then H ≤ Op(G) = L. So M ∩ P ≤ M ∩ H ≤ M ∩ L = 1, a
contradiction.

Suppose that |M ∩ P| > |D|. Then we can choose a subgroup H of M ∩ P such
that |H| = |D|. Using a similar argument as above, we can get H ≤ Op(G) = L, so
H ≤ M ∩ P ∩ L = 1, the final contradiction.

This completes the proof.
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