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Advances in quantum waveguide dynamics, with
applications to physical and biological nanostructures

IAIN JOHN CLARK

It is known {1, 2] that as semiconductor microstructures get progressively smaller
and more free of impurities, it becomes increasingly necessary to use quantum mechanics
to describe accurately these systems, which may have features sized between a few and
several hundred nanometers. Recent advances in fabrication technology [11] make it
feasible to build such nanostructures or mesoscopic systems, as they are known.

The term “quantum waveguide” [6] is used to denote a nanostructure which acts
as a conducting wire, along which a wavefunction is guided to move by the boundary
conditions. Unlike classical wires, curved quantum waveguides have curvature-induced
bound states; see [6] for a recent review. This has implications for nanoelectronic circuit
design, since the curvature-induced bound states will appear as resonances. However,
the effect of torsion (where the waveguide twists out of a plane) and twisting (where
the waveguide changes its orientation along its path) upon bound states has attracted
little investigation, and is the motivation for the analysis in this work.

This thesis develops a unified mathematical approach by which the energy spectrum
of a quantum waveguide with curvature and torsion can be analysed, for any cross-
sectional geometry that remains uniform along the waveguide.

Following the introduction and literature review of Chapter 1, a non-relativistic
Hamiltonian H for a particle on a quantum waveguide is set up in Chapter 2. A system
of curvilinear coordinates is used to express Schrodinger’s equation using the Laplace-
Beltrami operator V2. The metric tensor G is expressed as the product of a curvature-
dependent matrix F and the metric tensor G for a “straightened-out” waveguide. The
Hamiltonian H is then shown to be unitarily equivalent to the Hamiltonian Hy for
a straightened-out waveguide plus interaction terms, Hy = Hy + Ky + Vi, where
H, is the Hamiltonian for a “straightened-out” waveguide, Ky is a kinetic energy
perturbation term and Vi is an effective potential.

In Chapter 3, the spectral theory needed to investigate the curvature-induced
bound states is developed. The spectrum of a Hamiltonian is partitioned into the
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discrete spectrum (corresponding to bound states) and the essential spectrum (corre-
sponding to free states). Since H and Hy are unitarily equivalent, they have the same
spectra. Under quite strong decay conditions on the curvature of the waveguide, geo-
metric spectral analysis is used to show that the essential spectra of H and Hj coincide.
A necessary and sufficient condition is then given for the existence of bound states.

Chapter 4 applies the methods of Chapters 2 and 3 to tubular quantum waveg-
uides, which have circular cross-section, and it is shown that the results obtained are
in agreement with those of [7, 8]. Further, it is shown that the imposition of torsion
weakens the argument for the existence of curvature-induced bound states [5] and raises
the energy values for these bound states.

In Chapter 5, the methods of this thesis are applied to quantum strip waveguides,
which do not have rotational symmetry in the transverse directions. Consistency with
previous work on planar quantum strips [9] is demonstrated, and it is shown [4] that
the imposition of twisting and torsion reduces the attractive strength of the effective
potential and introduces a repulsive term.

Chapter 6 presents a preliminary investigation into the effects of curvature on
the dynamics of wave propagation along microtubules, which are a form of biological
nanostructure that is suspected to play a key role in consciousness [10]. It is argued
that geometric effects need to be considered in any model of microtubular dynamics [3],
since the variations in geometry can be expected to lead to dispersion in propagating
waves. An elementary model is developed which attempts to describe quantum coherent
phenomena along microtubules.

Finally, in Chapter 7, an overview of the thesis is given together with some ideas
for continuing research.
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