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1. Introduction

The study of minimal irregular p-groups was initiated by Mann [9]. He
defines such a group to be a finite irregular p-group in which every proper section
is regular. He then deduces a large number of properties of such groups and
shows, by construction, that there is no bound on their exponent. In this note
methods involving varieties of groups are used to show that all minimal irregular
p-groups can be 'built up' from cyclic groups, groups of exponent p and a relatively
small class of metabelian minimal irregular p-groups. To phrase this more precisely,
say that a group P is derivable from a family of groups {Q,} if P is a homomorphic
image of a subdirect product of the g; . Then we will prove as Theorem 2.2:

a minimal irregular p-group of exponent p" and nilpotency class c is
derivable from a family of three groups:

i) a cyclic group of order p",
ii) a 2-generator monolithic group of exponent p and class c,
iii) a minimal irregular p-group whi h is metabelian, has class p and has

exponent p1.

The key to proving this theorem is the observation that Mann's results imply
that every minimal irregular p-group is a 2-generator group and satisfies the law

Denote the variety generated by all 2-generator groups which have this law by
1)p. Also, denote the variety of all abelian groups by $t, the variety generated by
all 2-generator groups of exponent p by 23P and the variety generated by the
wreath product of two cyclic groups of order p by X)*. Then the major step in the
proof of Theorem 2.2 is to show that Dp is the join of % and i&'p and X) * (this
appears as Lemma 2.1). Weichsel [13] has studied a restricted type of minimal
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irregular p-group—which he calls a just irregular p-group—defined by the
additional property that all proper subvarieties of the variety it generates are
regular (a variety of p-groups being regular if each finite group of the variety is
regular). Call such a variety minimal p-irregular. Clearly £)* is minimal p -irregular
(see, for example, Kovacs and Newman [8], where 25* is denoted by ^,(p,p)).
The main theorem of Section 3 (Theorem 3.6) gives classes of varieties which have
no other minimal p-irregular subvariety.

Let U be an irregular variety of p-groups. Then T>* is the only minimal
p-irregular subvariety ofU ifll is a suboariety of 9^3p_3 or ifU is a subvariety
of$l2Kor i / p = 2, 3 or 5.

The proof of this result and the further question of the necessity of the
conditions placed on U appear to depend on the structure of the free group of
exponent p and rank 2. This statement is made more precise in Proposition 3.3
where a necessary and sufficient condition for the existence of other minimal
p-irregular varieties is obtained in terms of the existence of a certain, well-defined,
type of section of this free group. Finally, we use Theorem 3.6 to give criteria
for a variety satisfying one or more of the conditions of the theorem to be regular.

For unexplained notation, terminology and basic results, we refer to Hanna
Neumann's book [11]. We will, however, differ from the notation used there in a
number of respects; we use 93 (G) to denote the verbal subgroup of the group G
corresponding to the variety 23 and we do not reserve G, H for relatively free
groups nor F for an absolutely free group. If U is a subvariety of 33 we write
U ^ 23. If H is a subgroup of a group G and K is a normal subgroup of H, then
HjK is a section of G. It is proper unless K = {1} and H = G.

Throughout this note, p will denote a fixed prime number. A finite p-group P
is said to be regular if, whenever g, heP, there exist elements du---,ds of the
derived group of the group generated by g and h such that (gh)p = g"hpdp--- dp

s. A
variety of p-groups is regular if each finite group of the variety is regular.

If r is a natural number, we will write [g, rh\ for the commutator [g, h,---, h~\
with h repeated r times. If a group P satisfies the law [xurx2] = 1, we say that P
has the r'th Engel condition. If, for all elements g and h of P, [g, r h]e sJZr+1

(gp (g, h)), then we say that G has the r'th Engel congruence. A variety of groups
has the r'th Engel condition (congruence) if each group of the variety does so.

I am indebted to Dr. M. F. Newman for a suggestion which led to the
consideration of the topics discussed here and for his constructive criticism of the
initial presentation.

2. Minimal irregular p-groups

It follows immediately from results of Mann [9; Theorem 2, a) and &)] that
a minimal irregular p-group is a 2-generator group which satisfies the law

https://doi.org/10.1017/S1446788700013963 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013963


80 J. R. J. Groves [3]

The first half of this section will be devoted to studying the structure of the variety
Tp generated by all 2-generator groups satisfying this law. To begin with, let us
extract a few consequences of the law. If P is a group of Dp, then P' has exponent
p and p'th powers of elements of P are central in P; the former is immediate and
the latter can be seen by replacing x2 by x t in the law. If P is also regular, then it
is p-abelian—that is, it satisfies the law ( x 1 x 2 ) p = xpx2

p.
Let T>* denote the subvariety of T>p generated by the wreath product of two

cyclic groups of order p. This variety plays a central role throughout this note
and the next step in the argument will be to describe some facets of the structure
of its free group of rank 2. Denote this group by G and let {x,y} be a free genera-
ting set of G. The description of the subvariety lattice of %p%p in Kovacs and
Newman [8; p. 133] shows that T>* has a unique maximal subvariety
$ft = (T>* A 23P) V %*• By a result of Meier-Wunderli [10], 2-generator
metabelian groups of exponent p have class at most p — 1 and so 5R(G) = 5Rp_t(G)
= JV say. As G has class precisely p, N is not trivial and so is the unique minimal
verbal subgroup of G. Further, it follows from 4.05 and 4.06 of [8], that JV has a
free generating set {[x, ry, (p — 1 — r)x] 11 ^ r ^ p — 1} and so that JV is an
elementary abelian group of order pp~l.

We will exhibit another basis for JV. Let B denote 23P(G). As we remarked
above, 2-generator metabelian groups of exponent p have class at most p — 1
and so B 3; JV. Also, as a consequence of the law defining T)p, if g e G and h e G',
then (gh)p = gp. Hence the obvious generating set for B, consisting of all p'th
powers of elements of G, may be refined to the set {xp, yp, {xy')p | l ^ r ^ p — 1}.
Let wr denote (x/)p.y~rpx~p; then {xp, y", wr\ 1 ^ r ^ p - 1} also generates B.
As F jN is regular, but not of exponent p, BjN = 33P(F /JV) is freely generated by
xpJV and ypN and the wr belong to JV. Thus, {wr 11 ^ r ^ p — 1} generates JV and
so, as JV is elementary abelian of order pp~1, this is a basis of JV.

We are now ready to prove the following lemma describing the structure of
Dp. The variety generated by all 2-generator groups of exponent p is denoted by

LEMMA 2.1. T>p = 51 V 33P V D*

PROOF. Clearly 91 and 23 p and X>* are subvarieties of T>p. Let F denote f 2(DP)
and let D, Bt denote T>*(F) and SP(F) respectively. The set {x,^} will denote a
free generating set of F and the elements wr are defined similarly. As with our
previous remarks, Bx is a central subgroup of F generated by xp, yp and the wr.
Let T denote the subgroup of B1 generated by the wr.

Since the elements wrD are independent, TnD = {1}. Let geF' nB^ Then
gT= xpk y"'T for some integers k and 1. Thus, as T ^ F', xpkypleF' and so,
because x and y are free generators off , xpk = ypi = 1. Hence f' C\Bt^T and
so F' n B i r\D = {1}. It follows that
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var(F) = var(F/f") Vvar(F/flj) Vvar(i=70),

which is what we set out to prove.

The groundwork is laid for the description of minimal irregular p-groups.
It follows immediately from the previous lemma that such a group is derivable
from a set of three groups, one each from % 3$'p and £>*. We can, however,
improve on this.

THEOREM 2.2 A minimal irregular p-group of exponent p" and nilpotency
class c is derivable from a family of three groups:

i) a cyclic group of order p",
ii) a 2-generator monolithic group of exponent p and class c,
iii) a minimal irregular p-group which is metabelian, has class p and has

exponent p2.

PROOF. Let P be a minimal irregular p-group of exponent p" and class c. Then

clearly n ^ 2 and c ^ p. Hence, by Lemma 2.1 and two applications of the
modular law,

Pe%n V(23;A9ic) V £*•

Hence P is a homomorphic image of the free group of rank 2, H say, of this join
variety. By 15.82 of Hanna Neumann [11], H is a subdirect product of the free
groups of rank 2 of the varieties 2lpn, 23 „' A % a n d £* '•> denote these groups by
Alt Bt and Ct respectively.

We have shown that P is derivable from Au Bl and Cv Choose homomorphic
images A2, B2 and C2 so that P is derivable from these groups but P is not derivable
from the set obtained by replacing any one of them by a homomorphic image.
Then A2, B2 and C2 are still 2-generator groups. Since all the proper sections of P
are regular, they satisfy the law (xt x2)

p = x*x%\ since P is irregular, it does not.
Hence P is a critical group and so, in particular, monolithic. It now follows, by 3.6
of Kovacs and Newman [7], that A2, B2 and C2 are also monolithic (note that
the present construction is slightly different from that of [7]; the proofs, however,
are equally valid).

We have shown, so far, that A2 is a cyclic group and that B2 is a 2-generator
monolithic group of exponent p. To complete the descriptions given in i) and ii)
of the statement of the theorem, observe that the exponent of A2 and the class of
B2 are determined by the exponent and class, respectively, of P. It remains to show
that C2 satisfies iii). As C2 e£>*, it will suffice to show that it is minimal irregular.

It is clear that C2 is irregular. By 1.3 of [7], and the fact that C2 is monolithic,
every proper homomorphic image of C2 lies in a proper subvariety of !D*. How-
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ever, as we have already remarked, every proper subvariety of D* is regular;
therefore every proper homomorphic image of C2 is regular. Since C2 is a 2-
generator group, it is a homomorphic image of F2(T>*). But it is easily verified
that every proper subgroup of the latter group is regular (in fact of class p — 1).
Hence every proper subgroup of C2 is regular and so C2 is a minimal irregular
p-group. The proof of the theorem is complete.

Since p-groups of class p — 1 are regular, a minimal irregular p-group has
class at least p. Also, the positive solution of the Restricted Burnside Problem for
groups of exponent p, due to Kostrikin [6], shows that there is a bound—c(p)
say—on the class of finite 2-generator groups of exponent p. Hence, by Theorem
2.2, the class of a minimal irregular p-group cannot exceed the maximum of p and
c(p) (this maximum is clearly c(p) unless p = 2). Avinoam Mann (private com-
munication) has constructed minimal irregular p-groups of every possible class
between these two bounds. This situation is considerably different to the situation
for minimal p-irregular varieties, as we shall see in the next section.

3. Minimal /(-irregular varieties

We begin this section by noting a varietal consequence of Lemma 2.1.

LEMMA 3.1. Let 33 be a minimal p-irregular variety. Then

i) 33 ^ £>p* V 33;, and

ii) £ * g 33 V 33;.

PROOF. It follows immediately from the proof of Lemma 2.1 that F2(DP) has
a minimal verbal subgroup corresponding to the variety 21 V 33P (the subgroup
T in the notation of 2.1). But 21 V 33; is clearly regular and so, if U is an irregular
subvariety of £>p which can be generated by its 2-generator groups, It V 21 V 33P

= T)p. Thus, if U has exponent p2, then by an application of the modular law,
£ p A 33p2 = U V 3Ip2 V 33; = U V 33;. The lemma follows after observing
that a minimal p-irregular variety has exponent p2 , by a theorem of Weichsel [13],
and can be generated by its 2-generator groups.

The next lemma may be deduced from Theorem 1.4 of Weichsel [12]. The
previous lemma, however, enables us to give a brief and independent proof.

LEMMA 3.2 (Weichsel). The only metabelian minimal p-irregular variety
is 2>*

PROOF. If 33 is a metabelian minimal p-irregular variety, then

33 g (D* V33P) A 3P = £P*A (33; V 3I2)

by Lemma 3.1 and an application of the modular law. But 93'p A 3I2 ^ D* (see,
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for example, the description of the lattice of subvarieties of 5IP9IP in [8; p. 133]).
Thus 93 = £*.

It was stated in the introduction that the existence of minimal p-irregular
varieties other than T>* apparently depends on the structure of F20Sp). We must
justify this statement. In doing so, we will obtain a criterion for the existence of
such varieties which will enable us to extend the class of varieties for which we can
show that £>* is the only minimal p-irregular subvariety.

Suppose that 33 is a minimal ^-irregular variety and that 93 ^ £)*. Let
F = F2(Dp) and let D, V and N denote ^(F), 93(F) and m^F). If c is a
natural number, denote (23'p A 9U (F) by Bc. Finally, denote the semigroup of
endomorphisms of F by Q and consider F as an Q -group in the natural way. The
subgroups defined above are fully invariant subgroups of F and therefore fi-
subgroups.

Suppose that 93 has class c; clearly c ^ p. By Lemma 3.1 and the modular
law,

33 ^ t>* V08; A 9U and D* ^ 93 V (23'P A %)

or, in terms of Q -subgroups of F,

V ^ D n Bc and D § V O Bc.

Hence, V (~\D ^. V C\ Bc = D O Bc. Now consider the following pair of Cl-
isomorphisms:

VD/D ̂  V/VnD and V/V n Bc ^ VBJBC.

As VC\D ^ V n Bc, these isomorphisms imply that VBcjBc has an fi section
isomorphic to VD/D. Since 93 ^ £)*., however, F ^ £) and so VDjD ^ N/D—
the unique minimal normal subgroup of F ID. Hence F /Bc has an Q-section which
is Q-isomorphic to N /D.

For use later on, we elicit some extra information. Since BCD/D is not trivial
and

BCD/D ^BJD nBc = BJVnB, s BCV/V,

it follows that F/V has an fl-subgroup—V^jV say—which is also isomorphic to
N ID. Clearly V1 fV is the unique minimal verbal subgroup of FIV.

It is not difficult to check—and we omit the details—that the factor semigroup
of Q by the kernel of its representation on N/D is the group GL (2,p) of all non-
singular transformations of a 2-dimensional space over the field with p elements.
Thus N /D provides an irreducible representation of GL(2, p) and what has been
shown above amounts to the statement that F\BC and FIV have fi-sections which
provide representations of GL (2,p) equivalent to this one. (This is a simple
example of a general process, due to Higman [3], for studying varieties by means
of representations of general linear groups.)
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We can now state the following proposition, which includes what has been
proved so far.

PROPOSITION 3.3. The following statements are equivalent:
i) there exists a minimal p-irregular variety which is different from

T>* and of class at most c,
ii) the free group of rank 2 o/5ftc /\ 23P has an Q-chief section which provides

a representation of GL(2,p) equivalent to that provided by N jD.

PROOF. We have already shown that i) implies ii) and so it remains to prove
the converse. Suppose that ii) holds. Then, retaining the previous notation, there
is an fi-section SjT, of F jBc, which is fi-isomorphic to N jD. To prove the
proposition, we will construct a verbal (fi-) subgroup W of F satisfying:

i) TnD^W^(THN) (SnD),
ii) W£D,
iii) F jW is irregular.

If W satisfies these conditions, then var(F/W) is irregular and so must contain a
minimal p-irregular variety. As W $ D, this cannot be £>*. Since W^T nD
^ Bcr\D ^ %(F\ var(FIW) has class at most c. Hence var(F/W) contains a
minimal p-irregular variety which is different from X>* and of class at most c.

The first step in constructing W is to show that both T n N / T C\D and
S r\DIT C\D are non-trivial. Suppose that T C\N = T f\D. Then D^N C\T;
but FIN and F/T are both regular groups of £)p and so satisfy the law (xiX2)

p

= xp
ix

p
2. Hence F/D also satisfies this law and so D* is regular—a contradiction.

Now suppose that SnD = T nD. Then T^SnD and so T = (S O D)T
= S n TD, by the modular law. Hence,

SD/TD = S{TD)ITD S S/S C\TD = S/T £ N/D.

As TD ̂  N, this implies that F/N has an Q-section isomorphic to JV/D. But it
can easily be checked that the order of an Q-chief section of F IN can be at
most p"~2—another contradiction.

We have shown that T nN/T r\D and S(~\DITr\D are non-trivial
fi-sections of F. But,

TnN/T nD = TnN/(TnN)nD^(T nN)D/D^NID.

Hence, as N/D is an fi-chief section and T nN/T nD is non-trivial, N/D
^THN/T nD. Similarly S/T^SnDlT O D. But S/T and N/D are
fi-isomorphic. Thus, T nN/T nD and S nD/T nD are Q-isomorphic; let
(j:TnNITr\D-*Sr\DITnD be an ̂ -isomorphism. Let Pf denote
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As a is an fi-isomorphism, JFis an Q-subgroup of F/TnD; let Wbe the cor-
responding Q-subgroup of F. Clearly W satisfies T nD £W ^(T nN)(S nD).
Also, WnT = WnD=TnD and soW^D. Finally, because D^W C\T, and
FID is irregular, it follows that F/W is irregular. Hence W satisfies the require-
ments demanded of it and so the proof of the proposition is complete.

Before this proposition is used to deduce results on the class of minimal
p-irregular varieties, we state a lemma to justify some of the manipulations that
will occur with commutators. It is simply Corollary 1.1 of Brisley [1] tailored to
meet our requirements.

LEMMA 3.4 Let H be a relatively free p-group which is nilpotent of class c
and suppose that {x,y} is a free generating set of H. Suppose, also, that
Y[i = i ui = 1> where each ut is a product of commutators, in x and y, each of
weight c and order dividing p, and each involving, for some m ^ 0, i + m(p — 1)
occurrences of y. Then ut = 1(1 ̂  i ^ p — 1).

The first half of the next result is due to Weichsel [13]; it is included here as
its proof appears naturally on the way to proving the second half.

PROPOSITION 3.5. A minimal p-irregular variety 33 has class k(p — 1) + 1
for some k ^ 1. 7/93 ^ £>* then k^3.

PROOF. The proposition is immediate if 23 = Dp*; suppose, therefore, that
this is not the case. Let c be the class of 33 and define F, N, D, V and Bc as in the
proof of Proposition 3.3. We begin the proof by showing how the proposition
follows from:

(1) let S/T be an £2-section of F which is fi-isomorphic to N/D and suppose
that FIT is nilpotent of class d and that S/T^^l^^F/T); then,

a) d = k(p - 1) + 1 for some k ;> 1,

b) if F/T has the (p - l)'th Engel congruence, k ^ 3.

Firstly, as we remarked in the proof of Proposition 3.3, F jV has a unique
minimal fi-subgroup VXIV which is Q-isomorphic to N/D; the uniqueness
implies that Vy /V g 9lc_ t(F/V). Thus part a) of (1) implies that c = k(p - 1) + 1
for some k 2: 1, which proves the first half of the theorem.

Secondly, the (supposed) existence of 33 guarantees, by Proposition 3.3, the
existence of an Q-section of F jBc which is Q-isomorphic to N (D. Choose such a
section SIT which is maximal in the sense that no section of FIS is fi-isomorphic
to N/D. Let b be the class of F/T. The maximality of S/T implies that S/T
^ %-t(FIT). Also, FIT is a group of exponent p and so satisfies the (p - l)'th
Engel congruence (see, for example, Huppert [4; III, 9.7]). Hence, by (1),
b ^ 3(p - 1) + 1. But, clearly, c ^ b and the second half of the theorem follows.
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It remains to prove statement (1). Let {x, y] be a free generating set of F and
abbreviate xT, yT by x, y and xD, yD by x*, y*. Let a be an Q-isomorphism from
N ID to S IT and denote [x*, ry*, (p - 1 - r) x*] by zr and zPo- by v£l ^ r ^ p - 1 ) .
Observe that {zr| 1 g r g p - 1 } is a basis of JV/.D and consequently {ur| 1 ^ r
^ p — 1} is a basis of S/T. Throughout this proof, 1 will denote a fixed primitive
root of p.

Let i^ef ibe defined by

(Here, as with other endomorphisms of F, we will also use <f> to denote the
endomorphism induced modulo an Q-subgroup of F.) Then,

zrf = z^P = z* (as X" ~1 = 1 mod p).

Hence,

iV<£ = (zr<r) ^ = (zr0) a = (z?)a = Dr
A.

But S / T ^ Ud_t(F/T) and so each element of S/T, in particular each vr, can be
written as a product of commutators, in x and y, of weight d. Hence vr<f) = v\*.
Thus ^ " = t'r and so, as vr has order p, it follows that p\(Xd—X). Therefore
d — k(p — 1) + 1 for some k; clearly k S; 1. This completes the proof of part a).

Write vr in the form

where each vr(i) is a product of commutators, in x and y, each of weight d and
each involving, for some m ^ 0, i + m(p — 1) occurrences of y. Let p e fi be
defined by

p:xt->x, y

Then t>r (i) p = vr(i) and so

P-I

But,

Hence,

p-i P-I

i = 1 1 = 1

It follows, by Lemma 3.4, that vr(i)
x'~xr = 1- Therefore «P(i) = 1 unless i = r and so

i>P is a product of commutators each involving, for some m ^ 0, r + m (p — 1)
occurrences of j .

https://doi.org/10.1017/S1446788700013963 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700013963


[10] On minimal irregular ̂ -groups 87

Since FjT has the (p — l)'th Engel congruence, a commutator involving
k(p — 1) occurrences of y - and so only one occurrence of x - i s trivial. In par-
ticular, this implies that k> 1. For if k = 1, vp_1 involves p — 1 occurrences of y
and so is trivial—which is in contradiction to the fact that {vr} is a basis of S/T.

Suppose that k = 2 and let x e Q be defined by

T : x *-> x, y i-» x j .

Because commutators involving 2(p — 1) occurrences of y are trivial, i>p_t is a
product of commutators involving precisely p — 1 occurrences of y and so,

p-i

»P-i* = n ui

where «,- is a product of commutators involving i (but not i + (p — 1)) occurrences
of y. It is easily verified, however, that

where each n(i) is an integer prime to p. So, as usual,

P-I p-in «< = n ^
Hence, by Lemma 3.4, u t = u"(1). But «j , being a product of commutators in-
volving only one occurrence of y, is trivial. Thus vt = 1—a contradiction.
Therefore k ^ 2 and so fe ̂  3. This completes the proof of statement (1) and with
it the proof of the proposition.

LetSB be a variety of groups and suppose that2B ^ £>*. Let 2? be an arbitrary
minimal p-irregular subvariety of 2B. By Lemma 3.1 and the modular law

If 9B A 33p has class at most 3p — 3, then so does 33 and the previous proposition
implies that 33 = £>*. This leads to the following theorem.

THEOREM 3.6. Let IX be an irregular variety of p-groups. Then T>*
is the only minimal p-irregular subvariety ofVL if one or more of the following
conditions are satisfied:

i) j> = 2,3 or 5,

ii) tf^$R3P-3,
iii) U ^ 9 t 2 9 I .

PROOF. In view of the comments preceding the statement of the theorem,
it will suffice to show that, under any one of these conditions, a 2-generator group
of exponent p in It has class at most 3p — 3. Under condition ii) this is trivial and
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it follows from a theorem of Gupta [2] that under condition iii) any group of
exponent p in U has class at most 2p.

If p = 2, 3 or 5, then all finite 2-generator groups of exponent p have class at
most 3p — 3. For p = 2 or 3, this is well known (see, for example, Huppert [4; III,
6]). For p = 5, it follows from results of Kostrikin [5].

Finally, we use Theorem 3.6 to obtain criteria for regularity among varieties
of p-groups.

THEOREM 3.7. Let H be a variety of p-groups satisfying one or more of the
conditions of Theorem 3.6. Then the following statements are equivalent:

a) U is regular,
b) U does not contain the wreath product of two cyclic groups of order p,
c) U has the (p — l)'th Engel congruence.

PROOF, C) -> b). This follows from the easily verified fact that the wreath
product in question does not have the (p — l)'th Engel congruence.

b) -• a). This follows from Theorem 3.6 and the definition of D*
a) -» c). Suppose that II is regular. To show that U has the (p — l)'th Engel

congruence, it clearly suffices to suppose that U has class p and prove that U then
has the (p — l)'th Engel condition. Let H = F2(U) and let {x, y} be a free generating
set of H. We must show that [x, (p - l ) j ] = 1.

Since groups of exponent p have the (p — l)'th Engel congruence, ff/33p(H)
has the (p - l)'th Engel condition. Thus \x,(p - l)y}e^8p(H). But H is regular,
and so each element of $8P(H) is a product of p'th powers of commutators in x
and y. In particular,

By Lemma 1.2 of Weichsel [12], we can suppose that each dt has weight p and so,
by our Lemma 3.4, we can further suppose that each dt contains exactly one
occurrence of x. But, in this case, each d, is either [x, (p — l)y~\ or its inverse.
Thus, for some integer n, [x, (p - l ) y ] 1 + n p = 1 and so [x,{p - l)y] = 1, as H is
a p-group. This completes the proof.
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