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SUMMARY

Ross River virus (RRV) is a mosquito-borne virus endemic to Australia. The disease, marked by
arthritis, myalgia and rash, has a complex epidemiology involving several mosquito species and
wildlife reservoirs. Outbreak years coincide with climatic conditions conducive to mosquito
population growth. We developed regression models for human RRV notifications in the Mildura
Local Government Area, Victoria, Australia with the objective of increasing understanding of the
relationships in this complex system, providing trigger points for intervention and developing a
forecast model. Surveillance, climatic, environmental and entomological data for the period July
2000–June 2011 were used for model training then forecasts were validated for July 2011–June
2015. Rainfall and vapour pressure were the key factors for forecasting RRV notifications.
Validation of models showed they predicted RRV counts with an accuracy of 81%. Two major
RRV mosquito vectors (Culex annulirostris and Aedes camptorhynchus) were important in the
final estimation model at proximal lags. The findings of this analysis advance understanding of
the drivers of RRV in temperate climatic zones and the models will inform public health agencies
of periods of increased risk.
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INTRODUCTION

Ross River virus (RRV) (family Togaviridae, genus
Alphavirus), is the most common mosquito-borne
virus in Australia, with the largest burden occurring

in the tropical north [1]. Symptoms in humans include
debilitating fatigue, muscle and joint pain that persist
between 3–6 months, and up to a year in some
cases [2], leading to significant morbidity and eco-
nomic loss [3]. However, 55–75% of cases are asymp-
tomatic [4].

In the southeastern State of Victoria, RRV is
endemic with seasonal incidence. Most cases occur
during the Southern Hemisphere summer and early
autumn, so reporting of arbovirus notifiable disease
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surveillance data typically refers to Australian finan-
cial years (1 July to 30 June the following calendar
year) [1]. In the period July 2005–June 2010, a mean
of 214 human cases were notified per year in
Victoria (3·8/100 000 people per year), with the major-
ity acquiring infection in either northern regions of the
State (the Murray Valley) or southeastern coastal
regions [1]. Outbreaks occurred in 1992/1993, 1996/
1997, and more recently in 2010/2011 when 1312
cases were notified across the State (23·3/100 000
people) [5].

The epidemiology of RRV is complex with the dis-
ease maintained in wildlife reservoirs and transmitted
to humans by mosquitoes, with human–mosquito–
human transmission potentially occurring during epi-
demics [4]. The virus has been isolated from over 40
different mosquito species; however, only a small
number are thought to be competent vectors [6]. The
predominant mosquito vector species vary by location
and season. Macropods are thought to be the major
wildlife reservoir, which also vary by ecological
niche. Other marsupials, rodents and flying foxes
may also be involved [6], particularly in urban areas
[4]. Horses can also be clinically infected [7]; however,
their role in amplifying the virus is unclear.

Arboviral surveillance and intervention in Victoria

RRV is a notifiable human disease under the
Public Health and Wellbeing Regulations (2009). In
Victoria, doctors and/or pathology laboratories
must notify all laboratory-confirmed cases to the
Department of Health and Human Services (DHHS)
within 5 days of diagnosis. According to the nation-
ally agreed case definition [1] laboratory definitive evi-
dence confirming a case requires either:

. isolation of RRV, or

. detection of RRV nucleic acid, or

. immunoglobulin G (IgG) seroconversion or a sign-
ificant increase in antibody level or a 5fourfold rise
in titre to RRV, or

. detection of RRV-specific IgM, in the absence of
Barmah Forest virus IgM, unless RRV IgG is
also detected, or

. detection of RRV-specific IgM in the presence of
RRV IgG.

Control of arboviruses relies on early detection of
increased levels of mosquitoes and/or virus activity,
prompting public health interventions including vec-
tor control and public education for bite prevention

[8]. Under the Victorian Arbovirus Disease Control
Program (VADCP) local governments across Victoria
implement surveillance and control strategies on vector
mosquito populations during the peak season between
November and April each year when most human
arbovirus notifications are received [9]. This pro-
gramme has been providing standardized adult mos-
quito monitoring and sentinel chicken surveillance
targeted at Murray Valley encephalitis (MVE) and
other endemic arboviruses since 1991 in a One Health
model of collaboration. The Victorian Department
of Economic Development, Jobs, Transport and
Resources (DEDJTR) provides virological and ento-
mological support to the VADCP, funded equally by
the DHHS and the local governments involved, over-
seen by a multidisciplinary Task Force. Surveillance
involves weekly mosquito trapping using carbon diox-
ide and light-baited traps in eight local government
areas across Victoria. Mosquitoes are counted and
identified by species and viral isolation is attempted
in an effort to detect the presence of RRV.

Before and during each peak season for arboviral
activity, the VADCP analyses three broad environmen-
tal indicators [9–11] of conditions suitable for increased
MVE virus activity in southeastern Australia. Meteoro-
logical data [rainfall in the catchment basins of the four
main river systems in eastern Australia and proxy mea-
sures for the Southern Oscillation Index (SOI) and La
Niña events] are considered by DHHS and councils
to inform of likely disease occurrence and when to insti-
gate interventions. No models are currently available to
combine these data for RRV prediction, with public
health interventions being informed by routine notifi-
able disease surveillance and mosquito monitoring
through the VADCP.

Modelling and prediction

Due to the climatic dependence of wildlife and mos-
quito populations, models using climate and/or ento-
mological variables to predict RRV incidence may
be helpful for informing disease control activities
and forecasting the impact of climate change. A
detailed review [3] describes previous models for
RRV. Most predictive models for RRV have used
logistic regression to estimate the odds or probability
of an outbreak within a season, using seasonal vari-
ables at fixed points in time [12–16]. Others have
explored prediction of disease using time-series ana-
lysis techniques [12], such as seasonal autoregressive
integrated moving average and polynomial distributed
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lag (PDL) time-series models [17], and also negative
binomial regression [18], to predict rates of disease,
rather than simply whether or not an outbreak
might occur in a season. Models tailored to conditions
at the local level have tended to have better predictive
capacity than broader geographical models [13]. All
previous models based on RRV surveillance data for
southern Australia have estimated associations with
annual case counts, with only two incorporating both
entomological and climatic variables (for the south-
western region of Western Australia [13] and southern
South Australia [15]). None of the models for RRV in
southern Australia have attempted to model monthly
counts and none have explicitly undertaken out-of-
sample validation (forecasting); however, their outputs
have informed surveillance and control activities.

Models combining mosquito count and climate
data have produced better results than models consid-
ering climatic variables alone [13, 17]. For example,
Woodruff et al. [13] developed early and late warning
models for RRV outbreak years in 14 statistical local
areas of Western Australia and found climate data
alone had 64% sensitivity for an early warning
model, and the addition of mosquito surveillance

data increased the sensitivity to 85%. Previous models
for predicting RRV in Victoria [16] have used only cli-
matic data at one time point per season (total rainfall
in July, maximum temperature in November) to esti-
mate the probability of an outbreak during peak
transmission season for two adjacent areas in the
Murray Valley, achieving in-sample sensitivity (internal
‘rotational’ validation) of between 64% and 96% for
predicting an outbreak season.

The aim of this analysis was to develop predictive
models for monthly counts of human RRV notifica-
tions in a highly affected inland location. Specific objec-
tives included estimating the association between
notified case counts and explanatory climatic, environ-
mental and entomological variables, evaluating the
usefulness of mosquito count data for informing public
health interventions by estimating trigger points for
action and, last, developing a forecasting tool.

METHODS

Data

Mildura Local Government Area (LGA), located
inland in northwest Victoria (Fig. 1) was selected for

Fig. 1. Study extent of predictive modelling of Ross River virus cases in the Mildura Local Government Area (LGA)
(shaded grey), Victoria, Australia, for the period 1 July 2000 to 30 June 2015. The black circle represents the location of
the Mildura airport weather station. The Murray River forms the northern border of the Mildura LGA.
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this analysis as it has the highest RRV disease burden
in the State. RRV notifiable disease surveillance data
for the period July 2000–June 2015 were provided by
the DHHS including the following variables: esti-
mated date of onset, 5-year age groups, sex and resi-
dential address (or exposure address where ascertained
at interview by health officials). These data were geo-
coded utilizing the Google Maps® application pro-
gramming interface, aggregated by month of onset
and divided by annual Australian Bureau of Statistics
estimates of the resident LGA population.

Weekly mosquito trapping count data were pro-
vided by DEDJTR for the same time period, for
four traps in the Mildura LGA. Six species of interest
were investigated for predictive value, including two
thought to play a major role in Victoria in RRV
transmission [4] (Aedes camptorhynchus and Culex
annulirostris), two mosquito species with possible
roles in transmission (Ae. notoscriptus, Coquillettidia
linealis) and two further species with unknown im-
portance for RRV transmission (Cx. australicus, a
vector of MVE, and Cx. globicoxitus). Mosquitoes
are only counted during November–April each year.
The median, mean and maximum counts across the
four traps located in the Mildura LGA were

calculated each month and categorized as follows for
each species: ‘no mosquitoes trapped’ (the reference
category), ‘1–9 mosquitoes’, ‘10–99 mosquitoes’,
‘100–999 mosquitoes’, and ‘51000 mosquitoes’.

Climatic and environmental variables were selected
following a review of previous models, and are sum-
marized by source in Table 1. Weather station data
were obtained from the Australian Bureau of
Meteorology weather station with the most complete
data in Mildura LGA (Mildura airport; Bureau of
Meteorology Station no.: 076031; geo-coordinates
142·0867° E, −34·2358° S, see Fig. 1).

Descriptive and univariable statistical analyses

The distribution of each variable was examined and
described, using contingency tables for categorical
variables, collapsing categories where appropriate.
Summary statistics and histograms were inspected
for continuous variables and these transformed as
required.

Data for the period July 2000–June 2011 were used
to train the model. Owing to overdispersion, negative
binomial regression models were constructed to pre-
dict the monthly count of notified RRV cases each

Table 1. Climatic and environmental variables tested as predictors in models of monthly Ross River virus
notifications for the Mildura Local Government Area, Victoria, Australia

Variable Description Unit Source

SOI Southern Oscillation Index (monthly) – Australian Bureau of
Meteorology

RAIN
RAINDAYS

Total monthly precipitation mm
Number of days with >1 mm precipitation per month days

TMAX Absolute maximum air temperature per month °C
TMIN Absolute minimum air temperature per month °C
TDMEAN Mean daily air temperature per month °C
TDMAX Mean daily maximum air temperature per month °C
TDMIN Mean daily minimum air temperature per month °C
HUM Humidity at 9 a.m. on the day with the maximum

temperature per month
%

VAP Maximum vapour pressure at 9 a.m. per month hPa
VAPS Maximum saturated vapour pressure at 9 a.m. per month hPa
SST
SSTA

Monthly sea surface temperature (SST) and sea surface
temperature anomaly (SSTA) measured at Niño 3·4
(a standardized region for sea surface temperature
measurement in the Pacific Ocean)

°C National Oceanic and
Atmospheric
Administration

SEALVLmin

SEALVLmax

SEALVLmean

Monthly minimum, maximum andmean sea level measured
by tide height at Stony Point, Victoria, Australia
(GDA94: 38·373155° S, 145·223538° E)

M National Tidal Centre

RIVER Maximum daily river flow for theMurray River at Colignan
(indicative of irrigation)

ML Victorian Water Resources
data warehouse
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month for Mildura LGA (y), of the form:

Y � Poisson(mu∗),
ln(mu∗) = β0 + β1x1 + β2x2 + ... + βpxp + v,

exp(v) � Gamma

(
1
α
, α

)
,

where the p predictor variables x1, x2, . . ., xp are given,
and the population regression coefficients β0, β1, . . ., βp
are estimated, applying a dispersion parameter (α)
to represent the ratio of the variance of the expected
counts to their mean. The dispersion parameter
affects the variance of the expected counts, not the
expected counts themselves. Exponentiation allows
expression of the coefficients as incidence rate ratios
(IRRs).

Climatic and entomological variables were lagged
by 1–12 months and screened for entry into multivari-
able modelling. For each putative predictor variable,
the lag with the strongest statistical association was
selected using Akaike’s Information Criterion (AIC)
[19] – as this criterion may be applied to non-nested
models – and entered into multivariable models if
they were crudely statistically associated with RRV
case count based on a liberal P value threshold (P <
0·25). The linearity of the univariable relationship
with the outcome variable was assessed graphically
for each continuous variable and by comparing the
AIC of univariable models including a linear term vs.
those with the variable categorized into quintiles.
Where appropriate categorized variables were retained
for further analyses and category levels collapsed.

All continuous covariates were tested for collinear-
ity in pairs by calculating Spearman’s correlation
coefficient (ρs). Among pairs of highly correlated pre-
dictors (ρs 5 0·70), only the variable with the stron-
gest statistical association with the outcome was
retained for further analysis [20].

Multivariable analyses

Multivariable models were constructed including all
retained variables and trimmed for parsimony using
manual backwards-stepwise regression to P< 0·20.

Each removed variable was re-entered individually
into the preliminary main effects model and retained
if P< 0·15. At this point, pairwise interactions were
tested among all retained terms, categorizing con-
tinuous variables as required, and the model was

reconstructed as a generalized linear model to imple-
ment regression diagnostics (deviance-based goodness-
of-fit to the training data, assessment of residuals, influ-
ence and leverage). Maximum likelihood R2 was used
as a robust measure of fit (no universally accepted
adjusted R2 measure is available for negative binomial
models [21]). The final ‘estimation’ model was checked
for serial autocorrelation (AC) by including case counts
in immediately preceding months [22] after testing for
non-stationarity and trend in the time-series following
the Dickey–Fuller (DF) approach [23].

Prediction, validation and adjustment for overfitting

The final estimation model was used to predict
monthly notified human RRV case counts notified
in each month in the 4-year validation dataset (July
2011–June 2015) for Mildura LGA, and 95% predic-
tion intervals (PIs) were estimated adapting the
method of Farrington et al. [24] to the negative bino-
mial distribution. External (‘out-of-sample’) forecasts
and their 95% PIs were then compared to observed
data (not used in model development) using Pearson’s
correlation coefficient (ρp) [25], and models were
tested for their proportional agreement with subject-
ively defined ‘outbreak alerts’ (months with >2
notified cases and where the count of cases exceeded
the 5-year mean plus 1 s.D. for that month estimated
excluding known outbreak years, i.e. 2010/2011,
assuming a negative binomial distribution) [26]. The
final estimation model was pruned to account for
overfitting by removing variables sequentially, and
the comparisons repeated, to arrive at the final ‘predic-
tion’ model, selected based on its forecasting ability.

Analyses were undertaken using Stata v. 14.0
(StataCorp., USA) and the R statistical package v. 3.1.1
[27] using the libraries ‘MASS’ [28] and ‘epiR’ [29].

RESULTS

There were 479 notified cases of RRV in Mildura
LGA during the study period. The outbreak during
the 2010/2011 financial year accounted for 251 notifi-
cations (52·4%) (Fig. 2). The mean notification rate
(excluding 2010/2011) was 63·9/100 000 person years
(32·6/100 000). Cases were notified year-round how-
ever 87% had estimated dates of onset between
November and April. There were 31 outbreak alerts
in the study period, six of these in 2010/2011 and 16
in the model validation period.
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Among those species investigated, the predominant
mosquito species trapped in Mildura LGA during
the study period were Cx. annulirostris (n= 142 638),
Ae. camptorhynchus (n= 24 349), Cx. australicus (n=
6768) and Coquillettidia linealis (n= 5249). Univariable
associations between RRV incidence in Mildura LGA
and lagged counts of the mosquito species and cli-
matic and environmental variables are provided in
Supplementary Tables S1 and S2).

The final estimation model for Mildura LGA is pre-
sented in Table 2. A doubling of maximum vapour
pressure was associated with a 3·5-fold rise in the
rate of notifications in the following month (IRR
3·47, 95% CI 1·57–7·66). Mean trap counts of Cx.
annulirostris 51000 were associated with a sevenfold
increase in the rate of RRV notifications in the follow-
ing month. When the mean Ae. camptorhynchus count
was 510, RRV notifications 2 months later were
increased 55%. A doubling of precipitation and
more rain days, were associated with 25% and 8%
rises in RRV notifications, 4 and 6 months later,
respectively. Two interaction terms were retained in
the final model. The main effect of Murray River
flows in the highest quintile (maximum daily flow in
a month 516 268 ML) was an 85% reduction in
RRV notifications 3 months later (IRR 0·15, 95%
CI 0·03–0·81), whereas when the SOI (measured 6
months prior) was greater than its median across the
study period (51·7 units) Murray River flows in the

highest quintile were associated with a 5·7-fold
increase in the rate of RRV notifications 3 months
later. The main effect of Pacific Ocean sea surface
temperatures 526·8 °C was a 68% reduction in notifi-
cations 2 months later, whereas when minimum
monthly sea levels (measured 7 months prior) were
513·2 cm and sea surface temperatures 526·8 °C
were associated with a fourfold rise in RRV notifica-
tions 2 months later.

There was no long-term trend in the time-series
(P = 0·14) and the null hypothesis of non-stationary
was rejected (DF test statistic =−5·856, D.F. = 132,
P < 0·001). Moderate serial AC was detected (lag 1,
AC= 0·61) with each case 1 month prior being asso-
ciated with a 12% increase in RRV incidence the fol-
lowing month (IRR 1·12, 95% CI 1·05–1·19). An AC
term was included then eliminated (owing to P > 0·20)
from the final estimation model.

Forecast ability of the model was improved by
pruning to the final forecasting model (presented in
Table 3 with a comparison of observed data and fore-
casts). Total observed annual counts were within fore-
cast prediction intervals in all four validation years
(Fig. 2), and at a monthly resolution observed counts
were within the forecast prediction intervals in 39 of
48 months in the validation period (81%), compared
to 129 of 132 months in the model training period
(98%). In two of the validation years (2011/2012 and
2013/2014) there was excellent agreement between

Fig. 2. Monthly time-series, predictions and forecasts of notified Ross River virus cases in the Mildura Local Government
Area, Victoria, Australia, for the period 1 July 2000 to 30 June 2015. Data for the Australian financial year 2010/2011
have been rescaled by a factor of 3. Dotted lines represent upper 95% prediction intervals.

RRV modelling in southeastern Australia 445

https://doi.org/10.1017/S0950268816002594 Published online by Cambridge University Press

https://doi.org/10.1017/S0950268816002594


forecast and observed case counts and outbreak alerts,
proportional agreement of 0·92 and 0·83, respectively.
The model under-predicted case counts in 2012/2013
and 2014/2015, all 9 months with observed counts
above the forecast prediction interval occurred in
these two years, resulting in poorer proportional
agreement (0·50 in both cases) with observed outbreak
alerts in these two years.

DISCUSSION

Climate, environmental and entomological variables
were used to develop prediction models for monthly
RRV incidence rates for the Victorian inland LGA
with the highest notification rates. To our knowledge,
this study was the first to integrate mosquito count
data into Victorian RRV predictive modelling and the
first to attempt out-of-sample forecasting of monthly
counts of RRV for a location in southern Australia.

The most robust way to assess predictive model
accuracy is to review a graphical representation of
observed vs. predicted events using external data
[30], as adopted for assessing the current models.
The final forecasting model performed extremely
well at tracking the observed counts in the validation
period, and clearly fit the data well (differentiating
between the outbreak year 2010/2011 and other
years with relatively low counts). Forecast prediction
intervals encompassed the observed monthly counts
in 39 of 48 months in the validation period. Of the 9
months with observed counts falling above the pre-
dicted interval, five in 2012/2013 and two in 2014/
2015 had very low notified case counts (44) and
raised outbreak alerts merely on the basis that these
low counts were well outside the typical RRV activity
season (when typically 41 case was observed in most
other years). The subjectively defined outbreak alert
threshold is likely to be oversensitive, so direct

Table 2. Final negative binomial regression (‘estimation’) model for monthly Ross River virus notifications in the
Mildura Local Government Area, Victoria, Australia, July 2000–June 2011

Variable (units)
Lag
(months) Levels IRR S.E. 95% CI P value

log2 (maximum vapour pressure, hPa) 1 3·47 1·40 1·57–7·66 0·002
Culex annulirostris (mean trap count) 1 51000 7·07 3·37 2·78–18·0 <0·001

10–999 1·83 0·46 1·12–2·98
<10 1·00 – (ref.)

Aedes camptorhynchus (mean trap count) 2 510 1·55 0·23 1·16–2·09 0·003
<10 1·00 – (ref.)

log2 (precipitation, mm) 4 1·25 0·08 1·09–1·42 0·001
Number of days with precipitation >1 mm 6 1·08 0·04 1·00–1·17 0·044

Interaction terms
Maximum Murray river flow× Southern
Oscillation Index
RIVER 3 516 268 ML 0·15 0·13 0·03–0·81 0·027
SOI 6 51·7 1·56 0·50 0·83–2·94 0·167

−5·4–1·7 1·99 0·66 1·04–3·80 0·037
<−5·4 1·00 – (ref.)

RIVER× SOI 51·7 5·65 4·69 1·11–28·7 0·037
−5·4–1·7 0·33 0·42 0·03–4·10 0·385

Sea surface temperature ×minimum sea level
SST 2 526·8 °C 0·32 0·09 0·19–0·55 <0·001
SEALVLmin 7 513·2 cm 0·87 0·25 0·49–1·55 0·644
SST × SEALVLmin 3·99 1·72 1·71–9·29 0·001

Est. S.E. 95% CI P value*

Dispersion parameter (α) 0·04 0·03 0·01–0·21 0·009

IRR, Incidence rate ratio; S.E., standard error of IRR or dispersion parameter; CI, confidence interval.; Est., point estimate of
dispersion parameter.
AIC = 318·564, n= 132, degrees of freedom= 16, log likelihood (model =−143·282; null model = –226·598), maximum like-
lihood R2 = 0·717, deviance-based goodness-of-fit (P= 0·50).
* P value for dispersion parameter estimated using a likelihood ratio test that α is non-zero.
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comparisons can only be interpreted with caution.
Raising the alert threshold to >2 s.D. than the long-
term mean did not resolve the issue, as such a thresh-
old was largely insensitive at detecting months that
appeared to be clearly in excess of normal.

Statistical epidemiological modelling is often
applied to address questions of causality (estimation
and hypothesis testing) with fewer examples where
the explicitly stated aim is modelling for prediction
of future observations [22]. When forecasting (predict-
ing into the ‘out-of-sample’ future), a modified
approach may be required, as was the case in this
study, reducing the focus on the relationships between
individual variables. While model fit remains import-
ant there is a trade-off, external validity is paramount
(models constructed based on historical data must
hold into the near future) and overfitting to training
data may well come at the expense of robust future
prediction [22]. For this reason the final ‘estimating’
model, used for assessing the relationships between
variables, was pruned to produce a more parsimoni-
ous ‘forecasting’ model.

Other models of RRV in southern Australia have
been restricted to providing early warning of outbreak
years, rather than attempting to forecast monthly
counts. As presented, the forecasting model will be

utilized each year to provide forecasts to the DHHS.
Further modelling will be required to refine the vari-
able selection and improve the robustness of forecasts.
Other more complex approaches may be required [25],
perhaps following the PDL modelling approach that
Hu et al. [17] implemented for Brisbane, Queensland.

Rainfall and vapour pressure were key factors for
forecasting RRV notifications in Mildura LGA.
Rainfall has been included as an important predictor
in all previous RRV models for southern Australia
[12, 13, 15, 16], and underlies one of the broad early
warning indicators [10] considered by DHHS for
years of increased MVE activity. Vapour pressure is
a measure of air humidity that depends on tempera-
ture and air pressure, similar variables have been
included in all previous prediction models [12, 15,
16] developed for regions along the Murray River
(that forms a natural border between the states of
Victoria and New South Wales). It is biologically
plausible that these variables are related to arbovirus
transmission, as mosquitoes require a minimum tem-
perature and moisture for breeding. The lags of
these variables likely reflect effects of water, tempera-
ture and climatic conditions on local ecology, for
example through their effects on vegetation and wild-
life reservoir host populations along with their direct

Table 3. Final negative binomial regression (‘forecasting’) model for monthly Ross River virus notifications in the
Mildura local government area, Victoria, Australia. Trained on data for the period July 2000–June 2011, validated
on data for the period July 2012–June 2015

Variable (units) Lag (months) IRR S.E. 95% CI P value

log2 (maximum vapour
pressure, hPa)

1 13·7 6·01 5·76–32·4 <0·001

log2 (precipitation, mm) 4 1·44 0·13 1·21–1·71 <0·001
Number of days with
precipitation >1 mm

6 1·16 0·08 1·01–1·33 0·036

Est. S.E. 95% CI P value*
Dispersion parameter (α) 1·05 0·28 0·62–1·78 0·009

Forecasting performance

Financial year
Forecast cases
(95% PI)

Observed
cases ρP

Forecast
outbreak alerts

Observed
outbreak alerts

2011/2012 30 (0–122) 27 0·59 2 3
2012/2013 11 (0–52) 30 0·32 2 6
2013/2014 19 (0–88) 16 0·58 1 1
2014/2015 14 (0–67) 37 0·38 0 6

IRR, Incidence rate ratio; S.E., standard error of IRR; CI, confidence interval; PI, prediction interval; ρP, Pearson’s correl-
ation coefficient.
AIC = 367·6142, n= 132, degrees of freedom= 5, log likelihood (model =−178·807; null model =−226·598), maximum like-
lihood R2 = 0·515, deviance-based goodness-of-fit (P= 0·81).
* P value for dispersion parameter estimated using a likelihood ratio test that α is non-zero.
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effect on mosquito populations. While it is difficult to
identify causal links between distally lagged precipita-
tion variables and the timescales of vector develop-
ment and transmission of RRV, the main purpose of
the models developed here was as predictive tools
rather than to draw explicit conclusions regarding
causation. Including rainfall parameters with lags
between 4 and 6 months provided the model with
the best predictive performance at a monthly reso-
lution. When we evaluated rainfall variables over
lags of 1–3 months (in univariable analysis), very simi-
lar estimates were obtained as those included in the
final model (for total monthly precipitation lagged 4
months, and number of days with >1 mm rainfall
lagged 6 months). There were only low levels of tem-
poral AC observed between these variables, so these
were included in multivariable estimation and predic-
tion models at shorter lags (as secondary effects of
rainfall over different time-scales). However, these
variables representing shorter lags of rainfall were
subsequently eliminated. Owing to weak correlations
between climatic variables (rainfall, vapour pressure,
humidity and temperature) in our data, it is also likely
that some of the proximal effect of rainfall is repre-
sented by other variables in the final models.

Cx. annulirostris and Ae. camptorhynchus are the
two major mosquito vectors for RRV in Victoria [4].
Their inclusion in the final estimation model at prox-
imal lags is consistent with their role in transmitting
virus to humans from wildlife reservoirs and the
time taken for mosquitoes to develop, the ∼2 week
extrinsic and 1- to 2-week intrinsic incubation periods
of RRV [17]. The univariable associations presented
in Supplementary Table S1 represent useful trigger
points for action by the local council (such as mos-
quito larvicidal treatments and public announcements
about the risk and appropriate preventative actions).
Risk of RRV is likely to be greatly increased in
months subsequent to those when mean weekly trap
counts of Cx. annulirostris and Ae. camptorhynchus
exceed 100 and 10 mosquitoes, respectively. Contrary
to the findings of previous modelling studies of
RRV notifications in other Australian states [13,
17], we found that inclusion of variables representing
mosquito numbers provided no improvement in
model forecasting ability (although strongly statistic-
ally significant associations were observed between
lagged mosquito count variables and RRV notifica-
tions in the final estimation model). Hu et al. [17]
noted the limitations of including mosquito count
data in early warning forecasting models (cost of

collection and proximal lags limiting the extent of
early warning).

Two interesting interactions were present in the
final estimation model, both of which appear indica-
tive of periods of extreme climatic conditions.
Elevated SOI (i.e. a La Niña event) 6 months earlier
and maximum Murray River flow 3 months prior
were associated with increased rates of notification
for RRV. A severe flooding event affecting the
Murray River valley occurred in the 2010/2011 out-
break year. Interestingly, on its own, high maximum
Murray River flows (indicative of low amounts of irri-
gation) were associated with substantially decreased
rates of RRV notification.

Weather patterns in the study region are heavily
influenced by the development and intensity of El
Niño/La Niña events in the Pacific Ocean [31].
Across eastern Australia, El Niño events are often
associated with drier than normal conditions while
La Niña events are associated with wetter than nor-
mal conditions. Lower sea surface temperatures in
the Niño 3·4 region (SST) are an indicator of La
Niña events and in this analyses were associated
with increased rates of RRV notification, which is bio-
logically plausible as wetter conditions favour mos-
quito larval development. Sea surface temperature
was considered as a potential model covariate, even
for this inland study area, as it was identified by
Woodruff et al. [16] as a predictor in their model of
RRV for the Murray region in Victoria, and for its
role in the El Niño Southern Oscillation phenomenon
that influences weather patterns across Australia.

Of interest, another biologically plausible and stat-
istically significant interaction was detected, between
SST and sea levels (when both were increased, rates
of notification of RRV cases were also likely to be
increased). Sea-level changes are driven by complex
processes including thermal expansion of water,
input of water into the ocean from glaciers and ice
sheets, and changed water storage on land [32].
Variables representing sea level were considered for
inclusion in these models because sea levels are corre-
lated with SST and the SOI [33]. Again, this inter-
action term may indicate periods of extreme climatic
conditions, with extremes in sea levels and sea surface
temperature being a feature of cyclones (as experi-
enced in the 2010/2011 outbreak year when cyclones
in Queensland caused major flooding in the
Murray–Darling river basin immediately preceding
extremely high arbovirus activity). The DHHS utilizes
another sea surface temperature measure, the Indian
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Ocean Dipole (IOD), which is based on the difference
between sea surface temperature in the western and
eastern tropical Indian Ocean, as a predictor for
MVE virus activity in southeastern Australia [9].
Negative IOD events generally coincide with La
Niña events.

The study was subject to a number of limitations:
notification data may be undoubtedly understated
and biased toward cases with typical clinical symp-
toms – those with less severe illness may not seek med-
ical help or may be misdiagnosed. For this reason
model outputs are interpreted as notification rates
(rather than incidence rates). Residential location
was accepted as a proxy for place of infection as this
information was not available for a majority of
cases. Misclassification of place of infection for some
cases may have altered the measured associations
between model covariates and disease, thus reducing
predictive accuracy. The model did not account for
mosquito control activities, as a reliable, consistent
measure of these activities was unavailable. It is likely
this omission has reduced the predictive accuracy of
the models and ideally these should be accounted for
in future research. Despite these limitations, the
model presented appears a useful forecasting tool for
RRV in region investigated with 81% of observed
monthly counts in the validation period falling within
forecast prediction intervals.

Changing climatic conditions over the coming dec-
ades are likely to alter the current patterns of arboviral
disease in Australia [3, 34], although the nature of this
change is controversial [35]. The effect on arbovirus
transmission is likely to vary regionally. For example,
the impact will differ in arid compared to temperate,
and coastal versus inland regions, reflecting variation
in the effect of climate change on local ecological con-
ditions [34]. Advanced tools, such as the models pre-
sented here, will be required to monitoring the
changing relationship between notified cases and
local conditions, and to provide early warning of per-
iods of high arbovirus activity.

SUPPLEMENTARY MATERIAL

For supplementary material accompanying this paper
visit https://doi.org/10.1017/S0950268816002594.
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