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2-Primary Exponent Bounds for
Lie Groups of Low Rank

Stephen D. Theriault

Abstract. Exponent information is proven about the Lie groups SU(3), SU(4), Sp(2), and G2 by show-

ing some power of the H-space squaring map (on a suitably looped connected-cover) is null homo-

topic. The upper bounds obtained are 8, 32, 64, and 28 respectively. This null homotopy is best possible

for SU(3) given the number of loops, off by at most one power of 2 for SU(4) and Sp(2), and off by at

most two powers of 2 for G2.

1 Introduction

This paper computes upper bounds for the 2-primary exponents of the Lie groups
SU(3), SU(4), Sp(2), G2, and SO(3) through SO(8). As we are concerned only with
2-primary information, assume all spaces and maps have been localized at 2.

Two types of exponents should be distinguised. The homotopy exponent of a
space X, written exp(X), is 2t if t is the minimal power of 2 which annihilates the
2-torsion in the homotopy groups of X. The H-exponent of an H-space Y , written

H exp(Y ), is 2t if t is the minimal power of the H-space squaring map on Y which is
null homotopic. Observe that if Y has H-exponent 2t then its homotopy exponent
is also bounded above by 2t , but the reverse implication need not be true. In com-
puting H-exponents, there is often interference from a few low dimensional integral

homotopy classes. These misleadingly force the H-exponent to be infinite. To avoid
this problem an appropriately connected cover is considered instead.

In what follows, a space X will often be looped beyond its connectivity. When this
happens, let Ω

n
0X be the component of Ω

nX containing the basepoint. Equivalently,
this is the n-th-loop space of the n-th-connected cover of X.

Theorem 1.1 The following hold:

(a) H exp
(

Ω
6
0SU(3)

)

= 8,

(b) H exp
(

Ω
8
0SU(4)

)

≤ 32,

(c) H exp
(

Ω
8
0Sp(2)

)

≤ 64,

(d) H exp
(

Ω
12
0 G2

)

≤ 28.

The result for SU(3) is best possible in the following sense. There are known
elements of order 4 in the homotopy groups of SU(3) but no known elements of

order 8. It is conjectured that the homotopy exponent of SU(3) is 4. On the other
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120 Stephen D. Theriault

hand, Davis and Mahowald [DM2] show that 8 is a lower bound for the H-exponent
of Ω

k
0SU(3) for 0 ≤ k ≤ 8. So the result in Theorem 1.1 is best possible for the given

number of loops. However, it may be the case that after looping SU(3) more often the
H-exponent drops to 4 to match the conjectured homotopy exponent. The potential
discrepancy between the homotopy exponent and the H-exponent is, at this point,
not understood. As for SU(4), Sp(2), and G2, they have known elements in their

homotopy groups of orders 16, 32 [MT] and 64 [DM1] respectively. So the results in
Theorem 1.1 are off by at most one power of 2 for each of SU(4) and Sp(2), and by at
most two powers of 2 for G2.

As a corollary of Theorem 1.1 we are able to compute exponent bounds for the Lie
groups SO(3) through SO(8). Recall that Spin(n) is the universal two-sheeted cover
of SO(n) if n ≥ 3. As well, it follows from [C1, Section 5] that H exp(Ω2S3〈3〉) = 4.

Corollary 1.2 The following hold:

(a) Spin(3) ' S3, and so H exp
(

Ω
2SO(3)〈3〉

)

= 4,

(b) Spin(4) ' S3 × S3, and so H exp
(

Ω
2SO(4)〈3〉

)

= 4,

(c) Spin(5) ' Sp(2), and so H exp
(

Ω
8
0SO(5)

)

≤ 64,

(d) Spin(6) ' SU(4), and so H exp
(

Ω
8
0SO(6)

)

≤ 32,

(e) Spin(7) ' G2 × S7, and so H exp
(

Ω
12
0 SO(7)

)

≤ 28,

(f) Spin(8) ' Spin(7) × S7, and so H exp
(

Ω
12
0 SO(8)

)

≤ 28.

We prove Theorem 1.1 by manipulating the characteristic maps of the Lie groups.
In Section 2 we develop a general method for computing exponent bounds which is

applicable to spherically resolved spaces, based on the degrees of the characteristic
maps. The method can also be applied in other circumstances, and as an example
we compute exponent bounds on even dimensional spheres. In Section 3 we give a
factorization of the second power map on Ω

4
0S3 through two maps derived from the

homotopy class η. In Section 4 we calculate bounds on the orders of the characteris-
tic maps themselves. This involves factoring the 2-nd-power map on Ω

3S4n+1 and the
4-th-power map on Ω

3S4n−1 through the double suspension. Iterating gives a fac-
torization through ΩS3. After looping we then use the factorization from Section 3

mentioned above to establish null homotopies based on specific homotopy groups of
the Lie groups. In Section 5 the results in Sections 2 and 4 are put together to prove
the H-exponent bounds of the Lie groups.

2 A Method for Computing Upper Bounds on Exponents

Typically, an upper bound for the exponent of a space Y is estimated by identifying
homotopy fibrations X → Y → Z in which the exponents of both X and Z are

known. Then exp(Y ) ≤ exp(X) · exp(Z) (similarly for H-exponents). Often, though,
this is a poor estimate. The purpose of this section is to show that a better estimate
can be obtained in certain cases, in particular for spherically resolved spaces.

We will concentrate on the case of interest to us, that of Z = S2n+1 and the de-
gree 2r map on S2n+1 factoring through Y for some r. The method generalizes to
even dimensional spheres or odd primes, or to the case when Z is an H-space whose
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2-Primary Exponent Bounds for Lie Groups of Low Rank 121

pr-power map factors through Y . It can be used inductively to obtain upper bounds
on the exponent of spherically resolved spaces like SU(n) which are better, but not

significantly better, than those previously known. The one example we focus on will
illustrate the method and allows us to address a couple nuances that arise for spheres
at the prime 2 which do not occur at odd primes, or in the case of H-spaces and
power maps.

We begin with the following lemma, which is a sort of Mayer-Vietoris sequence.

Lemma 2.1 Suppose there is a homotopy pullback diagram

Q
f

//

h

��

P

i

��
M

g
// N

where N is an H-space. Then there is a homotopy fibration

Q
f×h
−−→ P × M

i·(−g)
−−−→ N.

Proof Let F be the homotopy fiber of g, and equivalently, of f . Applying homotopy
groups gives a commuting diagram of long exact sequences

· · · // πi(F) // πi(Q)
f∗

//

h∗

��

πi(P) //

i∗

��

πi−1(F) // · · ·

· · · // πi(F) // πi(M)
g∗

// πi(N) // πi−1(F) // · · · .

From this a diagram chase shows there is a long exact sequence

· · · −→ πi(Q)
α

−→ πi(P) ⊕ πi(M)
β

−→ πi(N)
γ

−→ πi−1(Q) −→ · · ·

where α = ( f∗, h∗), β = i∗ + −g∗, and γ is the connecting map given by the com-
posite πi(N) → πi−1(F) → πi−1(Q).

Since N is an H-space, we can multiply i and −g to obtain a map P×M
i·(−g)
−−−→ N .

Now consider the homotopy fibration

T
s

−→ P × M
i·(−g)
−−−→ N.

On the level of homotopy groups,
(

i ·(−g)
)

∗
= β, so πi(T) ∼= πi(Q) for all i ≥ 0 and

s∗ = α. The given homotopy g◦h ' i◦ f implies the composite Q
f×h
−−→ P×M

i·(−g)
−−−→

N is null homotopic, so f × h factors as a composite Q
λ

−→ T
s

−→ P × M for some
map λ. Since ( f × h)∗ = α, we must have that λ∗ is an isomorphism. Thus λ is a
homotopy equivalence, proving the lemma.
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122 Stephen D. Theriault

Let 2r : S2n+1 → S2n+1 be the map of degree 2r. Let S2n+1{2r} be its homotopy
fiber.

Lemma 2.2 Suppose there is a homotopy fibration

X
f

−→ Y
q

−→ S2n+1

where Y is an H-space and there is a map S2n+1 i
−→ Y such that q ◦ i ' 2r . Then there

is a homotopy fibration

ΩX × ΩS2n+1 Ω f ·(−Ωi)
−−−−−→ ΩY −→ S2n+1{2r}.

Proof The homotopy q ◦ i ' 2r results in a homotopy pullback diagram

S2n+1{2r} //

��

S2n+1
2r

//

i

��

S2n+1

X
f

// Y
q

// S2n+1.

Apply Lemma 2.1 to get a homotopy fibration S2n+1{2r} → X × S2n+1 f ·(−i)
−−−→ Y .

Continuing the fibration sequence to the left two steps gives the desired fibration.

Before stating the exponent information coming out of Lemma 2.2 we need to
elaborate on the nuances at the prime 2 mentioned earlier which do not occur at odd
primes or in the case of H-spaces and power maps. Let 2 : ΩS2n+1 → ΩS2n+1 be the H-
space squaring map. Let ΩS2n+1{2} be its homotopy fiber. Except in cases involving

Hopf invariant one, 2 is not homotopic to Ω2. But if we loop then by [C1, Section 4]
we do have 2r ' 2Ω

22r−1 ' Ω
22r if r ≥ 2. In particular Ω

2S2n+1{2r} ' Ω
2S2n+1{2r}

if r ≥ 2. Looping one more time gives an H-equivalence, and since the 2r-power map
on Ω

3S2n+1{2r} is null homotopic [N, 5.2], the same is true for Ω
3S2n+1{2r}.

Keeping all this in mind, Lemma 2.2 has the following corollary.

Corollary 2.3 Suppose r ≥ 2. Let t be such that 2t
= max

(

exp(X), exp(S2n+1)
)

.
Then exp(Y ) ≤ 2t+r.

The r = 1 case is a bit different. Here, the homotopy exponent of S2n+1{2} is

bounded above by 8, is conjectured to be 4, and in either case does not match the 2
within the braces. But the discrepancy in powers of 2 can sometimes be recovered by
modifying the homotopy fibration in Lemma 2.2 by ‘exchanging’ a factor of 2 from
the fiber to the base.
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2-Primary Exponent Bounds for Lie Groups of Low Rank 123

Lemma 2.4 Given the homotopy fibration

ΩX × ΩS2n+1 Ω f ·(−Ωi)
−−−−−→ ΩY −→ S2n+1{2r}

of Lemma 2.2, then there is a homotopy fibration

Ω
3X × Ω

3S2n+1 Ω
3 f ·(−2Ω

3i)
−−−−−−−→ Ω

3Y −→ Ω
2S2n+1{2r+1}.

Proof As q ◦ i ' 2r , we have Ω
2q ◦ (2Ω

2i) ' 2Ω
22r ' Ω

22r+1. Now, in place of the
pullback used in the proof of Lemma 2.2, use the pullback

Ω
2S2n+1{2r+1} //

��

Ω
2S2n+1

Ω
22r+1

//

2Ω
2i

��

Ω
2S2n+1

Ω
2X

Ω
2 f

//
Ω

2Y
Ω

2q
//
Ω

2S2n+1.

Remark 2.5 The exponent bounds resulting from Lemmas 2.2 and 2.4 can be fur-

ther improved if the order of the map S2n+1 i
−→ Y is less than the exponent of S2n+1.

This is what we do in Section 4 when Y is a Lie group and we bound the order of the
characteristic map.

As an example of Lemma 2.4 in action, consider the even dimensional sphere S2n,
localized at the prime 2. As input we need some information about the homotopy ex-
ponents of odd dimensional spheres. Mark Mahowald has conjectured the following

exponent pattern:

exp(S2n+1) =

{

2n if n ≡ 0, 3 mod 4

2n+1 if n ≡ 1, 2 mod 4.

The homotopy of even dimensional spheres is intertwined with that of odd dimen-
sional spheres by the Hopf fibration S2n−1 → ΩS2n → ΩS4n−1. The conjectured
exponent pattern for even dimensional spheres is:

exp(S2n) =

{

2 · exp(S4n−1) if n ≡ 0 mod 2
1
2
· exp(S4n−1) if n ≡ 1 mod 2.

Note that the above estimates are realized as lower bounds on the exponent, that is,

in each case there are known elements in the homotopy groups whose order matches
the conjectured order.

Proposition 2.6 We have exp(S2n) ≤ 2 · exp(S4n−1). In particular, if n ≡ 0 mod 2
and exp(S4n−1) is as conjectured then exp(S2n) is also as conjectured.
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124 Stephen D. Theriault

Proof Consider the composition ΩS4n−1 Ω[1,1]
−−−→ ΩS2n H

−→ ΩS4n−1, where [1, 1]
is the Whitehead product and H is the second James-Hopf invariant. By [C2] this
composition is homotopic to Ω2. This gives a homotopy pullback

ΩS4n−1{2} //

��

ΩS4n−1
Ω2

//

Ω[1,1]

��

ΩS4n−1

S2n−1 //
ΩS2n

H
//
ΩS4n−1.

By Lemma 2.4, there is a homotopy fibration

Ω
2S2n−1 × Ω

3S4n−1 θ
−→ Ω

3S2n f
−→ Ω

2S4n−1{4},

where θ = Ω
2E · (−2Ω

3[1, 1]).
Now consider the map induced by θ on homotopy groups. When restricted to the

2-torsion of the domain, π∗(θ) has order 1
2
· exp(S4n−1). On the other hand, π∗( f )

has order 4. Thus exp(S2n) ≤ 4 ·
(

1
2
· exp(S4n−1)

)

= 2 · exp(S4n−1).

3 A Factorization of the Second Power Map on Ω
4
0S3

The better-known factorization of the second power map on Ω
2S3〈3〉 [C1, cf. Sec-

tion 5] is as a composite Ω
2S3〈3〉

ΩH
−−→ Ω

2S5 λ
−→ Ω

2S3〈3〉, where H is the connected

cover of the James-Hopf invariant ΩS3 H
−→ ΩS5, and λ is some map. Our factoriza-

tion can be roughly thought of as describing λ; it factors through two maps derived

from the homotopy class η. The actual factorization, though, possibly alters Ω
3
0H by

some self-equivalence of Ω
4
0S3 (this follows from the proof of Lemma 3.3).

We require several lemmas. To begin, let X be a space. The cofibration S2 2
−→

S2 → P3(2) gives a homotopy fibration

Map
∗

(

P3(2),X
)

−→ Map
∗
(S2,X) −→ Map

∗
(S2,X)

which is equivalent to the homotopy fibration

Ω
2X{2} −→ Ω

2X
2

−→ Ω
2X.

The degree 2 map on the Moore space P3(2) factors as a composite

P3(2)
q

−→ S3 η
−→ S2 i

−→ P3(2),

where q is the pinch map onto the top cell and i is the inclusion of the bottom cell.
This gives a composite of mapping spaces

Map
∗

(

P3(2),X
)

−→ Map
∗

(S3,X)
η∗

−→ Map
∗

(S2,X) −→ Map
∗

(

P3(2),X
)
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which is equivalent to a factorization

ΩX{2} −→ Ω
2X

η∗

−→ Ω
3X −→ Ω

2X{2}

of the H-space squaring map on Ω
2X{2}. In particular, with X = S5 we have the

following lemma.

Lemma 3.1 The H-space squaring map on Ω
2S5{2} is homotopic to the composite

Ω
2S5{2} −→ Ω

2S5 η∗

−→ Ω
3S5 −→ Ω

2S5{2}.

Next, a special fibration can be obtained from the EHP fibration S2 E
−→ ΩS3 H

−→
ΩS5. Taking two-connected covers gives a homotopy fibration sequence

Ω
2S5 φ

−→ S3 i
−→ ΩS3〈3〉

H
−→ ΩS5,

where i represents η ∈ π4(S3). In particular, since ΩS3 is a retract of ΩS2, there is a

homotopy commutative diagram

Ω
3S5

Ωφ
//
ΩS3

�� D
D

D
D

D
D

D
D

D
D

D
D

D
D

D
D

Ω
3S5

ΩP
//
ΩS2

H
// ΩS3,

where P is the connecting map in the EHP sequence, and H is the second James-Hopf

invariant. Thus Ωφ ' H ◦ ΩP. By [R] the composite Ω
3S5 ΩP

−→ ΩS2 H
−→ ΩS3 ΩE2

−−→
Ω

3S5 is homotopic to the second power map. This proves the following lemma.

Lemma 3.2 There is a homotopy commutative diagram

Ω
3S5

Ωφ
//

2

��

ΩS3

ΩE2

��

Ω
3S5

Ω
3S5.

We now link this information with the Lie group SU(3). Taking three-connected
covers there is a homotopy fibration sequence

ΩS5 η̄
−→ S3〈3〉 −→ SU(3)〈3〉 −→ S5,
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where η̄ restricted to the bottom cell is η. Thus the composite S3 E2

−→ Ω
2S5 Ωη̄

−→
ΩS3〈3〉 is the map i defined above. This results in a homotopy pullback diagram

Ω
2S5

φ
//

ε

��

S3
i

//

E2

��

ΩS3〈3〉

Ω
2SU(3)〈3〉 //

Ω
2S5

Ω
2η̄

// ΩS3〈3〉,

for some map ε. Combining this pullback with Lemma 3.2 proves that the second
power map on Ω

3S5 factors through Ω
3SU(3). The next lemma takes this one step

further.

Lemma 3.3 There is a homotopy pullback diagram

Ω
4S5 // Ω

3S5{2} //

γ

��

Ω
3S5

2
//

Ωε

��

Ω
3S5

Ω
4S5

Ω
3η̄

// Ω
3S3〈3〉 // Ω

3SU(3)〈3〉 // Ω
3S5,

for some map γ which has a right homotopy inverse.

Proof It remains to show that γ has a right homotopy inverse. By [C1, 4.1], the

Hopf invariant ΩS3 H
−→ ΩS5 has order 2 when looped. Thus 2ΩH is null homotopic

as well. This gives a lift of ΩH to a map f : Ω
2S3〈3〉 → Ω

2S5{2}. Both γ and Ω f
are the identity on the bottom cell and Ω

3S3〈3〉 is atomic, so γ ◦ Ω f is a homotopy
equivalence. Thus γ must have a right homotopy inverse.

Let δ : Ω
3S3〈3〉 → Ω

3S5{2} be a right homotopy inverse of the map γ appearing
in Lemma 3.3.

Proposition 3.4 The second power map on Ω
4
0S3 is homotopic to the composite

Ω
4
0S3 Ωδ

−→ Ω
4
0S5{2} −→ Ω

4S5 Ω
2η∗

−−−→ Ω
5
0S5 Ω

4η̄
−−→ Ω

4
0S3.

Proof Consider the diagram

Ω
3S5{2} //

Ω
3S5

Ωη∗

//
Ω

4S5 //

Ω
2η̄

��

Ω
3S5{2}

γ

��

Ω
3S3〈3〉

δ

OO

Ω
3S3〈3〉 Ω

3S3〈3〉.
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The right square homotopy commutes by Lemma 3.3. The top row is the second
power map on Ω

3S5{2} by Lemma 3.1. Looping so that γ is multiplicative, the lemma

follows.

Remark 3.5 The factorization in Proposition 3.4 can be delooped if the map γ in
Lemma 3.3 can be chosen to be an H-map.

4 Bounding the Order of Characteristic Maps

Recall that the characteristic maps S5 → SU(3), S7 → SU(4), and S7 → Sp(2)
are of degrees 2, 2, and 4 respectively. The purpose of this section is to calculate
bounds for the order of these maps (see Proposition 4.5 for the precise statement).
The characteristic map for G2 is a bit different, so we begin by describing it.

Start with the standard fibration SU(3) → G2
g

−→ S6. Use a second James-Hopf
invariant to obtain a homotopy pullback diagram

X
a

//

��

ΩG2

b
//

Ωg

��

ΩS11

S5
E

//

��

ΩS6
H

//

��

ΩS11

SU(3)〈3〉 SU(3)〈3〉,

where b is defined as the composite H ◦ Ωg. Note that the space X is the same as the
one in Corollary 4.2.

Lemma 4.1 There is a ‘characteristic’ map j : S11 → G2 such that b ◦ Ω j ' Ω2.

Proof By [MT] the Whitehead product S11 [ι,ι]
−−→ S6 factors as a composite S11 j

−→

G2
g

−→ S6 for some map j. By [C2], the composite ΩS11 Ω[ι,ι]
−−−→ ΩS6 H

−→ ΩS11 is
homotopic to Ω2. Thus b ◦ Ω j = H ◦ Ωg ◦ Ω j ' H ◦ Ω[ι, ι] ' Ω2.

We will need H-exponent information about X. Observe that X fits in another
homotopy pullback diagram,
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128 Stephen D. Theriault

X

��

X

��
S5{2} //

��

S5
2

//

��

S5

S3〈3〉 // SU(3)〈3〉 // S5.

Lemma 4.2 H exp(Ω3X) ≤ 25.

Proof Consider the homotopy fibration X → S5{2} → S3〈3〉. Recall from the
introduction that H exp(Ω2S3〈3〉) = 4, and it is known that H exp(Ω3S2n+1{2}) ≤ 8,
so the lemma follows.

We need a couple of additional lemmas before proceeding to Proposition 4.5. Both
give information about the constituent maps in the factorization of the second power
map on Ω

4
0S3 in Proposition 3.4.

Lemma 4.3 There is a homotopy commutative diagram

ΩS5
η̄

//

Ωη

��

S3

E3

��

ΩS4
ΩE2

//
Ω

3S6.

In particular, E3 ◦ η̄ is an H-map.

Proof We first set up a homotopy equivalence ΩS4 ' S3 ×ΩS7 which has the prop-
erties we want. There is a homotopy pullback diagram

SU(3) //

��

S5 //

η

��

BS3

S7
ν

// S4
i

// BS3,

where i is the inclusion of the bottom cell. In particular r : ΩS4 Ωi
−→ S3 is a choice of

retration such that r ◦ Ωη ' η̄. Also, the Hopf invariant of ν is the identity. We now
have a composite (H is the James-Hopf invariant)

S3 × ΩS7 E·Ων
−−−→ ΩS4 r×H

−−→ S3 × ΩS7
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which is homotopic to the identity. Therefore

ΩS4 r×H
−−→ S3 × ΩS7 E·Ων

−−−→ ΩS4

is homotopic to the identity.

Now consider the composite ΩS5 Ωη
−→ ΩS4 ΩE2

−−→ Ω
3S6. The homotopy for the

identity map on ΩS4 ending the previous paragraph implies that ΩE2 ◦ (E · Ων) ◦
(r × H) ◦ Ωη ' (ΩE2 ◦ E ◦ r ◦ Ωη) · (ΩE2 ◦ Ων ◦ H ◦ Ωη). On the one hand,
r ◦ Ωη ' η̄ so ΩE2 ◦ E ◦ r ◦ Ωη ' E3 ◦ Ωη̄. We want to show that on the other hand,
ΩE2 ◦ Ων ◦ H ◦ Ωη ' ∗. This would prove the lemma.

Since S5 η
−→ S4 is a suspension, the naturality of the James–Hopf invariant im-

plies the composite ΩS5 Ωη
−→ ΩS4 H

−→ ΩS7 is homotopic to the composite ΩS5 H
−→

ΩS9 Ωη2

−−→ ΩS7. This leads to considering the composite Ω f : ΩS9 Ωη2

−−→ ΩS7 Ων
−→

ΩS4 ΩE2

−−→ Ω
3S6. But f has finite order while π11(S6) = Z, so f ' ∗. Thus ΩE2 ◦Ων ◦

H ◦ Ωη ' ∗ and we are done.

Next, for the SU(3) case, we need to be able to work with the map η∗ which, as

described in Section 3, is the map S3 η
−→ S2 induces on mapping spaces.

Let A, B, C , and X be spaces. Suppose there is a map f : A → B. Then there is an
induced map f ∗ : Map

∗
(B,X) → Map

∗
(A,X) which is natural in the X variable. As

well, the exponential law gives equivalences

Map
∗

(

A,Map
∗
(C,X)

) ∼=
−→ Map

∗
(A ∧C,X)

∼=
−→ Map

∗

(

C,Map
∗

(A,X)
)

which are natural in all three variables. In particular, suppose C is the circle. Then

Map
∗

(

A,Map
∗
(C,X)

)

= Map
∗
(A,ΩX) and

Map
∗

(

C,Map
∗

(A,X)
)

= Ω Map
∗
(A,X).

Naturality in the A variable then gives the following lemma.

Lemma 4.4 There is a commutative diagram

Map
∗

(B,ΩX)
∼=

//

f ∗

��

Ω Map
∗
(B,X)

Ω f ∗

��

Map
∗
(A,ΩX)

∼=
// Ω Map

∗
(A,X).

We need one more piece of information about factoring power maps on the loops
of odd dimensional spheres. Recall from [R] that the H-space squaring map
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on Ω
3S4n+1 factors through the double suspension, and from [C1, 5.9] that the

4-th-power map on Ω
3S4n−1 factors through the double suspension. In particular,

the 2-nd-power map on Ω
3S5 factors through ΩS3 ΩE2

−−→ Ω
3S5, the 8-th-power map

on Ω
5S7 factors through ΩS3 ΩE4

−−→ Ω
5S7, and the 26-power map on Ω

9S11 factors

through ΩS3 ΩE8

−−→ Ω
9S11.

Proposition 4.5 The following hold for the characteristic maps:

(a) Ω
6
0S5 → Ω

6
0SU(3) has order 4,

(b) Ω
8
0S7 → Ω

8
0SU(4) has order ≤ 16,

(c) Ω
8
0S7 → Ω

8
0Sp(2) has order ≤ 16,

(d) Ω
12
0 S11 → Ω

12
0 G2 has order ≤ 27.

Proof The homotopy group calculations in what follows come from [MT] for
SU(3), SU(4), and Sp(2), and from [M] for G2. The characteristic map for each
Lie group will commonly be denoted by j.

We begin with (b), (c) and (d) as they are most immediate. For (b), the sixteenth
power map on Ω

5S7 factors through the second power map on ΩS3. By Proposi-
tion 3.4, the second power map on Ω

4
0S3 factors through the (basepoint component

of the) fourth loop of the map ΩS5 η̄
−→ S3. Thus it suffices to show that the compos-

ite

f : ΩS5 η̄
−→ S3 E4

−→ Ω
4S7 Ω

4 j
−−→ Ω

4SU(4)

is null homotopic. By Lemma 4.3, E4 ◦ η̄ is an H-map so to show that f is trivial it
suffices to check it is on the bottom cell. The generator of π8

(

SU(4)
)

= Z/2Z is a
class which composes to ν ⊕ η under the map g : SU(4) → S5 × S7 whose fiber is S3.

The characteristic map S7 j
−→ SU(4) can be chosen to satisfy g ◦ j ' ∗ ⊕ 2. Thus

g ◦ j ◦ η ' ∗, and so f is trivial on the bottom cell.
Parts (c) and (d) proceed similarly, and are even easier, because π8

(

Sp(2)
)

= 0

and π12(G2) = 0.
Part (a) is a little trickier. Now π6

(

SU(3)
)

= Z/2Z is generated by the composite

S4 η
−→ S3 E2

−→ Ω
2S5 Ω

2 j
−−→ Ω

2SU(3), so we cannot simply repeat the argument in
part (b). Instead we have to dig a little deeper into the factorization of the second
power map on Ω

4
0S3 and bring into play the map η∗.

First, because SU(3) is a loop space, the characteristic map is homotopic to the

composite S5 E
−→ ΩS6 Ω j ′

−−→ ΩBSU(3), where j ′ is a representative of the generator
of π6

(

BSU(3)
)

= Z. Next, the naturality of η∗ implies that there is a homotopy
commutative diagram

Ω
2S5

Ω
2η

//

η∗

��

Ω
2S4

Ω
2E2

//

η∗

��

Ω
4S6

Ω
4 j ′

//

η∗

��

Ω
4BSU(3)

η∗

��

Ω
3S5

Ω
3η

//
Ω

3S4
Ω

3E2

//
Ω

5S6
Ω

5 j ′

// Ω
5BSU(3).
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The exponential law in Lemma 4.4 implies that Ω
4BSU(3)

η∗

−→ Ω
5BSU(3) is a double

loop map. Thus the upper direction around the diagram is homotopic to a double
loop map. Since π7

(

SU(3)
)

= 0, the upper direction around the diagram is null
homotopic. Let ψ : Ω

3S5 → Ω
5BSU(3) be the composite defined by the lower row in

the diagram. Then ψ ◦ η∗ ' ∗. But the homotopy in Lemma 4.3 and the definition

of j ′ implies that ψ is homotopic to the composite

θ : Ω
3S5 Ω

2η̄
−−→ Ω

2S3 Ω
2E2

−−−→ Ω
2S5 Ω

2 j
−−→ Ω

2SU(3),

and so θ ◦ η∗ ' ∗. The first two maps in θ ◦ η∗, namely Ω
2η̄ ◦ η∗, appear (looped

twice) in the factorization of the second power map on Ω
4
0S3, which in turn factors

through the fourth power map on Ω
6
0S5. Thus Ω

6
0S5 4

−→ Ω
6
0S5 Ω

6
0 j

−−→ Ω
6
0SU(3) is null

homotopic. (Note that this is best possible as the characteristic map in this case has
degree 2 while the order of the identity map on Ω

4S5〈5〉 is 8.)

5 H-Exponent Bounds

We now combine the fibrations in Lemmas 2.2 and 2.4 with the orders of the charac-

teristic maps in Proposition 4.5 to prove Theorem 1.1.

Proof of Theorem 1.1 For SU(3), there is a fibration S3 i
−→ SU(3) → S5 and the

characteristic map S5 j
−→ SU(3) is degree 2. Using Lemma 2.4 we obtain a homotopy

fibration

Ω
3
0S3 × Ω

3S5 φ
−→ Ω

3
0SU(3) −→ Ω

2S5{4}

where φ = Ω
3
0i〈3〉·(−2Ω

3 j). Looping often enough to align with Proposition 4.5 (a),

consider the diagram:

Ω
6
0SU(3)

4

��

λ

uullllllllllllll

Ω
6
0S3 × Ω

6
0S5

Ω
3
0φ

//

2

��

Ω
6
0SU(3) //

2

��

Ω
5
0S5{4}

2

��

Ω
6
0S3 × Ω

6
0S5

Ω
3
0φ

// Ω
6
0SU(3) // Ω

5
0S5{4}.

Multiplication by 2 commutes with loop maps so both lower squares homotopy com-
mute. Since the 4-th-power map on Ω

5
0S5{4} is null homotopic, the 4-th-power map

on Ω
6
0SU(3) composes trivially into Ω

5
0S5{4} and so lifts through Ω

3
0φ. Choose a lift

and call it λ; then by definition the upper triangle in the diagram above homotopy
commutes and so the entire diagram homotopy commutes. Thus the 8-th-power
map on Ω

6
0SU(3) is homotopic to Ω

3
0φ ◦ 2 ◦ λ. But Ω

3
0φ = Ω

6
0i · (−2Ω

6
0 j) has order 2
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because on the one hand Ω
6
0i has order 2 by [C1, 5.4] while on the other hand Ω

6
0 j has

order 4 by Proposition 4.5 (a). Thus Ω
3
0φ◦2 is null homotopic and so the 8-th-power

map on Ω
6
0SU(3) is null homotopic.

For SU(4), use the fibration S3 → SU(4) → S5 × S7. The characteristic maps

S5 j1
−→ SU(4) and S7 j2

−→ SU(4) are both degree 2. By Lemma 2.4 we obtain a

homotopy fibration

Ω
3
0S3 × Ω

3S5 × Ω
3S7 ψ

−→ Ω
3
0SU(4) −→ Ω

2S5{4} × Ω
2S7{4},

where ψ = Ω
3
0i · (−2Ω

3 j1) · (−2Ω
3 j2). Now proceed as in the SU(3) case.

For Sp(2), use the fibration S3 i
−→ Sp(2) → S7. The characteristic map S7 j

−→
Sp(2) has degree 4. By Lemma 2.2 there is a homotopy fibration

ΩS3 × ΩS7 Ωi·(−Ω j)
−−−−−→ ΩSp(2) −→ S7{4}.

Now proceed as in the first case, using the fact that H exp(Ω2S3〈3〉) = 4.
For G2, by Lemmas 4.1 and 2.4 we obtain a homotopy fibration

Ω
2X × Ω

3S11 Ωa·(−2Ω
3 j)

−−−−−−→ Ω
3G2 −→ Ω

2S11{4},

Now proceed as in the first case, noting that H exp(Ω3X) ≤ 25 by Lemma 4.2.
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