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ORBITAL LATTICES OF SL+(2, Z) 

each element T= of GX+(2, Q), T(z)=(aLZ+P)l(yz+d) for all ze%. 

BY 

S. A. RANKIN1 

The results described in this paper were obtained in the study of analytic maps 
between flat two-tori. It is felt that analogous results will be obtained from a 
similar study of the analytic maps between higher-dimensional flat tori. 

It is well-known that the multiplicative group GL+(2, Q) acts on the upper half-
plane $>={z G C | 3(2r)>0} as a group of linear fractional transformations, i.e. for 

a 0T\ 

y ^J 
Similarly, the subgroup SL+(2, Z) of GL+(2, Q) also acts on § as a group of linear 
fractional transformations. The orbits of £ under SL+(2, Z) and GL+(29 Q) will 
be called S-orbits and (7-orbits respectively. Moreover, we shall abbreviate 
SZ+(2, Z) to SL+ and GL+(2, Q) to GZ+. 

To each S-orbit p of $ one can assign a unique lattice £(/>) in C. This lattice 
could be called the lattice of complex multiplications of p since the elements of p 
determine isomorphic elliptic curves each having £(/>) as its set of complex multi
plications [1]. As well, £(/>) could be called the lattice of complex distortions of p 
[2]. It is the purpose of this paper to investigate the relationship between the lattices 
assigned to the *S-orbits which are contained in a common G-orbit. We shall con
sider only ample orbits, i.e., those orbits which contain an ample complex number 
[2], since £(/>)=Z for all non-ample S-orbits p. An element h e C is said to be 
ample if $R(/z) and \h\2 are rational. The set of all ample elements of § will be 
denoted by $*. 

DEFINITION 1. Two S-orbits p and a are said to be immersion-equivalent if 
there exists a (/-orbit A such that p U a <= A. 

H. G. Helfenstein [2] has shown that for immersion-equivalent 5-orbits p and 
<r, there exist he a and aeZ+ such that ah e p, where Z + denotes the positive 
integers. 

DEFINITION 2. For immersion-equivalent S-orbits p and a, let Rep(p, a)= 
{(a, h) E Z + x a \ ah e p}. 

For any m G Z+ , let SL+(m) be the subgroup of SL+ consisting of those matrices 

\! G SL+ for which y = 0 (mod m). It is clear that if (a, h) e Rep(/>, a) and 
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Te SL+(a), then (a, T(h)) e Rep(/), a). Now for each m e Z + , define the functions 
Im, r)m, iim, vm from £ * into Z as follows: for each h e § * , 31(A) and |A|2 are 
elements of Q. Let 2$R(7*)=:/V<7 and \h\2=r/s for integers/?, #, r, and s such that 
(/?,#)=(>, s ) = l and #>0 , ^>0. Let k=(m(q, s),qs), and define Im(h)= 
k/(q, s), 7)m(h)=qslk, /Ltm(h)==qrjk, and vm(h)=mpsjk. It is a matter of computa
tion to verify the following useful equations: for all m e Z + and h e §*, 

(1) rjXh) = r(h)rjm(h), and 

(2) fi\mh)rj\h) = m2r)\mh)f*\h). 

LEMMA 1. Lef w e Z + . Then for every A e § * arcd TeSL+(m), ??m(A)3(/z)= 

iT(r(A))3(r(A)). 

Proof. Let g=T(h). It can be shown that the positive definite quadratic forms 

JF(x, jO = mx 2 +v w ( /z )xy+^ m (% m (% 2 

and 

G(x, y) = m x 2 + ^ ( g ) x > ; + ^ ( g K ( g ) / 
represent the same set of integers, whence the discriminants of F and G are equal. 
Thus (^w(A))2-4m^w(A)^m(A)=(^w(g))2-4m^w(^w(g). But it is readily seen 
that 

(vm(h))2-4mrim(h)vm(h) = -(mr)m(h)Z(h)f 
and 

(^ (g ) ) 2 -4m^ w (gK(g) = -(m^w(g)3(g))2. 

Suppose now that p and or are ample immersion-equivalent S-orbits. 

DEFINITION 3. To each (a,h)e Rep(p, a), let £(a,h) be the lattice generated by 
1 and rja(h)h in C. 

THEOREM 1. Let {a, h) e Rep(/>, a). Then for each TeSL+(a), Q(a,h)= 
£(<*, T(h)). 

Proof. Let g=T(h). Since rja(h)3(h) = rja(g)3(g) by Lemma 1, it is sufficient to 
show that 

rfth)m)-ff\gmg) 
is an integer. Since a is ample, every element of a is ample. Thus there exists a 
square-free positive integer m and integers x, y, v, and w such that (x, j ) = (v, w) = 1 
and h=xly+v^Jmilw. Furthermore, since l e SL+(a), there exist integers a, /?, y, 

J . Let tf1=(ax+/?j)w, 2/2
==(^^+^> ;)^ ; and z/3= 

a<x.y(vy)2m. Then define j=2(u1u2+u3)9 k=(u2)
2+u3 and /=(z/!)2+(at;j;)2m. Then 

one has g=(j+2y2wv-s/mi)/2k and so rj\g)(j, k, l)=k. If f=(xw)2-f(i>j)2m, then it 
is easily seen that ^1(A)(/, (jw)2, 2yw2)=(yw)2, whence both ^1(^)3(^)(y, £, /) and 
7y1(A)3(A)(̂ , (jw)2, 2jw2) are equal to y2vwy/m. By Lemma 1, this implies that 

and â such that T= 
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(y, k, l)=(t, (yw)2
9 2yw2). Further computation yields Ia(g)rja(g)<Si(g)=jl2(j9 k9l) and 

Ia(h)ria(h)yi(h)^xyw2l(t, (yw)2, 2yw2). Furthermore, Ia(h)=rj1(h)2(h)lrja(h)3(h)^ 
ril(gMg)ha(gMg)=Ia(g) and so W(g)^(g)-n^h)^(h)]^(h) is equal to 

"(j9k9l)
 H (j,k,l) H/(j,k,l) 

It is clearly sufficient to show that Ia(h)(j9 k, I) divides (yw)2. But by (1), 
rja(h)Ia(h)(j9 k, /)=Y(A)(/> k, I) and it is readily seen that rj^hXj, k, l)=(yw)2. 

In particular, for any ample S-orbit p, we have (1, h) e Rep(/>, p) for all hep. 
Since SL+(l)=SL+

9 we have the following 

COROLLARY 1. Let he p. Then for each TeSL+, £(1, A)=fi(l, T(A)). 

DEFINITION 4. For each ample S-orbit p, let £(/>) denote the lattice £(1, h) for 
he p. By Corollary 1, £(/>) is well-defined. Furthermore, let C(p)=rj1(h)£(h) for 
any he p. By Lemma 1, C(p) is a well-defined real number assigned to p. 

We are now able to determine the condition under which £(/>)<= £(er) for ample 
immersion-equivalent 5-orbits p and a. It is interesting to observe that this infor
mation can be obtained from local parameters of the orbit pair and yet, as one 
might expect, the condition can by phrased in terms of orbital invariants. By local 
parameter of the orbit pair, we mean a function K from Rep(/>, a) into Z + defined 
as follows: for each (a, h) in Rep(/>, a), let /c(a, h)=^1(ah)l/i1(h). It can readily be 
shown that if one sets 2$R(A)=/V? and \h\2=r/s as before, then K(a9 /*)= 
a2(q9 s)/(a2q, as, qs), from which it follows that K(a, h) e Z+. 

THEOREM 2. £(/>)<= £(cr) iff a \ /<(a, h) for any (a, h) e Rep(/>, a). Moreover, 
&(*)<=:2(p) iff K(a9h)\ a. 

Proof. Suppose firstly that K(a, h) \ a. Since by (2), ^ H ^ ) / / ^ ) = t f V ( ^ ) / ^ ) > 
it follows that a2rj1(ah)=K(a, h)^1^), whence arj1(ah)ah/K(a, fy^rf-Qfyh. But 2(a) 
is generated by 1 and ^(fyh and 2(p) is generated by 1 and rf(aK)ah9 whence 
£((r)<=£(/>). Conversely, suppose that 2(a)<^2(p). Then for any element (a, h) of 
Rep(/>, cr), £(1. h)<=^2(l9 ah). There exist integers m and n such that rj1(h)h=m+ 
nrj1(ah)ah, whence rj1(h)^(h)=nYj1(ah)2(ah). This implies that a=n/<(a9 h)9 and 
thus K(a, h) | a. 

Finally, observe that if (a9 h) e Rep(/>, a), and / = , then (a, J(ah)) e 

Rep(<r, />). Again, it is a matter of computation to show that K(a9 K)K.(a9 J(ah))=a2. 
But now by the above argument, we have 

£(/>) = £(1, J(ah)) c £(15 aJ(ah)) = 2(a) 

iff K(a9 J(ah)) \ a, i.e. iff a \ K(a9 h). 

COROLLARY 2. 2(p)<^2(a) iffC(a) \ C(p). 
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Proof. It is immediate that if (a, h) e Rep(/>, a), then aC(p)=K(a, h)C(a)9 for 

by definition, C(p) = rj1(ah)^(ah) and C(a)=^(h)3(h). Thus C(P)/C(a) = 

arj1(ah)lrj1(h)=K(a, h)ja. 
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