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A NOTE ON NORMAL ATTRACTION TO A STABLE 
LAW 

BY 

M. V. MENON A N D V. SESHADRI 

Let Xl9 X2 , . . . , be a sequence of independent and identically distributed random 
variables, with the common distribution function F(x). The sequence is said to 
be normally attracted to a stable law V with characteristic exponent a, if for some 

an SJnlla — an -> V (converges in distribution to V). Necessary and sufficient 
conditions for normal attraction are known (cf [1, p. 181]). We prove a theorem 
that relates the limiting behaviour of the distribution of SkJk^r to that of Sn/n

lla. 
Distributions are assumed throughout to be nondegenerate. 

THEOREM. Let kn be a sequence of positive integers converging to oo, and such 
that kn+1/kn is bounded. Let r be a real nonzero number. In order that SkJkllr con­
verge in distribution to a stable law with characteristic exponent a, it is necessary 
that r=a. Convergence to the normal law can take place iff{X^ is normally attracted 
to the normal law. If kn/kn+1-> 1, SkJkllr can converge in distribution only to a 
stable law, and this convergence takes place iff{Xt} is normally attracted. 

Proof. We assume, without any loss of generality, that the Xj's are symmetric. 
For each x > 0, let G(x) =P( |Xt| ) > x). 

Now, SkJkllr converges in distribution iff there exists a2>0, and a function 
L(x)9 such that (1) and (2) given below, hold [1, p. 124, Theorem 4]: 

(1) knG(k*rx)-+Ux)9 x>0 

(2) lim ïîm fc£ -2)/r f y2 dF(y) = lim lim k% ~2)lr [ y2 dF(y) = a2. 
e-+0 J e->0 J 

\y\<kHre M<fcJ/re 

Hence, because the limiting distribution is assumed to be nondegenerate, it 
follows that 

(3) 0 < r < 2. 

Should the limit law be stable we would have [1, p. 164, p. 128] for some c>0. 

2 
2 (4) 

and 

(L(X) = C/Xa, a < : 

\ = 0 , a = 

(5) 

(2) holds with a2 = 0 for a < 2, and 

lim /c<r-2>/r f j 2 dF(y) = a2 > 0, if« = 2. 
n-»oo J 

\y\<kl're 
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Next, for any y>kx, there exists n such that kn<y<kn+u and hence, for any 
x>0, 

(6) kMWlix) < yG(yllrx) < kn + 1G(klnlrx) 

Let SkJkl,r -> V, where Fis a stable law with characteristic exponent a. Assume, 
at first, that a<2. Since kn/kn+1 is bounded, by hypothesis, we have from (1), (4), 
and (6), that yrG(y) is bounded. But, by (1) and (4), knx

rG(k^lrx) -> cxr~a. This 
shows that yrG(y) can be bounded only if r=a. 

Assume, next a=2. It follows from (1), (4), and (6) that, for all x>0, 

(7) yG(y1!rx) -> 0 as y -»oo. 

But, from (1) and (4), 

lim k«-2)lT y2 dF{y) = 2 Y\m k^-™" " j G O ) ^ -
n~*co J n-+oo JO 

Making use of (7), one obtains easily that the last limit equals zero unless r==2. 
But the limit cannot be zero because of (5). Hence r—2. 

Therefore, again making use of (5), E(X2)«x>, which is the necessary and suffi­
cient condition that {ZJ be normally attracted to the normal law (cf. [1, p. 181]). 
This conclusion is also a direct consequence of (7), and the fact that (1), (4), and 
(5) with kn replaced by n, and taking a = 2, provide the necessary and sufficient 
conditions for the convergence in distribution of Sn/n

llr to the normal law. 
Finally, suppose that kjkn+1 -> 1. Then, by (6) and (1), yxrG(yllrx) ->L(x)xr. 

Therefore, in particular, yG(yllr) ->L(1). 
Thus, L(x)=L(l)Ixr. This, together with (1), (2), (3), (4), and (5), completes the 

proof of the theorem. 
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