
JFP 12 (4 & 5): 375–392, July & September 2002. c© 2002 Cambridge University Press

DOI: 10.1017/S0956796802004355 Printed in the United Kingdom

375

Faking it
Simulating dependent types in Haskell

CONOR McBRIDE

Department of Computer Science, University of Durham, Science Laboratories,

South Road, Durham DH1 3LE, UK

(e-mail: c.t.mcbride@durham.ac.uk)

Abstract

Dependent types reflect the fact that validity of data is often a relative notion by allowing

prior data to affect the types of subsequent data. Not only does this make for a precise

type system, but also a highly generic one: both the type and the program for each instance

of a family of operations can be computed from the data which codes for that instance.

Recent experimental extensions to the Haskell type class mechanism give us strong tools to

relativize types to other types. We may simulate some aspects of dependent typing by making

counterfeit type-level copies of data, with type constructors simulating data constructors and

type classes simulating datatypes. This paper gives examples of the technique and discusses

its potential.

1 Introduction

I am a relatively recent convert to Haskell, but my background gives me quite

a curious perspective on my new-found friend: I spent my PhD (McBride, 1999)

using Standard ML to implement a prototype tool for dependently typed pro-

gramming based on the proof assistant Lego (Luo & Pollack, 1992). Haskell’s

post-Hindley-Milner features such as rank 2 polymorphism, nested types and poly-

morphic recursion are, for me, a much-needed advance on ML. I was also pleased

to find that recent extensions to Haskell’s type class mechanism beyond the Haskell

98 standard (Peyton Jones et al., 1997; Jones, 2000; Jones & Peterson, 1999) allowed

me simulate aspects of the dependently typed programs which I continue to explore.

Parametric polymorphism, as supported by Haskell 98, allows us to define opera-

tions which work uniformly for any instantiation of their type (or type constructor)

parameters. However, there are many generic families of operations which can be

described “systematically”, but where the “system” cannot be expressed by sim-

ply abstracting a parameter. The standard Haskell prelude defines many operations,

such as zipWith , multiply for instances of the same scheme. We need a more powerful

means of programming with types if we want to code up the schemes themselves.

Types are first class objects in dependent type systems: they may be passed as

arguments and computed by functions from other types or from ordinary data. Type-

level programming is just ordinary programming which happens to involve types,

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

376 C. McBride

and the systematic construction of types for generic operations is correspondingly

straightforward. Section 2 gives a brief overview of the techniques involved.

Haskell’s developers did not set out to create a type-level programming facil-

ity, but non-standard extensions with multi-parameter type classes and functional

dependencies nonetheless provide the rudiments of one, albeit serendipitously. Sec-

tion 3 describes these extensions, and this curious way of using them. A collection

of examples follows, including zipWith (section 4) and a suite of operations on

arbitrary-length vectors (section 5).

The paper closes with a discussion of what can be learned from these examples.

I have no illusions that the type class mechanism is the ideal way to implement the

genericity which this paper illustrates. Rather, I hope that this happy discovery will

lead to a more principled technology which allows us to “do it for real”.

2 Dependent types and type-level programming

Dependent type systems have evolved over many years (Martin-Löf, 1971) to reach

their current highly expressive form, and this paper is not the place for a full account.

I can recommend Luo’s “Computation and Reasoning” (Luo, 1994) to the reader

in search of more detail. This section serves to outline the application of dependent

types to the programming issues addressed in this paper. I have kept the notation as

close to Haskell as I can, and I make a typographical distinction between identifiers

for terms and identifiers for types to clarify the levels at work.

The key contribution of dependent types is the idea of a type family, represented

by a function F ::T → Type. To the machine, F is not a special kind of function, but

we can see it as a collection of types, indexed by “codes” in T. T can be any type we

like – a datatype, a function space or even Type itself.1 An ordinary application F t

yields a type in the family, and we can generalise over just the types in the family

by λ-abstracting over an arbitrary t in T. The type of such an abstraction binds t

with a ∀-quantifier, allowing the range type to refer to it. For example, an equality

test which works for any member of the family would have type

eqF :: ∀t :: T. F t → F t → Bool

Families of datatypes can be defined inductively, allowing us to equip data structures

with built-in invariants. In this paper, we shall have need of the vectors – lists of a

given length.

data Vector :: Nat → Type → Type

where [] :: ∀A :: Type. Vector Zero A

(:) :: ∀A :: Type. ∀n :: Nat. A → Vector n A → Vector (Suc n) A

The presence of explicit length information allows us to enforce stricter static

control on the usage of vector operations. For example, we can ensure that the

“tail” operation is applied only to nonempty vectors:

1 A hierarchy of Type levels is maintained implicitly, to avoid paradox.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 377

vTail :: ∀A :: Type. ∀n :: Nat. Vector (Suc n) A → Vector n A

vTail (x :xs) = xs

Programming with dependent types is much less convoluted in practice than it might

seem at first glance because the machine can fill in details which are forced by type,

such as the A and n arguments for vTail . In addition, the need for “exception

handling” code is greatly reduced: vTail has no [] case, because [] is not in its

domain.

Data structures can be used to store types, just as they store other data. An

inhabitant of Vector n Type is a list of n types. A vector of “source” types together

with a “target” type give a “code” for a function space, which we can “decode” as

follows:2

(B) :: ∀n :: Nat. Vector n Type → Type → Type

[] B T = T

(S :Ss) B T = S → SsB T

We can now use B to give types to generic operators. For example, Haskell’s flip

operator (bringing the second argument of a function to the front), generalises to

an operator which brings any chosen argument to the front:

nthFront :: ∀n :: Nat. ∀Ss :: Vector n Type. ∀T,U :: Type.

(SsB T → U) → T → SsB U

nthFront [] f = f

nthFront (S :Ss) f t s = nthFront Ss (f s) t

Familiar utility functions acquire new uses at the type level – the map function, for

example, allows this type for vZipWith (vectorised n-ary application):

vZipWith :: ∀n, m :: Nat. ∀Ss :: Vector n Type. ∀T :: Type.

(SsB T) → (map (Vector m) Ss)B Vector m T

Dependently typed programs are quite sophisticated, in that the well-typedness of

one often relies on the computational behaviour of another. However, to understand

such programs, we need only grasp one language, with a uniform operational

semantics.

3 Multi-parameter type classes with functional dependencies

Both ghc and hugs have options, disabled by default, supporting multiple parameter

type classes (Kaes, 1988; Wadler & Blott, 1989; Peyton Jones et al., 1997). These

allow us to define n-ary relations on types (and type constructors), equipped with

overloaded member operations over the related types. A standard example, adapted

from Jones (2000), is the relation Collects ce e which indicates that ce’s elements

can be seen as collections of e’s, with members for insertion, and so on.

2 B has the same precedence and as → and also associates rightwards.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

378 C. McBride

class Collects ce e where

insert :: e → ce → ce

element :: e → ce → Bool

We can define systems of instances allowing various representations, provided the

compiler can tell from any usage of a member which instance to employ. For

example, lists or characteristic functions can collect elements of any equality type.

We can also construct new collection structures, such as hash tables, from more

basic ones. I omit the standard implementation details:

instance Eq e ⇒ Collects (e → Bool) e where . . .

instance Eq e ⇒ Collects [e] e where . . .

instance (Hashable e, Collects ce e) ⇒ Collects (HashTable ce) e where . . .

The opening part of the instance declaration is a Horn clause, indicating that the

constraint right of the ⇒ holds if those left of it hold also. The type of each

member mentions everything related by the class, so determining which instance to

use amounts to checking that the Horn clauses deliver a unique solution when all

the parameters are known. The compiler both ensures and presumes that instance

systems have this property.

However, suppose we want to add a member, empty :: ce, to generate the empty

collection for each instance. A usage of empty determines only one parameter, so we

cannot presume to find a unique instance. This problem prompted Mark Jones to

propose a system of annotations for multi-parameter classes, indicating functional

dependencies (Jones, 2000). We may annotate the declaration of Collects to indicate

that e must be uniquely determined by ce:3

class Collects ce e | ce e where . . .

The compiler now enforces this dependency condition on the system of Horn clauses

for Collects, but also makes a stronger presumption about which member types it

is safe to permit – e may be omitted, so empty is accepted.

3.1 Classes for type-level programs and data

Multi-parameter classes with functional dependencies are an effective way to achieve

more flexible overloading. However, from my dependently typed perspective, I could

not help noticing that they provide a way to say “here is a (partial) function from

types to types”. We now have a means to implement the type-level behaviour of

systematic operations described by codes – if we can represent the codes as types.

We have the programs, but where are the data?

A datatype contains exactly the values generated by its constructors.4 We can

make a type-level “counterfeit” of a datatype by using a class to collect the types

generated by some type constructors. Any first-order monomorphic datatype T can

3 I use Jones’s notation (s1, . . . , sm) (t1, . . . , tn), to indicate that the s’s determine the t’s. This is rendered
in ascii as s1 ... sm -> t1 ... tn.

4 And the undefined value, ⊥.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 379

be lifted to a class T t, with each data constructor C S1 . . . Sn yielding both a type

constructor and an instance declaration (where Si si is the class lifting each Si):

data C s1 . . . sn = C s1 . . . sn

instance (S1 s1, . . . ,Sn sn) ⇒ T (C s1 . . . sn)

For example, here are the type-level natural numbers:

class Nat n

data Zero = Zero instance Nat Zero

data Suc n = Suc n instance Nat n ⇒ Nat (Suc n)

Each type in such a class has exactly one canonical inhabitant – the “data-level

code” for the type, where “decoding” is just type inference. We can use this code

in our programs when we want to pass some data to the typechecker. Some useful

codes for Nat types:

one = Suc Zero :: Suc Zero

two = Suc one :: Suc (Suc Zero)

The members of these classes are less significant than their rôles as would-be

inductive definitions. Of course, we can only pretend that Nat is closed under Zero

and Suc: nothing but our consciences prevents subsequent spurious instances.

An n-ary type-level function becomes an (n + 1)-parameter class with the last

argument – the target type – depending functionally on the initial n source types. We

may use class constraints to indicate that a parameter (source or target) is counterfeit

data, or omit the constraint when we really mean to interpret a parameter as a type.

A function Foo from T’s to types is declared thus:

class T t ⇒ Foo t u | t u

Foo’s code is expressed in the Horn clauses of its instance declarations, and opera-

tions which exploit the type computed by Foo can be declared as members of Foo,

with their code also scattered amongst the instances.

For example, let us define nthFront . Given a Nat n and an appropriate input

function type, we can compute required the output type by a multi-parameter class,

of which nthFront becomes a method. I have written placeholders for the contents

of the where clauses, in order to keep the type-level program together; the term-level

program is written contiguously too, with placeholders left of each line to show

where the code really goes:

class Nat n ⇒ NthFront n s t | (n, s) t where {NthFront∗}
instance NthFront Zero (s → t) (s → t) where {NthFront†}
instance NthFront n t (a → b) ⇒

NthFront (Suc n) (s → t) (a → s → b) where {NthFront‡}

{NthFront∗} nthFront :: n → s → t

{NthFront†} nthFront Zero f = f

{NthFront‡} nthFront (Suc n) f a s = nthFront n (f s) a

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

380 C. McBride

The type class mechanism can pattern-match directly on types, so we do not need to

split the input type into source vector and target. Of course, NthFront is not defined

on all inputs: if the input type has insufficient arity, the program will fail to compute

a target type. We can only get away with this sloppiness because both “type errors”

and “run-time errors” in type-level code manifest themselves at compile-time for the

overall program. The functional dependency is partial, but adequate to allow the

following type inference:

given foldr :: (a → b → b) → b → [a] → b

nthFront two foldr :: [a] → (a → b → b) → b → b

On the other hand, applying nthFront to a number alone does not supply enough

information for NthFront to do its job. The following can be checked but not

inferred:

nthFront one :: (a → b → c) → b → a → c

The inverse operation frontNth , pushing the first argument back to position n + 1,

can also be defined. Its type-level program just reverses the source and target type

expressions. We do not need to define a new class FrontNth: it is enough to tell the

compiler that the program NthFront n s t has a second functional mode, (n, t) s.

We may now add another member:

{NthFront∗} frontNth :: n → t → s

{NthFront†} frontNth Zero f = f

{NthFront‡} frontNth (Suc n) f s = frontNth n (λa 7→ f a s)

Again, the compiler can infer

frontNth two foldr :: b → [a] → (a → b → b) → b

We can use these two operations to define more complex permutations on a function’s

arguments. For example, we may swap the front argument with any other, using

this operation:

swapFrontArg n f a = frontNth n (nthFront (Suc n) f a)

The compiler successfully infers

swapFrontArg :: (NthFront (Suc n) s (a → t), NthFront n t u) ⇒
n → s → a → u

When we define composite generic operators in this way, we acquire a class constraint

corresponding to each usage of a class member. This can quickly lead to cumbersome

types which make poor documentation of the operator, in comparison with the

clearer descriptions afforded to their dependently typed counterparts via the B
function. Nonetheless, type inference makes the burden of complex constraints more

bearable, and it seems clear that we can readily use this type class technique to build

up a library of n-ary functional combinators.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 381

4 zipWith rides again

The zipWithn family of operators is a notorious example of a general pattern

instantiated to different types and programs for different n, in a systematic way.

zipWithn takes a function f ::s1 → · · · sn → t to a function in [s1] → · · · [sn] → [t]

which uses f to generate successive t’s from successive batches of s’s until one of

the source lists [si] becomes empty.

The definition is notionally the following:5

(�) :: [s → t] → [s] → [t]

(f : fs) � (s : ss) = (f s) : (fs � ss)

� = []

zipWithn :: (s1 → · · · sn → t) → [s1] → · · · [sn] → [t]

zipWithn f ss1 . . . ssn = (repeat f) � ss1 � . . . ssn

Fridlender & Indrika (2000) give an ingenious generic presentation of zipWithn by

means of “numerals”, as follows:

zero :: [t] → [t]

zero = id

suc :: ([s] → t) → [r → s] → [r] → t

suc n fs ss = n (fs � ss)

zipWith :: ([s] → t) → s → t

zipWith n f = n (repeat f)

It is indeed the case that if you apply zipWith to a numeral n generated from

zero and suc, you get the appropriate member of the zipWith family. However, let

nobody be under any illusion that such codings constitute a satisfactory alternative

to dependent types. On the contrary, this definition of zipWith exploits polymorphism

to weaken the type discipline – numerals are not numbers; numerals are arbitrary

functions on lists! Consequently, the following is well-typed, even though it makes

no sense (not to mention output):

zipWith sum 3

We could use an abstract datatype to package up the numerals, exporting only the

zero and suc constructors, together with the “eliminator” zipWith . This would make

zipWith type-safe, but it would also significantly reduce our ability to manipulate

numerals, the perennial disadvantage of abstract types – dependent types can express

the same kind of security for the constructors without limiting the elimination

behaviour. In effect, the answer to Fridlender and Indrika’s question “Are there

generic numerals?’ is “Yes! The natural numbers!” Our type-level numbers can

control the usage of zipWith precisely:

5 � associates to the left, and repeat f returns an infinite list of f ’s.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

382 C. McBride

class Nat n ⇒ ZipWith n s t | (n, s) t

instance ZipWith Zero t [t] where {ZipWith†}
instance ZipWith n t ts ⇒

ZipWith (Suc n) (s → t) ([s] → ts) where {ZipWith‡}

{ZipWith∗} manyApp :: n → [s] → t

{ZipWith†} manyApp Zero fs = fs

{ZipWith‡} manyApp (Suc n) fs ss = manyApp n (fs � ss)

{ZipWith∗} zipWith :: n → s → t

{ZipWith∗} zipWith n f = manyApp n (repeat f)

What has happened? Not much has changed operationally. The type-level numbers

stand as codes for the “numerals” of the former implementation: the manyApp

function decodes each n to its corresponding numeral. The point is that these codes

give exactly the legitimate zipWiths and typechecking ensures valid codes.

However, I am still not satisfied. The expedient of stopping as soon as one of the

argument lists becomes empty is necessary while we have no means of controlling

the lengths of the lists. Argument lists of different length are more likely to arise

by error than design; argument lists of the same length are easy to manufacture

explicitly; it would seem desirable to ensure that all zipWith ’s argument lists have

the same length. We shall build this technology in the next section.

5 Vectors via constructor classes

We can use the type system to police the lengths of lists by using vectors. One way to

achieve this is to represent a vector as an n-tuple over an element type a, computed

from n by a multi-parameter class:

class Nat n ⇒ Vect n a v

instance Vect Zero a ()

instance Vect n a v ⇒ Vect (Suc n) a (a, v)

While this approach is entirely reasonable in a dependent type system, it has a

practical drawback in Haskell: we cannot integrate ‘type constructors’ generated

by type class programming with Haskell’s existing polymorphism at higher kinds.

Although Vect corresponds to an operation in Nat → Type → Type, we cannot

use a “curried class application”, Vect n, as a type constructor in the same sense as

Maybe or the list constructor ([]). We cannot, for example, instantiate the Functor

class for these vectors, although there is clearly a suitable fmap operator.

A better solution is to define the vectors directly, as the class of type constructors

generated by a constant VNil constructor and a higher-order VCons constructor:

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 383

data VNil a = VNil

data VCons v a = VCons a (v a)

class Vector v where {Vector∗}
instance Vector VNil where {Vector†}
instance Vector v ⇒ Vector (VCons v) where {Vector‡}

Class Vector is thus another copy of the naturals, but this time our ‘numbers’

are type constructors rather than types. The corresponding term-level data they

contain are not just codes for the type-level objects, but the actual vectors we seek

to represent. This definition is much closer to the direct inductive definition of the

vector family given in section 2 than the “computed vectors” above.

We can define error-free head and tail operations for nonempty vectors without

troubling the class mechanism:

vHead :: VCons v a → a vTail :: VCons v a → v a

vHead (VCons x xs) = x vTail (VCons x xs) = xs

Some recursive functions can be defined as members of Vector:

{Vector∗} vSnoc :: v a → a → VCons v a

{Vector†} vSnoc VNil y = VCons y VNil

{Vector‡} vSnoc (VCons x xs) y = VCons x (vSnoc xs y)

{Vector∗} vLast :: VCons v a → a

{Vector†} vLast (VCons x xs) = x

{Vector‡} vLast (VCons x xs) = vLast xs

The latter may look nondeterministic; in fact, the type tells us when we have

reached the end of the list, so there is no need to look ahead explicitly. The xs in the

{Vector†} case must be empty; the xs in the {Vector‡} case must be nonempty6!

A small problem arises if we want to show that each vector type constructor is an

instance of class Functor. We can easily define fmap operators for each of VNil and

VCons v (for functorial v):

instance Functor VNil where

fmap f VNil = VNil

instance Functor v ⇒ Functor (VCons v) where

fmap f (VCons x xs) = VCons (f x) (fmap f xs)

However, this alone does not ensure that Vector v implies Functor v. The trouble is

that our counterfeit data structures are not really the closures of their constructors.

We are still free to add new, non-functorial constructors to Vector. If we want every

Vector to be a Functor, we must modify the declaration of the Vector class itself,

requiring functorial behaviour.

class Functor v ⇒ Vector v where . . .

6 For each case, presuming xs is not ⊥.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

384 C. McBride

5.1 vZipWith

Let us now develop vZipWith , following what we did for lists. We shall need to write

vRepeat and vApply so that

vZipWithn f ss1 . . . ssn = (vRepeat f) ‘vApply ‘ ss1 ‘vApply ‘ . . . ssn

Instead of having one repeat function generating an infinite list, each vector type

is equipped with a vRepeat member which replicates its argument an appropriate

number of times – as with vLast , the “appropriate number” is given by the type.

Meanwhile, the analogue of � for vectors can rely on the vector of functions being

exactly as long as the vector of arguments:

{Vector∗} vRepeat :: a → v a

{Vector†} vRepeat x = VNil

{Vector‡} vRepeat x = VCons x (vRepeat x)

{Vector∗} vApply :: v (s → t) → v s → v t

{Vector†} vApply VNil VNil = VNil

{Vector‡} vApply (VCons f fs) (VCons s ss) = VCons (f s) (fs ‘vApply ‘ ss)

Now we can apply the technique of the previous section, adding a class parameter

for the particular Vector v replacing ([]). Unfortunately, v does not appear in the

type of vZipWith , but a second functional dependency resolves the ambiguity.

class (Nat n, Vector v) ⇒ VZipWith n v s t | (n, v, s) t, (n, t) v

where {VZipWith∗}
instance Vector v ⇒ VZipWith Zero v t (v t)

where {VZipWith†}
instance VZipWith n v t ts ⇒

VZipWith (Suc n) v (s → t) (v s → ts) where {VZipWith‡}

{VZipWith∗} vManyApp :: n → v s → t

{VZipWith†} vManyApp Zero fs = fs

{VZipWith‡} vManyApp (Suc n) fs ss = vManyApp n (fs ‘vApply ‘ss)

{VZipWith∗} vZipWith :: n → s → t

{VZipWith∗} vZipWith n f = vManyApp n (vRepeat f)

5.2 Fold operators for Vector

It often proves useful to code up common patterns of recursion on datatypes as

fold operators. Class Vector collects particular v’s with kind ? → ? , and there are

many ways in which a recursive operation on v a might relate its return type to the

particular choice of v. Unfortunately, the inhabitants of (? → ?) → ? expressible

in Haskell are somewhat restricted – the language of types is not a programming

language – hence we find ourselves writing a selection of fold operators, always with

the same program, but with subtly different signatures.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 385

The simplest of these fold operators throws away the structure of the vectors,

yielding a uniform return value – this is sometimes known as a crushing fold:

{Vector∗} vCrush :: t → (s → t → t) → v s → t

{Vector†} vCrush n c VNil = n

{Vector‡} vCrush n c (VCons x xs) = c x (vCrush n c xs)

For example, we can use vCrush to sum the elements of a numeric vector and thus

compute the scalar product of two such vectors:

vSum :: (Vector v, Num n) → v n → n

vSum = vCrush 0 (+)

vDot :: (Vector v, Num n) → v n → v n → n

vDot xs ys = vSum (vZipWith two (∗) xs ys)

A more complex fold operator preserves the vector structure v, but wraps it within

a type constructor f and changes the element type from s to t. The type resembles

an induction principle:

{Vector∗} vWrap :: f (VNil t) →
(forall u. Vector u ⇒ s → f (u t) → f (VCons u t)) →
v s → f (v t)

{Vector†} vWrap n c VNil = n

{Vector‡} vWrap n c (VCons x xs) = c x (vWrap n c xs)

One operation ripe for definition with vWrap is vTranspose, which transposes a

matrix represented as a vector of vectors.

vTranspose :: (Vector v, Vector w) → v (w a) → w (v a)

vTranspose = vWrap (vRepeat VNil) (vZipWith two VCons)

From vDot and vTranspose, together with the functorial properties of vectors, we

may define a precisely typed matrix multiplier:

vMultiply :: (Vector u, Vector v, Vector w, Num n) →
u (v n) → v (w n) → u (w n)

vMultiply uv vw = fmap row uv where

row v = fmap (vDot v) wv

wv = vTranspose vw

These operations still display a very uniform relationship between the return type

of the folds they employ and the vectors being traversed. If we want to go further,

we will again need to use multi-parameter classes as a programming language. The

following fold operator not only replaces each VNil with given n and VCons with

given c at the term level, it repeats this pattern at the type level:

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

386 C. McBride

class Vector v → VFold n c v t | (n, c, v) t

where {VFold∗}
instance VFold n c VNil n

where {VFold†}
instance VFold n c v t ⇒

VFold n c (VCons v) (c t) where {VFold‡}

{VFold∗} vFold :: n b ⇒
(forall f . a → f b → c f b) →
v a → t b

{VFold†} vFold n c VNil = n

{VFold‡} vFold n c (VCons x xs) = c x (vFold n c xs)

We can use vFold to define the “append” operator for vectors. The structure of

Vector is that of natural numbers – the type of lengths. As we append the vectors

at the term level, we must add their lengths at the type level: vFold synchronizes the

two.

vAppend :: (Vector v, VFold v VCons u w) → u a → v a → w a

vAppend us vs = vFold vs VCons us

The fact that the fold operators defined here have the same program but different

types is a sure sign that the polymorphism available is too weak. Richard Bird and

Ross Paterson come up against exactly the same problem when trying to define

general fold operators for nested types (Bird & Paterson, 1999). We could write one

truly general fold if only we would abstract over return types computed from Vector

types and express the type-level functions we require – not just type constructors,

but constant functions, recursively computed types and so on.

5.3 Vectors and matrices via nested types?

No presentation of vectors and matrices could claim to be a proper appraisal of the

issues involved without considering Chris Okasaki’s deft and sophisticated treatment

of these structures (Okasaki, 1999). His vectors and matrices are defined using nested

types, enforcing shape invariants such as squareness by typechecking. They are also

cunningly optimised by using a binary representation of size, giving a logarithmic

access time. However, I shall use a simplified unary presentation in order to focus

on the expression of safety properties.

The key to the idea is to define a non-uniform type whose step cases are just

embeddings which build tuple types and whose base case exploits the tuple in some

way. We may define this structure by incorporating a little type-level “continuation

passing”:

data WithTuple f t a =

Zero (f t)

| Suc (WithTuple f (t, a) a)

An element of WithTuple f () a is effectively an inhabitant of f an wrapped up in

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 387

a header which represents n as a unary number. The f can be thought of as a

“continuation” – what we do with the tuple type once we have constructed it. We

can see vectors as tuples, so the identity function would be a suitable f: the closest

Haskell allows is

data Id a = The a

type Vector a = WithTuple Id () a

However, this type of vectors conceals their length. The most we can say is that

WithTuple Id an a

gives vectors of length at least n. We can thus achieve only limited precision by

typechecking when attempting to relate vectors to other structures – we cannot

demand a vector of length exactly 3, or that two vectors have the same length. That

is, we cannot enforce shape invariants between elements of nested types, but only

within them. If we want to define rectangular matrices as vectors of vectors, we must

use the “continuation” f to pass the outer vector structure inside:

type Rect a = WithTuple Vector () a

Once again, Rect a conceals the dimensions of the matrix within the header, which

now represents a pair of numbers. We cannot express, say, the dimensional constraint

between two matrices required to give a safe type to multiplication. Of course, we

could use this continuation-passing style to define yet another data structure – pairs

of matrices which can be multiplied – but we still cannot define a function on such

pairs which makes explicit the dimensions of the resulting matrix, so that it can be

used in further type-safe matrix operations.

It is the header data which codes for the precise structure of the information stored

inside an element of a nested type: these codes are invisible at the type level. This

makes nested types unsuitable as a basis for programming which is both type-safe

and compositional. Okasaki may have given a type-safe definition of matrices which

enforces their rectangularity, but his projection functions cannot enforce the required

bounds on subscripting, and his operations on rectangular matrices cannot be used

for his square matrices, which are necessarily of an incompatible type, rather than

merely a more specific instance of an indexed family.

Our fake dependent families code their structure as type information, making it

very easy to constrain them. Further, the data they contain is directly acessible, rather

than buried under a header, allowing us to work in a straightforward first-order

style.

6 Discussion

The techniques in this paper allow us to give types to many systematic operations

which lie beyond the expressive power of parametric polymorphism, and to define

classes of datatype, like the vectors, with systematically generated software. In this

section, I discuss the limitations of this style of programming and make some

suggestions as to how it might be better supported. I also discuss the practical

implications of making a type system more complex, by whatever means.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

388 C. McBride

6.1 The trouble with faking it

There are clearly practical difficulties with programs and data structures based on

the type class mechanism. Horn clauses make a clumsy notation for functional

programs, and the fragmentation of “code” amongst datatype, class and instance

declarations – whose complex interactions must be kept mutually consistent – is

quite a burden for the programmer to bear. Further, at run-time, these programs are

likely to put a much greater strain on the implementation of ad hoc polymorphism

than it was ever intended to bear. Each polymorphic operation must be passed a

dictionary containing the actual members it needs for particular instances, perforce

including subdictionaries for the overloaded operations which get used in the process

(Peterson & Jones, 1993): a large vector may well need a large dictionary.

The variety of datatype families which may be expressed by type classes is

also quite limited. The type constructors in a class generate disjoint types in the

family, and each term-level constructor targets only one type constructor. This is no

problem if the term constructors naturally partition the family – we want VNil to

make elements of a different type from VCons , so we can place them within separate

VNil and VCons types. If we wanted to add vector concatenation as a constructor,

it would need to target both. Such definitions are permitted in Lego, but we cannot

have them in Haskell.

There is another way in which the simulation of dependent types described in this

paper fails to measure up to the real thing: we cannot escape from the fact that our

counterfeit type-level data and our actual term-level data are not interchangeable.

Dependent datatypes like the “lists of distinct elements” make essential use of

the fact that the contents of a data structure can be used to restrict the types of

operations over it. Here, we are forced to choose whether data belongs at compile-

time in types, or at run-time in terms. The barrier represented by :: has not been

broken, nor is it likely to be in the near future.

Even as things stand, though, there is one problem with quite serious implications:

the incompatibility between different kinds of type-level function. Haskell’s polymor-

phism allows us to abstract over type constructors, but we cannot abstract over type

classes which happen to have a functional behaviour – indeed, it is not clear what

such abstractions would mean with respect to member operations. This prevents us

from defining a universal recursion operator for each counterfeit datatype, just as

we cannot express them for nested types. As more support for generic programming

is added to Haskell, there is a danger of still more incompatible notions of type-level

function, unless we take steps to rationalise type-level computation.

6.2 What can be done?

There is much to commend the idea of dependent type systems, and the uniformity

they offer between programming at term, type and kind levels. Indeed, systems like

Luo’s Extended Calculus of Constructions (Luo, 1994) provide an infinite hierarchy

of levels, each syntactically alike, with one operational semantics for all, and with

every type and program defined at lower levels made available for use higher up.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 389

Many kinds of genericity can be programmed directly by identifying a datatype

code for the domain of types being addressed. Given a suitable type-level language,

much-needed extensions such as Tullsen’s “Zip Calculus” (Tullsen, 2000) and the

“polytypic” programming of Jansson, Jeuring, Hinze et al. (Jansson & Jeuring, 1997;

Hinze & Jeuring, 2001) could be implemented as libraries for Haskell, rather than

compiler extensions.

Nonetheless, I would be the first to acknowledge that the research in dependently

typed programming has not yet matured sufficiently to be incorporated in Haskell.

The designers of Haskell are right to protect its status as a well rationalised and

solidly engineered vehicle for the best of functional programming technology. The

potentially profound impact of greater interaction between terms and types should

be carefully explored before Haskell allows the two to mix.

In the meantime, however, there is no reason why Haskell’s type-level language

should not move closer to a dependent system. Indeed, I am far from the first to

suggest this: Peyton Jones and Meijer have already identified Pure Type Systems

as a possible basis for rationalising the extensions to Haskell’s type system at an

intermediate compilation stage (Peyton Jones & Meijer, 1997). This paper is not the

place for a formal proposal, but it is clear to me that the kind of programming I

have illustrated in this paper could and should be presented directly, not by type

class gymnastics.

The counterfeit datatypes introduced here via classes could be declared directly

as inductive “datakinds”, in the same style as datatypes, but “one level up”. The

current notion of type synonym introduced by the type keyword could evolve to

allow the definition of type-level programs over them in a conventional functional

style, with kinds depending on type-level data just as the forall notation currently

permits dependency on types. Such programs should be acceptable as parameters

for operations and datatypes currently polymorphic only over type constructors:

there is no reason why these parameters should be passed explicitly in cases where

they can be inferred by Miller-style unification (Miller, 1992). Further, the current

rigid separation of type and kind levels could be smoothed out and generalised by

the introduction of a uniform hierarchy of levels, as found in ECC and seamlessly

managed in Lego (Harper & Pollack, 1991).

These liberalisations would have three immediate consequences. First, they would

allow the definition of uniform recursion operators for type-level data and for

term-level datatypes indexed over them. Secondly, domains of genericity currently

implemented by ad hoc extensions of the type system could be rationalised by

coding collections of types with type-level data: for example, a syntactic coding of

the regular types is given in (McBride, 2001), and Pollack has given an extensive

treatment of coding for extensible record types in (Pollack, 2000). Thirdly, a hierarchy

uniformly capturing operations on types, kinds and beyond would enable layer on

layer of generic programming at a single stroke: Hinze has already identified the

need for “polykinded” types to account for “polytypic” programs (Hinze, 2000).

When research in programming with full dependent types delivers technology

which is sufficiently stable to be incorporated in Haskell, dependency on type-level

data can be replaced by dependency on its analogous term-level counterpart. We can

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

390 C. McBride

readily combine the current drive to enhance Haskell’s type system incrementally

with sympathetic preparation for more radical change to come.

6.3 Must type-safe programming be difficult?

Many popular objections to dependent types stand just as well as objections to any

complex type system with nontrivial interaction between levels. This paper provides

the evidence that the current Haskell implementations have already reached this

point. Type inference is no longer decidable in general, but Haskell’s designers have

sensibly maintained it for that fragment of the language where it is still possible.

What we cannot do without is typechecking, and it is not unreasonable to demand

that complex programs be given explicit signatures. On the other side of the Curry-

Howard correspondence, we find very few mathematicians who write a proof without

first stating the theorem.

Some suggest that even decidability of typechecking is not essential, but this is

not the place to rehearse the arguments. The key to the decidability of typechecking,

should we wish it, is ensuring that type-level programs terminate. The extended

type class mechanism permits type-level general recursion, leaving Haskell’s type

system as undecidable as Cayenne’s (Augustsson, 1998), and for exactly the same

reason. However, we are free to design a type-level language with only structural

recursion, leaving the term-level intact, retaining decidability, and allowing a vast

and fascinating range of new programs.

On a more pragmatic level, complex type systems raise important issues for the

practice of programming. Type- and term-level operations must be kept in step,

and the more intricate the type, the harder this gets. However, when you search for

the silver lining in this cloud, you discover that the cloud itself is made of silver.

More precise types constrain the search space for well-typed programs, which makes

them easier to construct interactively. The need for type-directed programming tools

is not peculiar to dependently typed languages – it addresses a problem which

is inevitable no matter which route towards richer typing is adopted. Much of

the required technology already exists, for example, in graphical proof editors like

Agda (Coquand & Coquand, 1999). The reason it has evolved in the type theory

community is that its necessity has been clearer for longer, simply for survival.

7 Conclusions

It is indeed a pleasure to see programming techniques previously only found in a de-

pendently typed setting becoming available in Haskell. This paper, I hope, illustrates

their potential for capturing both genericity and precision in typed functional pro-

gramming. The facility for type-level computation via multi-parameter type classes

with associated functional dependencies enables the exploration of both of these

directions by programming within Haskell, rather than making ad hoc extensions

to the compiler. Of course, the model of computation supplied by the type class

mechanism is not designed to support the style of programming shown here, so we

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

Faking it 391

should not be surprised or disappointed to find that this unexpected application of

the technology is, though encouraging, less effective than we might like.

Nonetheless, with the type class mechanism, Haskell has taken a significant

step towards the kind of expressivity offered by dependent types. Accurate types

and flexible programs have rightly been taken as achievable objectives for future

work. At the same time, the type theory community’s interest in and need for good

programming technology is developing in earnest. I look forward to a fruitful synergy.

Acknowledgements

Many thanks to James McKinna, Randy Pollack, Zhaohui Luo, Magnus Carlsson

and Peter Hancock for their encouragement and helpful comments on this work.

This paper has also benefited greatly from the suggestions made by the editor,

and by the anonymous referees. I would especially like to thank my colleague Paul

Callaghan for his advice, and for pushing me towards Haskell in the first place.

References

Augustsson, L. (1998) Cayenne – a language with dependent types. ACM Int. Conf. on

Functional Programming. ACM.

Backhouse, R. and Oliviera, J. N. (eds). (2000) Mathematics of Program Construction: LNCS

1837. Springer-Verlag.

Bird, R. and Paterson, R. (1999) Generalised folds for nested datatypes. Formal Aspects of

Computing, 11(3).

Coquand, C. and Coquand, T. (1999) Structured type theory. Workshop on Logical Frameworks

and Metalanguages.

Fridlender, D. and Indrika, M. (2000) Do we need dependent types? J. Functional Program-

ming, 10(4): 409–415.

Harper, R. and Pollack, R. (1991) Type checking with universes. Theor. Comput. Sci. 89:

107–136.

Hinze, R. (2000) Polytypic values possess polykinded types. In: Backhouse, R. and Oliviera,

J. N., editors, Mathematics of Program Construction: LNCS 1837. Springer-Verlag.

Hinze, R. and Jeuring, J. (2001) Type-indexed datatypes. In preparation.

Jansson, P. and Jeuring, J. (1997) PolyP – a polytypic programming language extension.

Proceedings of POPL ’97, pp. 470–482. ACM.

Jones, M. P. (2000) Type classes with functional dependencies. Proc. 9th European Symposium

on Programming, ESOP 2000: LNCS 1782, pp. 230–244. Springer-Verlag.

Jones, M. P. and Peterson, J. C. (1999) Hugs 98 User Manual. Available from:

http://www.cse.ogi.edu/PacSoft/projects/Hugs/pages/downloading.htm.

Kaes, S. (1988) Parametric overloading in polymorphic programming languages. 15th ACM

Symposium on Principles of Programming Languages, pp. 131–144. ACM.

Luo, Z. (1994) Computation and Reasoning: A type theory for computer science. OUP.

Luo, Z. and Pollack, R. (1992) LEGO Proof Development System: User’s Manual. Technical

report ECS-LFCS-92-211, Laboratory for Foundations of Computer Science, University of

Edinburgh.

Martin-Löf, P. (1971) A theory of types. Manuscript.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

392 C. McBride

McBride, C. (1999) Dependently Typed Functional Programs and their Proofs. PhD thesis,

University of Edinburgh.

McBride, C. (2001) The Derivative of a Regular Type is its Type of One-hole Contexts. Elec-

tronically available. http://www.dos.ac.uk/c.t.mcbride (unpublished).

Miller, D. (1992) Unification under a mixed prefix. J. Symbolic Computation, 14(4): 321–358.

Okasaki, C. (1999) From fast exponentiation to square matrices: an adventure in types. ACM

International Conference on Functional Programming.

Peterson, J. and Jones, M. P. (1993) Implementing type casses. Proceedings of ACM SIGPLAN

Symposium on Programming Language Design and Implementation. ACM SIGPLAN.

Peyton Jones, S. and Meijer, E. (1997) Henk: a typed intermediate language. ACM Workshop

on Types in Compilation.

Peyton Jones, S., Jones, M. and Meijer, E. (1997) Type classes: an exploration of the design

space. Proceedings of the Haskell Workshop.

Pollack, R. (2000) Dependently typed records for representing mathematical structure. In:

Aagard, M. and Harrison, J., editors, Theorem Proving in Higher Order Logics, TPHOLs

2000: LNCS 1869. Springer-Verlag.

Tullsen, M. (2000) The Zip Calculus. In: Backhouse, R. and Oliviera, J. N., editors, Mathematics

of Program Construction: LNCS 1837. Springer-Verlag.

Wadler, P. and Blott, S. (1989) How to make ad-hoc polymorphism less ad hoc. 16th ACM

Symposium on Principles of Programming Languages, pp. 60–76. ACM.

https://doi.org/10.1017/S0956796802004355 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796802004355

