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A METHOD OF MAHLER IN TRANSCENDENCE THEORY

AND SOME OF ITS APPLICATIONS*

J.H. LOXTON

Remarks on transcendence theory lead to a surprising proof that

the decimal expansion of an algebraic irrational is irregular

and to speculations on random numbers.

Kurt Mahler has introduced many profound ideas and methods into the

theory of transcendental numbers. His work in this area includes detailed

study of the algebraic approximations of numbers such as e, v and log 2,

a new classification of real and complex numbers according to their

approximation properties, and the initiation and development of p-adic

transcendence theory. The particular method which I shall discuss here

can be traced back to Mahler's earliest papers written in GOttingen in the

1920's. These papers were unaccountably overlooked for many years, but

they have received considerable attention in recent times because of links

with the theory of automata.

Transcendence theory is the study of the arithmetic properties of

interesting numbers. The beginnings of the subject can therefore be traced

Received 3 October 1983.

* This is a lecture delivered at the Special Meeting of the Australian
Mathematical Society "Celebration of the 80th Birthday of Kurt Mahler",
Canberra, July 26, 1983.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/84
$A2.00 + 0.00

127

https://doi.org/10.1017/S0004972700021341 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700021341


128 J- H. Loxton

back to the discovery by the school of Pythagoras that /2 is irrational.

Subsequent milestones were the proofs of the irrationality of e by

Euler and of ir by Lambert. One of the reasons for the interest in these

questions comes from the classical construction problems of Greek geometry,

particularly the problem of squaring the circle. This problem was finally

resolved by Lindemann in 1884 when he showed that ir is transcendental,

that is IT is not the root of any polynomial with integer coefficients.

Lindemann's work rests on ideas introduced by Hermite in 1873 to prove the

transcendence of e.

The first authenticated transcendental numbers were produced by

Liouville in 1844. A typical example is the number \ 2 ' .

n=l

Liouville's argument depends on a simple but fundamental inequality which

appears again and again in transcendence theory. Suppose a is a non-zero

algebraic number, so that a is the root of some minimal polynomial with

integer coefficients, say

d
r (x - c..

d

f(x) = a/ + a/'1 + ... + ad = aQ J T (* - «•) -

Here d = deg(a) is the degree of a, a^ = a, a_, ...., a, are the

conjugates of a and h(a) = max{ |a. |, |a- |., , [a ,| } is one possible

measure of the size of a. Since a is non-zero, a, is a non-zero

integer and so

\ad\ = |aoini°jl ~
 |al h(a)

3

This gives Liouville's inequality

log\a\ + deg(a) logh(a)Z 0 .

Now suppose a = \ 2 ' is algebraic and consider
n=l

t This is not the canonical height, but it will serve here. For the
correct definition, see [8], pages 78-80.
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" n=l

Then <*„ is a non-zero algebraic number with the same degree as

a , log\a.A s - cN.' and log h (a^) < c(N-l)! for some positive constant

e. (The last assertion comes about because the conjugates of ct« are

bounded independent of N and 2 " a« satisfies a polynomial equation

with integer coefficients and with the same leading coefficient as the

minimal polynomial for a.) It follows that Zog-lot-J + deg(a^)log h (a.^.)

is negative for sufficiently large N, contradicting the fundamental

inequality. Thus Liouville's number is transcendental. This argument can

be applied to gap series \ a z with X -A "*" °° as n -*•<*>.
n=0

(See [?].)

Mahler began his studies of transcendental numbers around 1926. In

his engaging account [H] of fifty years as a mathematician, he writes:

"During a part of that year I was very ill and in bed. To occupy myself,

I played with the function f(z) = \ z and tried to prove that f(t.)
n=0

is irrational for rational t, satisfying 0 < \ Z, \ < 1 . " The function

f(z) does not have large enough gaps to accommodate Liouville's method,
2

but it does have the functional equation f(z ) = f(z) - z , and this is

the key to the method. By way of illustration, I shall sketch the proof
" -2" (*)

of the transcendence of f(s) = \ 2 . Suppose, on the contrary,

n=0

that f(i) is algebraic. Choose polynomials pJz), ..., p^fz), with

degrees at most N and integer coefficients and not all identically zero,

so that

N
E (z)(say) = \ pjz)f(z)3 = \ a zn

0=0 ° W n

* This is an interesting number and can be treated by several
different methods. It has an interesting continued fraction development
with bounded partial quotients. (See [5], Section 2.3.)
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This is possible because the p -(z) have in all (N+l) coefficients and
0

2
these must satisfy N linear equations to give ^^z^ a zero of order
2

N at the origin. Now consider the number

ok N pk ( k-1 9Uj ~ k

'K N 3=0 3 l i=0 J 2 n

(The first representation is obtained by iterating the functional equation

2 2 2

to get f(z ) = f(z) - z - z - ... - z .) Then ct« , is an algebraic

number with degree at most the degree of f(i)3 toghfa^ y) < o2 N

for some positive constant a from the first representation of a,. , and

log|a^ , | < - o2 N from the second. Thus

log\a , | + degfa.^ •,) logh(a -J < 0 for sufficiently large N

and h. The difficulty, as in most transcendence proof s, is to show that

ot̂  , is non-zero. In this example, f(z) has a natural boundary on the

unit circle \z\ = 1, so f(z) is a transcendental function and the

function Em(z) does not vanish identically. Thus

-2k
Ep,(2 ) is non-zero for all sufficiently large k. Again, this

contradicts the fundamental inequality, showing f(i) is transcendental.

Mahler generalised this argument to power series in several variables

which satisfy a very general type of functional equation. (See [9] .)

The example above is based on the generating function of the powers

of 2. As another example, consider the generating function for numbers
CO

missing the digit 1 in base 3 , say g(z) = \ a z , where a = 0
n=0 n n

or 1 according as n has a J in its ternary representation or not.

Then a_ = a_ o = a and a, ,, = 0, so
3n Zn+2 n 3n+l J

v 3n r 3n+2 .- 2. , 3.la Z + lQ Z = (1 + Z ̂ (z }

Mahler's theorem shows that g(i) = \ a 2 is transcendental since
n=0 n
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g(z) = II (1+z ) is a transcendental function. Another infamous
n=0

example is the paper-folding sequence. (See [5], Section 1.1). If a

piece of paper is folded in half repeatedly, right half over left, a

sequence of folds results which can be represented by the sequence

11011001110010011101100011001001... ,

where 1 denotes a crease V and 0 denotes a crease A .

Suppose the pattern of creases after n folds is a^a0 ... a
1 * 2n-l

It is easy to see that the first half of this sequence gives the pattern

for n-1 folds, so the pattern converges to an infinite sequence. The

(n+D—sX. fold produces the sequence la-OaAa^Oa. — la , so
1 6 0 Q fpX -

a4n+l = ly a4n+3 = ° a n d a2n = an ' T h e 9eneratin9 function

h(z) = \a z satisfies the functional equation h(z)=h(z )+z/(l-z ) .
n=0 n

GO

Again the decimal h(i) = \ a 2 is transcendental.
n=0 n

These examples are all regular sequences in the following sense.

(See [ 5] i Sections 1.2 and 2.4.) A finite automaton is a device with a

finite number of states, an input which reads the digits 0,1, ... ,v-l,

say, and an output. On reading an input digit, the machine goes to a new

state which depends on the old state and the input. This step can be

repeated to accommodate a finite string of input digits. The output

indicates whether the final state is accepted or not. A sequence {a }

is regular in base r if, for each n , there is a finite automaton

whose output corresponding to the string of digits of n in base v is

a . The machine shown generates the paper-folding sequence.

t Of course, this is theoretical paper-folding. A real piece of paper
cannot be folded more than 7 times.
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1
-V-

The initial state is a and the input is the binary representation

(n) _ = o ... c^Cf. of n , read from right to left. The output is 1

if the final state is a, b, or a and 0 if it is d. in general, let

a (n) be the output corresponding to initial state s and input (n)
Q "X}

Then a (nr+t) = a, , . (n) , in the obvious notation, because the input t
S u ( S J

GO

moves the machine from state s to state t(s). If f (z) = \ a (n)z ,
_ S n=l
then

f (z) = 1 *Vt,s/a
rJ •

t=0 ' ;

This property characterises the generating functions of regular sequences

in base r : there is a vector f(z) , whose first component is the given

generating function, satisfying a system of functional equations

f(z) = A(z) f(zr) , where A(z) is a matrix of rational functions.

Mahler' s method can be used to show that, if a is an algebraic number

with 0 < | a | < 1 j then the algebraic relations among the numbers f(a)
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arise from the algebraic relations among the functions f(z) . In

particular, if f(z) = \ a z is the generating function of a regular

n=0 n

sequence, then f(z) is either rational^or transcendental and,

correspondingly, the decimal f(b~ ) = \ a b is either rational
n=0 n

or transcendental. Thus, the decimal expansion of an algebraic irrational
(*)cannot be generated by a finite automaton. (See [10] . )

Extraordinarily little is known about the decimal expansions of

irrational numbers. It is reasonable to conjecture that "simple"

irrationals such as e , IT and /2 have "random" decimals. Of course,

rational numbers have periodic expansions, but if the period is sufficiently

long, it is possible to prove various results and the period appears to be

practically random. (See [13] ). This is important because it is closely

related to the way in which pseudo-random numbers are generated by a

computer. Nothing of the sort has been proved about e, TT, or Y2 .

The simplest requirement for randomness is normality, namely that the

various patterns of digits in the expansion should appear with the correct

uniform frequencies. Almost all numbers are normal, but explicit examples

are rare. The interesting, but distinctly non-random number

0.123456789101112... is normal in base 10 and is another of Mahler's

transcendental numbers. No-one has found a normal algebraic number.

A battery of statistical tests has been developed to try to capture the

idea of a random sequence (See [7] .) These have been applied to large

chunks of the decimal expansions of et v and various simple algebraic

numbers. ((!], [6] and [12]). The statistical evidence offers no

surprises, except perhaps.for some peculiarities found by Stoneham in the

first 60,000 decimal digits of e. It has to be admitted that this ad hoc

battery of statistical tests does not amount to a satisfying definition of

randomness.

The result about the decimal expansion of algebraic irrationals and

finite automata suggests an alternative theoretical approach to randomness.

* The annoying technical restriction in the results in this paper
has recently been removed.
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We can try to assign a measure of computational complexity to a sequence

by means of the following hierarchy:

(0) periodic sequences,

(1) regular sequences generated by finite automata,

(2) sequences generated by automata with one push-down store,

(3) sequences generated by non-deterministic automata

with one push-down store, and

(4) sequences generated by Turing machines.

Essentially, the n-th term of a regular sequence is computed from the

input n without any memory of the earlier terms. A push-down store

allows an arbitrary number of terms of the sequence to be stored and

recalled later, the first one in being the last one out. Two push-down

stores are equivalent to the doubly infinite tape of a Turing machine,

which explains why the classification stops as it does. A random sequence

is now one which cannot be generated by any machine less powerful than a

Turing machine. The class of regular sequences has been investigated in

some depth by Cobham. ([3] and [4].) He has shown that the notion is

base dependent, that is, if a sequence is regular in two multiplicatively

independent bases, then it is periodic. Unfortunately, although the

regular sequences are accessible, they are extremely restricted. For

example, a regular sequence defined on an alphabet with s symbols can

contain at most c n n-tuples out of the total of s n-tuples on the

given alphabet; in other words, regular sequences have zero entropy.

There are some fascinating possibilities here involving transcendence

theory, automata and the spectral properties of sequences. The remarks

made above about Mahler's method, regular sequences and entropy can be

extended in various ways and the combination of these ingredients seems

likely to yield further interesting results.
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