CLASSIFICATION OF MAXIMAL FUCHSIAN SUBSGROUPS OF SOME BIANCHI GROUPS

L. YA. VULAKH

Abstract

Let $d=1,2$, or p, prime $p \equiv 3(\bmod 4)$. Let O_{d} be the ring of integers of an imaginary quadratic field $\mathbf{Q}(\sqrt{-d})$. A complete classification of conjugacy classes of maximal non-elementary Fuchsian subgroups of $\operatorname{PSL}\left(2, O_{d}\right)$ in $\operatorname{PGL}\left(2, O_{d}\right)$ is given.

1. Introduction. Let d be a positive square free integer. Let O_{d} be the ring of integers in $\mathbf{Q}(\sqrt{-d})$. The groups $\operatorname{PSL}\left(2, O_{d}\right)$ are called collectively the Bianchi groups. The group $\operatorname{PSL}\left(2, O_{d}\right)$ acts by linear fractional transformations on the complex plane \mathbf{C}. A Fuchsian subgroup of $\operatorname{PSL}\left(2, O_{d}\right)$ fixes a circle or straight line \mathcal{C} and the two components of \mathbf{C} / \mathcal{C}. It is non-elementary if its limit set on \mathcal{C} has more than two points. A Fuchsian subgroup of $\operatorname{PSL}\left(2, O_{d}\right)$ is maximal if it is not a subgroup of any other Fuchsian subgroup of $\operatorname{PSL}\left(2, O_{d}\right)$. Fuchsian subgroups has been investigated (see e.g. Fine [2,3], Maclachlan [4], Maclachlan and Reid [5,6]). In [4], for all values of d, C. Maclachlan showed that Fuchsian subgroups of $\operatorname{PSL}\left(2, O_{d}\right)$ exist, that maximal non-elementary ones are all arithmetic Fuchsian groups, and that for each d they are distributed in infinitely many commensurability classes. A maximal non-elementary Fuchsian subgroup of $\operatorname{PSL}\left(2, O_{d}\right)$ can be treated as the $\operatorname{PSL}\left(2, O_{d}\right)$-unit group of an indefinite rational binary Hermitian form in $\operatorname{PSL}\left(2, O_{d}\right)$. Here, for

$$
\begin{equation*}
d=1,2, \text { or } p, \text { prime } p \equiv 3(\bmod 4) \tag{1}
\end{equation*}
$$

complete classification of the conjugacy classes of maximal non-elementary Fuchsian subgroups of $\operatorname{PSL}\left(2, O_{d}\right)$ in $\operatorname{PGL}\left(2, O_{d}\right)$ is given. This is a simple consequence of the classification of rational indefinite binary Hermitian forms obtained in [10].

For $d=1$, C. Maclachlan and A. W. Reid [6] also solved the problem of classification of maximal non-elementary Fuchsian subgroups of the Picard group. Their results are more detailed. They found the covolumes and indicated how to find the signatures of these subgroups. It is shown in [12] that, for any square-free d as positive as negative, the approach of the present paper can be applied to classify maximal arithmetic Fuchsian subgroups of $\operatorname{PSL}(2, \mathfrak{v})$ where \mathfrak{v} is an order in $\mathbf{Q}(\sqrt{d})$.

The author thanks the referee for his useful remarks which led to an improvement of this work.
(C) Canadian Mathematical Society 1991.
2. Hermitian forms. Let $a, c \in \mathbf{R}, b \in \mathbf{C}, F=\left|\begin{array}{ll}a & b \\ \bar{b} & c\end{array}\right|, x=(z, w) \in \mathbf{C}^{2}, x^{*}=$ $(\bar{z}, \bar{w})^{T}$. The binary form

$$
\begin{equation*}
f(x)=f(z, w)=x F x^{*} \tag{2}
\end{equation*}
$$

is called a Hermitian form. Here we shall only be concerned with indefinite Hermitian forms, that is with forms whose determinants

$$
\begin{equation*}
\operatorname{det}(F)=-\Delta=a c-|b|^{2}<0 \tag{3}
\end{equation*}
$$

Any indefinite Hermitian form f defines the unique circle or straight line \mathcal{C} with equation

$$
\begin{equation*}
f(z, 1)=a|z|^{2}+b \bar{z}+\bar{b} z+c=0 \tag{4}
\end{equation*}
$$

It is a circle if and only if $a \neq 0$, in which case the radius of \mathcal{C}

$$
\begin{equation*}
r(C)=|a|^{-1}|\operatorname{det} F|^{1 / 2}=|a|^{-1} \Delta^{1 / 2} \tag{5}
\end{equation*}
$$

Below, straight lines are considered as circles of infinite radius.
Conversely, given a circle \mathcal{C} with equation $g(z)=0$. Let $w \neq 0$. A form $f(z, w)=$ $k|w|^{2} g(z / w)$ is an indefinite Hermitian form for any nonzero real k. Thus, we have obtained a one-to-one correspondence between the set of circles on the complex plane \mathbf{C} and the set of all nonzero real multiples of indefinite Hermitian forms.

Two Hermitian forms are said to be equivalent $\left(f \sim f^{\prime}\right)$ if there is a matrix $T \in$ $\operatorname{PGL}\left(2, O_{d}\right)$ such that $f^{\prime}(x)=f(x T)$. In that case, if $f(z, 1)=0$ and $f^{\prime}(z, 1)=0$ are the equations of \mathcal{C}^{\prime} and \mathcal{C} correspondingly then $\mathcal{C}^{\prime}=\left(T^{t}\right)^{-1}(\mathcal{C})$, with T defined as above. On the other hand, if $\mathcal{C}^{\prime}=\left(T^{t}\right)^{-1}(\mathcal{C}), T \in \operatorname{PGL}\left(2, O_{d}\right)$, and the equations of \mathcal{C}^{\prime} and \mathcal{C} are $f^{\prime}(z, 1)=0$ and $f(z, 1)=0$, then there is a nonzero real k such that $f^{\prime}(x)=k f(x T)$, hence $f^{\prime} \sim k f$.

A Hermitian form is said to be rational if $f(z, w) \in \mathbf{Q}$ for all $z, w \in O_{d}$. It can be easily shown that f is rational if and only if

$$
\begin{equation*}
a, c \in \mathbf{Q}, \quad b \in \mathbf{Q}(\sqrt{-d}) \tag{6}
\end{equation*}
$$

We shall call a circle rational if its equation can be written in the form $f(z, 1)=0$ where f is a rational Hermitian form. One can verify that, for a rational circle $\mathcal{C}, \mathcal{C}^{\prime}=T(\mathcal{C})$ is rational for any $T \in \operatorname{PGL}\left(2, O_{d}\right)$. Therefore, there is a one-to-one correspondence between the $\operatorname{PGL}\left(2, O_{d}\right)$-orbits of rational circles and $\operatorname{PGL}\left(2, O_{d}\right)$-equivalency classes of nonzero real multiples of rational indefinite Hermitian forms.

Let f be a Hermitian form. We denote

$$
\begin{equation*}
\mu(f)=\inf |f(z, w)|, \tag{7}
\end{equation*}
$$

where the infimum is taken over all $z, w \in O_{d}$ such that $f(z, w) \neq 0$. It was shown by Margulis $[7,8]$ that for any $\epsilon>0$ and any indefinite quadratic form Q in $n>2$ variables, which is not a multiple of an integral form, there is a nonzero vector $x \in \mathbf{Z}^{n}$ such that $0<|Q(x)|<\epsilon$.

Let $\{1, \omega\}$ be the standard basis of O_{d}. The quaternary form $Q(x)=f\left(x_{1}+\omega x_{2}, x_{3}+\right.$ $\left.\omega x_{4}\right)$ is indefinite if and only if $f(z, w)$ is an indefinite Hermitian form. The theorem of Margulis implies the following.

LEMMA 1. Let f be a binary indefinite Hermitian form. Then $\mu(f)>0$ if and only if f is a nonzero multiple of a rational Hermitian form.

For a Hermitian form f, the number

$$
\begin{equation*}
\nu(f)=\mu(f)|\Delta|^{-1 / 2} \tag{8}
\end{equation*}
$$

is said to be the normalized nonzero minimum of f or, simply, nonzero minimum of f. Since the sets of values of two equivalent forms f and f^{\prime} coincide, for any nonzero real k,

$$
\begin{equation*}
\nu\left(f^{\prime}\right)=\nu(k f) \tag{9}
\end{equation*}
$$

Denote the set of all binary indefinite Hermitian forms by H_{d}. The set $S_{d}=\{\nu(f) \mid$ $\left.f \in H_{d}\right\}$ is called the spectrum of minima of binary indefinite Hermitian forms over O_{d}. As Lemma 1 shows, if $\nu(f) \neq 0$ and $\nu(f) \in S_{d}$, then f is a multiple of a rational form. For any d, the spectrum S_{d} is discrete [11] (i.e., for any given $\delta>0$, there is only a finite number of $\nu(f) \in S_{d}$ such that $\nu(f)>\delta$). The spectrum S_{d} was completely described in [10] for $d=1,2$, or p, prime $p \equiv 3 \quad(\bmod 4)$. The author has also obtained a complete description of S_{d} for any d (as positive, as negative). The results will be published elsewhere.
3. Fuchsian subgroups. Upper half-3-space $H^{3}=\{(z, t), z \in \mathbf{C}, t>0\}$ with metric $t^{-2}\left(|d z|^{2}+d t^{2}\right)$ can be used as a model for hyperbolic 3-space. The group of all orientation-preserving isometries of H^{3} can be identified with $\operatorname{PSL}(2, \mathrm{C})$ (see e.g. [4]). The groups $\operatorname{PSL}\left(2, O_{d}\right)$ are discrete subgroups of $\operatorname{PSL}(2, \mathrm{C})$. A Fuchsian subgroup of $G=\operatorname{PSL}\left(2, O_{d}\right)$ stabilizing the circle C with equation $f(z, 1)=0$ in \mathbf{C} stabilizes the hemisphere S_{f} in H^{3} with equation $f(z, 1)+a t^{2}=0$. Here $f(z, w)$ is an indefinite Hermitian form. The group $\Gamma=\operatorname{Stab}(\mathcal{C}, G)$ can be identified with the group

$$
\begin{equation*}
\operatorname{PSU}\left(f, O_{d}\right)=\left\{T \in G, \mathrm{TFT}^{*}= \pm F\right\} \tag{10}
\end{equation*}
$$

where F is the matrix of the Hermitian form f. Let

$$
\begin{equation*}
\rho(\Gamma)=\sup r(T(\mathcal{C})) \tag{11}
\end{equation*}
$$

where the supremum is taken over all $T \in G$ such that $r(T(\mathcal{C}))<\infty$. It is clear that $\rho(\Gamma)$ is constant on each conjugacy class of Fuchsian subgroups of G in $\operatorname{PGL}\left(2, O_{d}\right)$.

LEMMA 2 (MACLACHLAN [4], P. 306-307). A circle \mathcal{C} in the complex plane \mathbf{C} is rational if and only if its stabilizer Γ is a non-elementary Fuchsian subgroup of G.

As follows from (5), (7), and (11),

$$
\begin{equation*}
\rho(\Gamma)=1 / \nu(f) \tag{12}
\end{equation*}
$$

provided there are $z, w \in O_{d}$, g.c.d. $(z, w)=1$, such that $\mu(f)=|f(z, w)|$. As was shown in [10], $\mu(f)=1$ for any integral primitive indefinite Hermitian form if d belongs to the sequence in (1). If f is integral, the g.c.d. $(z, w)=1$ for any solution of the equation $f(z, w)=1$ in O_{d}. Hence, formula (12) is true for any f in the case under consideration, and Lemma 1 is equivalent to the following.

Theorem 1. Let $d=1,2$, or p, prime $p \equiv 3(\bmod 4)$. Let C be a circle or a straight line in the complex plane. The Fuchsian group $\Gamma=\operatorname{Stab}\left(C, \operatorname{PSL}\left(2, O_{d}\right)\right)$ is nonelementary if and only if $\rho(\Gamma)<\infty$.

For a binary rational Hermitian form f, the equation $f(z, w)=0$ has a solution in O_{d} if and only if $\Delta(f)=|\alpha|^{2}$ for some $\alpha \in \mathbf{Q}(\sqrt{-d})$ [10]. By (5), the circle C with equation $f(z, 1)=0$ contains a point in $\mathbf{Q}(\sqrt{-d})$ if and only if $r(C)^{2}$ is the norm of some element of the field $\mathbf{Q}(\sqrt{-d})$.

THEOREM 2. Let $d=1,2$, or p, prime $p \equiv 3(\bmod 4)$. A maximal non-elementary Fuchsian subgroup Γ of $\operatorname{PSL}\left(2, O_{d}\right)$ is non-cocompact if and only if $\rho(\Gamma)=|\alpha|$ for some $\alpha \in \mathbf{Q}(\sqrt{-d})$.

Remark. In [12], for any $d, \rho(\Gamma)$ is defined to be equal to $1 / \nu(f)$. With this definition, the assumption that d is as in (1) can be omitted in the statements of Theorem 1 and 2.

Proof. Let f be a rational Hermitian form with matrix F. If f is anisotropic, the circle \mathcal{C} with equation $f(z, 1)=0$ contains no point in $\mathbf{Q}(\sqrt{-d})$. Hence, Γ contains no parabolic element and, therefore, is cocompact.

Let

$$
\begin{equation*}
f(z, w)=a|z|^{2}+b \bar{z} w+\bar{b} z \bar{w}+c|w|^{2}=0, \tag{13}
\end{equation*}
$$

for some $z, w \in O_{d}$, which can be written in the form

$$
\begin{equation*}
\bar{z} A+\bar{w} B=0, \tag{14}
\end{equation*}
$$

where

$$
\begin{equation*}
A=a z+b w, \quad B=\bar{b} z+c w \tag{15}
\end{equation*}
$$

For any $n \in O_{d}$ satisfying the equation

$$
\begin{equation*}
\operatorname{Re}(n w A)=0 \tag{16}
\end{equation*}
$$

or, what is the same, the equation $\operatorname{Re}(n z B)=0$, a tedious calculation shows that matrix

$$
T=\left|\begin{array}{cc}
n z w+1 & n w^{2} \\
-n z^{2} & -n z w+1
\end{array}\right|,
$$

for which z / w is a fixed point, satisfies the condition $\mathrm{TFT}^{*}=F$. Thus, T belongs to the group Γ which is, therefore, non-cocompact.

Lemma 2 shows that the problem of classification of the conjugacy classes of maximal non-elementary Fuchsian subgroups of G in $\operatorname{PGL}\left(2, O_{d}\right)$ is equivalent to the problem of classification of $\operatorname{PGL}\left(2, O_{d}\right)$-equivalency classes of multiples of rational indefinite Hermitian forms. The last problem was partly solved in [10]. Denote the discriminant of the field $\mathbf{Q}(\sqrt{-d})$ by D. Theorem 1 of [10] implies the following.

Theorem 3. Let $d=1,2$, or p, prime $p \equiv 3(\bmod 4)$. A maximal non-elementary Fuchsian subgroup of $\operatorname{PSL}\left(2, O_{d}\right)$ is conjugate in $\operatorname{PGL}\left(2, O_{d}\right)$ to one and only one of the groups $\operatorname{PSU}\left(f_{\ell, m, c} O_{d}\right)$. The binary rational indefinite Hermitian forms $f_{\ell, m, c}$ are defined by the following conditions:

$$
\begin{gathered}
a=1, \quad b=D^{-1 / 2}(m+\omega \ell), \quad \ell, m, c \in \mathbf{Z}, \\
0 \leq m<d / 2, \quad \ell=0, \quad \text { if } d \equiv 3 \quad(\bmod 4), \\
m=0,1, \text { or } 2, \quad \ell=0 \text { or } 1, \quad \text { if } d=2, \\
m+i \ell=0,1, \text { or }(1+i), \quad \text { if } d=1 .
\end{gathered}
$$

COROLLARY. Let d belong to the sequence in (1). Two maximal non-elementary Fuchsian subgroups Γ and Γ^{\prime} of $\operatorname{PSL}\left(2, O_{d}\right)$ are conjugate in $\operatorname{PGL}\left(2, O_{d}\right)$ if and only if $\rho(\Gamma)=\rho\left(\Gamma^{\prime}\right)$.

Remarks. Let C be a rational circle in C with equation (4). Let S_{f} be the hemisphere in H^{3} on C. S_{f} is a hyperbolic plane under the restriction of the hyperbolic metric in H^{3}. The Fuchsian group $\Gamma=\operatorname{Stab}\left(\mathcal{C}, \operatorname{PSL}\left(2, O_{d}\right)\right)$ acts discontinuously on S_{f}. We shall show that the region in S_{f} satisfying the inequalities (cf. Swan [9])

$$
\begin{equation*}
|\mu z-\lambda|^{2}+|\mu|^{2} t^{2}>1 \tag{17}
\end{equation*}
$$

for all $(\lambda \mu)=\left(\begin{array}{ll}1 & 0\end{array}\right) T^{t}, T \in \Gamma$, is the Dirichlet polygon $D(e)$ for Γ with center $e=$ $(-b / a, r(\mathcal{C}))$ (see [1], p. 226, for the definition of $D(e)$). Indeed, let $T \in \Gamma$ be fixed. Let λ / μ and e_{T} be the images of ∞ and e under transformation T in H^{3}. Since the isometric circle of T^{-1} in \mathbf{C} is $|\mu z-\lambda|=1$, hemisphere $S(\lambda / \mu)$, the boundary in (17), is orthogonal to $S_{f} . \lambda / \mu$ is the reflection of ∞ in $S(\lambda / \mu)$. Since the feet of the perpendiculars from ∞ and μ / λ to S_{f} are e and e_{T} respectively, e_{T} is the reflection of e in $S(\lambda / \mu)$. Thus, for x in S_{f}, the inequality (17) is reduced to $d\left(x, e_{T}\right)>d(x, e)$ where $d(x, y)$ is the distance between points x and y in the hyperbolic plane S_{f}.

Since the region $t>1$ satisfies (17) for any pair $\mu, \lambda \in O_{d}$, the circle $t>1$ in S_{f} belongs to $D(e)$. The area of this circle equals $2 \pi(r(C)-1)$. Thus, we have

$$
\operatorname{Area}\left(S_{f} / \Gamma\right)>2 \pi(\rho(\Gamma)-1)
$$

Let $N(D)$ denote the number of sides of the polygon $D(e)$. Then

$$
N(D)>\pi \rho(\Gamma)
$$

since the radius of any hemisphere, the boundary in (17), is less than or equal to 1 and, as was mentioned above, it is orthogonal to S_{f}.

Finally, as follows from Theorem 3, for d in the sequence in (1),

$$
\sum_{r} 1 \sim \frac{d}{2} x \quad(x \rightarrow \infty)
$$

where r runs through all the values of $\rho(\Gamma)<x$.

REFERENCES

1. A. F. Beardon, The Geometry of Discrete Groups. Springer-Verlag, New York, 1983.
2. B. Fine, Fuchsian subgroups of the Picard group, Can. J. Math. 28(1976), 481-486.
3. \qquad Fuchsian embeddings in the Bianchi groups, Can. J. Math. 39(1987), 1434-1445.
4. C. Maclachlan, Fuchsian subgroups of the groups $\mathrm{PSL}_{2}\left(\mathrm{O}_{d}\right)$. In Durham Conference on Hyperbolic Geometry, London Math. Soc. Lecture Notes Series no. 112 (Cambridge University Press, 1986), 305-311.
5.C. Maclachlan and A. W. Reid, Commensurability classes of arithmetic, Kleinian groups and their Fuchsian subgroups, Math. Proc. Camb. Phil. Soc. 102(1987), 251-257.
5. Parametrizing Fuchsian subgroups of the Bianchi groups, preprint.
6. G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, C. R. Acad. Sci. Paris Ser. I Math. (10)304(1987), 249-253.
7. Discrete subgroups and ergodic theory. In Number Theory, trace formulas and discrete groups, symposium in honor of Atle Selberg held at the University of Oslo, Oslo, June 14-20, 1987. Edited by Karl Egil Aubert, Enrico Bombieri and Dorian Goldfeld, Academic Press, Inc., Boston, MA, 1989, 377398.
8. R. G. Swan, Generators and relations for certain special linear groups, Adv. in Math. 6(1971), 1-77.
9. L. Ya. Vulakh, On minima of rational indefinite Hermitian forms,, Ann. N. Y. Acad. Sci. 410(1983), 99-106.
10. __ On minima of rational indefinite quadratic forms, J. Number Theory 21(1985), 275-285.
11. \qquad On classification of arithmetic Fuchsian subgroups of PSL(2,o), preprint.

Department of Mathematics
The Cooper Union
51 Astor Place
New York, NY
USA 10003

