CLASSIFICATION OF MAXIMAL FUCHSIAN SUBSGROUPS OF SOME BIANCHI GROUPS

L. YA. VULAKH

ABSTRACT. Let d = 1, 2, or p, prime $p \equiv 3 \pmod{4}$. Let O_d be the ring of integers of an imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$. A complete classification of conjugacy classes of maximal non-elementary Fuchsian subgroups of PSL(2, O_d) in PGL(2, O_d) is given.

1. Introduction. Let d be a positive square free integer. Let O_d be the ring of integers in $\mathbb{Q}(\sqrt{-d})$. The groups $\mathrm{PSL}(2, O_d)$ are called collectively the *Bianchi groups*. The group $\mathrm{PSL}(2, O_d)$ acts by linear fractional transformations on the complex plane C. A Fuchsian subgroup of $\mathrm{PSL}(2, O_d)$ fixes a circle or straight line C and the two components of \mathbb{C}/C . It is *non-elementary* if its limit set on C has more than two points. A Fuchsian subgroup of $\mathrm{PSL}(2, O_d)$ is *maximal* if it is not a subgroup of any other Fuchsian subgroup of $\mathrm{PSL}(2, O_d)$. Fuchsian subgroups has been investigated (see e.g. Fine [2,3], Maclachlan [4], Maclachlan and Reid [5,6]). In [4], for all values of d, C. Maclachlan showed that Fuchsian subgroups, and that for each d they are distributed in infinitely many commensurability classes. A maximal non-elementary Fuchsian subgroup of $\mathrm{PSL}(2, O_d)$ can be treated as the $\mathrm{PSL}(2, O_d)$ -unit group of an indefinite rational binary Hermitian form in $\mathrm{PSL}(2, O_d)$. Here, for

(1)
$$d = 1, 2, \text{ or } p, \text{ prime } p \equiv 3 \pmod{4},$$

complete classification of the conjugacy classes of maximal non-elementary Fuchsian subgroups of $PSL(2, O_d)$ in $PGL(2, O_d)$ is given. This is a simple consequence of the classification of rational indefinite binary Hermitian forms obtained in [10].

For d = 1, C. Maclachlan and A. W. Reid [6] also solved the problem of classification of maximal non-elementary Fuchsian subgroups of the Picard group. Their results are more detailed. They found the covolumes and indicated how to find the signatures of these subgroups. It is shown in [12] that, for any square-free d as positive as negative, the approach of the present paper can be applied to classify maximal arithmetic Fuchsian subgroups of PSL(2, o) where o is an order in $\mathbb{Q}(\sqrt{d})$.

The author thanks the referee for his useful remarks which led to an improvement of this work.

Received by the editors October 27, 1989; revised: March 9, 1990.

AMS subject classification: Primary: 11F06; secondary 20H10, 11H50.

[©] Canadian Mathematical Society 1991.

2. Hermitian forms. Let $a, c \in \mathbf{R}, b \in \mathbf{C}, F = \begin{vmatrix} a & b \\ \bar{b} & c \end{vmatrix}, x = (z, w) \in \mathbf{C}^2, x^* = (\bar{z}, \bar{w})^T$. The binary form

(2)
$$f(x) = f(z, w) = xFx$$

is called a *Hermitian form*. Here we shall only be concerned with indefinite Hermitian forms, that is with forms whose determinants

(3)
$$\det(F) = -\Delta = ac - |b|^2 < 0$$

Any indefinite Hermitian form f defines the unique circle or straight line C with equation

(4)
$$f(z,1) = a|z|^2 + b\bar{z} + \bar{b}z + c = 0.$$

It is a circle if and only if $a \neq 0$, in which case the radius of C

(5)
$$r(\mathcal{C}) = |a|^{-1} |\det F|^{1/2} = |a|^{-1} \Delta^{1/2}.$$

Below, straight lines are considered as circles of infinite radius.

Conversely, given a circle C with equation g(z) = 0. Let $w \neq 0$. A form $f(z, w) = k|w|^2g(z/w)$ is an indefinite Hermitian form for any nonzero real k. Thus, we have obtained a one-to-one correspondence between the set of circles on the complex plane C and the set of all nonzero real multiples of indefinite Hermitian forms.

Two Hermitian forms are said to be *equivalent* $(f \sim f')$ if there is a matrix $T \in$ PGL(2, O_d) such that f'(x) = f(xT). In that case, if f(z, 1) = 0 and f'(z, 1) = 0 are the equations of C' and C correspondingly then $C' = (T')^{-1}(C)$, with T defined as above. On the other hand, if $C' = (T')^{-1}(C)$, $T \in$ PGL(2, O_d), and the equations of C' and C are f'(z, 1) = 0 and f(z, 1) = 0, then there is a nonzero real k such that f'(x) = kf(xT), hence $f' \sim kf$.

A Hermitian form is said to be *rational* if $f(z, w) \in \mathbf{Q}$ for all $z, w \in O_d$. It can be easily shown that f is rational if and only if

(6)
$$a, c \in \mathbf{Q}, \quad b \in \mathbf{Q}(\sqrt{-d}).$$

We shall call a circle *rational* if its equation can be written in the form f(z, 1) = 0 where f is a rational Hermitian form. One can verify that, for a rational circle C, C' = T(C) is rational for any $T \in PGL(2, O_d)$. Therefore, there is a one-to-one correspondence between the PGL(2, O_d)-orbits of rational circles and PGL(2, O_d)-equivalency classes of nonzero real multiples of rational indefinite Hermitian forms.

Let f be a Hermitian form. We denote

(7)
$$\mu(f) = \inf |f(z, w)|,$$

where the infimum is taken over all $z, w \in O_d$ such that $f(z, w) \neq 0$. It was shown by Margulis [7,8] that for any $\epsilon > 0$ and any indefinite quadratic form Q in n > 2 variables, which is not a multiple of an integral form, there is a nonzero vector $x \in \mathbb{Z}^n$ such that $0 < |Q(x)| < \epsilon$.

Let $\{1, \omega\}$ be the standard basis of O_d . The quaternary form $Q(x) = f(x_1 + \omega x_2, x_3 + \omega x_4)$ is indefinite if and only if f(z, w) is an indefinite Hermitian form. The theorem of Margulis implies the following.

LEMMA 1. Let f be a binary indefinite Hermitian form. Then $\mu(f) > 0$ if and only if f is a nonzero multiple of a rational Hermitian form.

For a Hermitian form f, the number

(8)
$$\nu(f) = \mu(f) |\Delta|^{-1/2}$$

is said to be the *normalized nonzero minimum* of f or, simply, *nonzero minimum* of f. Since the sets of values of two equivalent forms f and f' coincide, for any nonzero real k,

(9)
$$\nu(f') = \nu(kf).$$

Denote the set of all binary indefinite Hermitian forms by H_d . The set $S_d = \{\nu(f) \mid f \in H_d\}$ is called the *spectrum of minima* of binary indefinite Hermitian forms over O_d . As Lemma 1 shows, if $\nu(f) \neq 0$ and $\nu(f) \in S_d$, then f is a multiple of a rational form. For any d, the spectrum S_d is discrete [11] (i.e., for any given $\delta > 0$, there is only a finite number of $\nu(f) \in S_d$ such that $\nu(f) > \delta$). The spectrum S_d was completely described in [10] for d = 1, 2, or p, prime $p \equiv 3 \pmod{4}$. The author has also obtained a complete description of S_d for any d (as positive, as negative). The results will be published elsewhere.

3. Fuchsian subgroups. Upper half-3-space $H^3 = \{(z,t), z \in \mathbb{C}, t > 0\}$ with metric $t^{-2}(|dz|^2 + dt^2)$ can be used as a model for hyperbolic 3-space. The group of all orientation-preserving isometries of H^3 can be identified with PSL(2, C) (see e.g. [4]). The groups PSL(2, O_d) are discrete subgroups of PSL(2, C). A Fuchsian subgroup of $G = PSL(2, O_d)$ stabilizing the circle C with equation f(z, 1) = 0 in C stabilizes the hemisphere S_f in H^3 with equation $f(z, 1) + at^2 = 0$. Here f(z, w) is an indefinite Hermitian form. The group $\Gamma = \text{Stab}(C, G)$ can be identified with the group

(10)
$$\mathsf{PSU}(f, O_d) = \{ T \in G, \mathsf{TFT}^* = \pm F \}$$

where F is the matrix of the Hermitian form f. Let

(11)
$$\rho(\Gamma) = \sup r(T(\mathcal{C}))$$

where the supremum is taken over all $T \in G$ such that $r(T(C)) < \infty$. It is clear that $\rho(\Gamma)$ is constant on each conjugacy class of Fuchsian subgroups of G in PGL(2, O_d).

LEMMA 2 (MACLACHLAN [4], P. 306–307). A circle C in the complex plane C is rational if and only if its stabilizer Γ is a non-elementary Fuchsian subgroup of G.

As follows from (5), (7), and (11),

(12)
$$\rho(\Gamma) = 1/\nu(f),$$

provided there are $z, w \in O_d$, g.c.d. (z, w) = 1, such that $\mu(f) = |f(z, w)|$. As was shown in [10], $\mu(f) = 1$ for any integral primitive indefinite Hermitian form if d belongs to the sequence in (1). If f is integral, the g.c.d. (z, w) = 1 for any solution of the equation f(z, w) = 1 in O_d . Hence, formula (12) is true for any f in the case under consideration, and Lemma 1 is equivalent to the following.

L. YA. VULAKH

THEOREM 1. Let d = 1, 2, or p, prime $p \equiv 3 \pmod{4}$. Let C be a circle or a straight line in the complex plane. The Fuchsian group $\Gamma = \text{Stab}(C, \text{PSL}(2, O_d))$ is non-elementary if and only if $\rho(\Gamma) < \infty$.

For a binary rational Hermitian form f, the equation f(z, w) = 0 has a solution in O_d if and only if $\Delta(f) = |\alpha|^2$ for some $\alpha \in \mathbb{Q}(\sqrt{-d})$ [10]. By (5), the circle C with equation f(z, 1) = 0 contains a point in $\mathbb{Q}(\sqrt{-d})$ if and only if $r(C)^2$ is the norm of some element of the field $\mathbb{Q}(\sqrt{-d})$.

THEOREM 2. Let d = 1, 2, or p, prime $p \equiv 3 \pmod{4}$. A maximal non-elementary Fuchsian subgroup Γ of PSL(2, O_d) is non-cocompact if and only if $\rho(\Gamma) = |\alpha|$ for some $\alpha \in \mathbb{Q}(\sqrt{-d})$.

REMARK. In [12], for any d, $\rho(\Gamma)$ is defined to be equal to $1/\nu(f)$. With this definition, the assumption that d is as in (1) can be omitted in the statements of Theorem 1 and 2.

PROOF. Let f be a rational Hermitian form with matrix F. If f is anisotropic, the circle C with equation f(z, 1) = 0 contains no point in $\mathbb{Q}(\sqrt{-d})$. Hence, Γ contains no parabolic element and, therefore, is cocompact.

Let

(13)
$$f(z,w) = a|z|^2 + b\bar{z}w + \bar{b}z\bar{w} + c|w|^2 = 0,$$

for some $z, w \in O_d$, which can be written in the form

(14)
$$\bar{z}A + \bar{w}B = 0.$$

where

(15)
$$A = az + bw, \quad B = bz + cw.$$

For any $n \in O_d$ satisfying the equation

(16)
$$\operatorname{Re}(nwA) = 0$$

or, what is the same, the equation $\operatorname{Re}(nzB) = 0$, a tedious calculation shows that matrix

$$T = \begin{vmatrix} nzw + 1 & nw^2 \\ -nz^2 & -nzw + 1 \end{vmatrix},$$

for which z/w is a fixed point, satisfies the condition $TFT^* = F$. Thus, T belongs to the group Γ which is, therefore, non-cocompact.

Lemma 2 shows that the problem of classification of the conjugacy classes of maximal non-elementary Fuchsian subgroups of G in PGL(2, O_d) is equivalent to the problem of classification of PGL(2, O_d)-equivalency classes of multiples of rational indefinite Hermitian forms. The last problem was partly solved in [10]. Denote the discriminant of the field $\mathbf{Q}(\sqrt{-d})$ by D. Theorem 1 of [10] implies the following.

THEOREM 3. Let d = 1, 2, or p, prime $p \equiv 3 \pmod{4}$. A maximal non-elementary Fuchsian subgroup of PSL(2, O_d) is conjugate in PGL(2, O_d) to one and only one of the groups PSU($f_{\ell,m,c}O_d$). The binary rational indefinite Hermitian forms $f_{\ell,m,c}$ are defined by the following conditions:

. .

$$a = 1, \quad b = D^{-1/2}(m+\omega \ell), \quad \ell, m, c \in \mathbb{Z},$$

$$0 \le m < d/2, \quad \ell = 0, \quad if d \equiv 3 \pmod{4},$$

$$m = 0, 1, \text{ or } 2, \quad \ell = 0 \text{ or } 1, \quad if d = 2,$$

$$m + i\ell = 0, 1, \text{ or } (1+i), \quad if d = 1.$$

COROLLARY. Let d belong to the sequence in (1). Two maximal non-elementary Fuchsian subgroups Γ and Γ' of PSL(2, O_d) are conjugate in PGL(2, O_d) if and only if $\rho(\Gamma) = \rho(\Gamma')$.

REMARKS. Let C be a rational circle in C with equation (4). Let S_f be the hemisphere in H^3 on C. S_f is a hyperbolic plane under the restriction of the hyperbolic metric in H^3 . The Fuchsian group $\Gamma = \text{Stab}(C, \text{PSL}(2, O_d))$ acts discontinuously on S_f . We shall show that the region in S_f satisfying the inequalities (cf. Swan [9])

(17)
$$|\mu z - \lambda|^2 + |\mu|^2 t^2 > 1$$

for all $(\lambda \mu) = (1 \ 0) T^t$, $T \in \Gamma$, is the Dirichlet polygon D(e) for Γ with center e = (-b/a, r(C)) (see [1], p. 226, for the definition of D(e)). Indeed, let $T \in \Gamma$ be fixed. Let λ / μ and e_T be the images of ∞ and e under transformation T in H^3 . Since the isometric circle of T^{-1} in **C** is $|\mu z - \lambda| = 1$, hemisphere $S(\lambda / \mu)$, the boundary in (17), is orthogonal to S_f . λ / μ is the reflection of ∞ in $S(\lambda / \mu)$. Since the feet of the perpendiculars from ∞ and μ / λ to S_f are e and e_T respectively, e_T is the reflection of e in $S(\lambda / \mu)$. Thus, for x in S_f , the inequality (17) is reduced to $d(x, e_T) > d(x, e)$ where d(x, y) is the distance between points x and y in the hyperbolic plane S_f .

Since the region t > 1 satisfies (17) for any pair $\mu, \lambda \in O_d$, the circle t > 1 in S_f belongs to D(e). The area of this circle equals $2\pi (r(C) - 1)$. Thus, we have

Area
$$(S_f / \Gamma) > 2\pi(\rho(\Gamma) - 1)$$
.

Let N(D) denote the number of sides of the polygon D(e). Then

$$N(D) > \pi \rho(\Gamma),$$

since the radius of any hemisphere, the boundary in (17), is less than or equal to 1 and, as was mentioned above, it is orthogonal to S_f .

Finally, as follows from Theorem 3, for d in the sequence in (1),

$$\sum_{r} 1 \sim \frac{d}{2} x \quad (x \to \infty)$$

where *r* runs through all the values of $\rho(\Gamma) < x$.

L. YA. VULAKH

REFERENCES

- 1. A. F. Beardon, The Geometry of Discrete Groups. Springer-Verlag, New York, 1983.
- 2. B. Fine, Fuchsian subgroups of the Picard group, Can. J. Math. 28(1976), 481-486.
- 3. _____, Fuchsian embeddings in the Bianchi groups, Can. J. Math. 39(1987), 1434-1445.
- 4. C. Maclachlan, Fuchsian subgroups of the groups PSL₂(O_d). In Durham Conference on Hyperbolic Geometry, London Math. Soc. Lecture Notes Series no. 112 (Cambridge University Press, 1986), 305–311.
- 5. C. Maclachlan and A. W. Reid, Commensurability classes of arithmetic, Kleinian groups and their Fuchsian subgroups, Math. Proc. Camb. Phil. Soc. 102(1987), 251-257.
- 6. _____, Parametrizing Fuchsian subgroups of the Bianchi groups, preprint.
- 7. G. A. Margulis, Indefinite quadratic forms and unipotent flows on homogeneous spaces, C. R. Acad. Sci. Paris Ser. I Math. (10)304(1987), 249-253.
- Discrete subgroups and ergodic theory. In Number Theory, trace formulas and discrete groups, symposium in honor of Atle Selberg held at the University of Oslo, Oslo, June 14-20, 1987. Edited by Karl Egil Aubert, Enrico Bombieri and Dorian Goldfeld, Academic Press, Inc., Boston, MA, 1989, 377– 398.
- 9. R. G. Swan, Generators and relations for certain special linear groups, Adv. in Math. 6(1971), 1-77.
- 10. L. Ya. Vulakh, On minima of rational indefinite Hermitian forms, Ann. N. Y. Acad. Sci. 410(1983), 99-106.
- 11. _____, On minima of rational indefinite quadratic forms, J. Number Theory 21(1985), 275–285.
- 12. _____, On classification of arithmetic Fuchsian subgroups of PSL(2, o), preprint.

Department of Mathematics The Cooper Union 51 Astor Place New York, NY USA 10003