ON THE EXISTENCE OF RINGS *R* WITH *R* ISOMORPHIC TO RFM(*R*)

GENE D. ABRAMS

(Received 17 April 1985)

Communicated by R. Lidl

Abstract

We construct a class of associative rings with the property that, for each ring R in the class, $R \cong \operatorname{End}_{R} R^{(N)}$).

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 42, 16 A 65.

There are many well-known examples of unital rings R such that $R \cong M_n(R)$ for some positive integer n > 1, where $M_n(R)$ denotes the $n \times n$ matrix ring over R; for instance, any ring without WIBN (see [2]) has this property. In general, such rings are constructed by first exhibiting an isomorphism between the left modules $_RR$ and $_RR^n$, and then inducing an isomorphism between the corresponding endomorphism rings: $R \cong \operatorname{End}(_RR) \cong \operatorname{End}(_RR^n) \cong M_n(R)$.

In this article we investigate an infinite analog of this phenomenon. Namely, we ask: do there exist unital rings R such that $R \cong \operatorname{End}_{R}(R^{(N)})$? If $\operatorname{RFM}(R)$ denotes the ring of $\mathbb{N} \times \mathbb{N}$ row-finite matrices over R, this question can be rephrased as follows: do there exist unital rings R such that $R \cong \operatorname{RFM}(R)$? We answer this question in the affirmative. Note, of course, that such an isomorphism cannot be induced by an isomorphism of the underlying modules, since $_{R}R$ and $_{R}R^{(\mathbb{N})}$ are never isomorphic (the former is finitely generated, whereas the latter is not).

The affirmative answer to the above question becomes somewhat more intriguing in light of the following "non-solution". It is perhaps tempting to claim that $RFM(S) \cong RFM(RFM(S))$ for any unital S; if so, then R = RFM(S) would be

^{© 1987} Australian Mathematical Society 0263-6115/87 \$A2.00 + 0.00

a solution. However, these rings are NOT isomorphic in general. In fact, by [1] we have $RFM(S) \cong RFM(RFM(S))$ if and only if S and RFM(S) are Morita equivalent, a property which obviously does not hold for arbitrary S. This observation implies that some modification of the results in [2, Section 6] is required.

PROPOSITION. There exist unital rings R with $R \cong \operatorname{RFM}(R)$.

PROOF. Let S be any unital ring. Then, as left S-modules, ${}_{S}(S^{(N)})^{(N)} \cong {}_{S}S^{(N)}$; this induces a ring isomorphism $\overline{\mu}$: End $({}_{S}(S^{(N)})^{(N)}) \to \text{End}({}_{S}S^{(N)})$. Using the usual matrix representation for these rings, we have the isomorphism μ : RCM(RFM(S)) \to RFM(S), where RCM denotes "row-convergent $\mathbb{N} \times \mathbb{N}$ matrices" (see [3, Theorem 106.1]). Let μ_1 denote the restriction of μ to RFM(RFM(S)), and let S_1 denote its image. Let μ_2 denote the restriction of μ_1 to RFM(S₁), and let S_2 denote its image. Continuing in this way, we produce the following diagram of isomorphisms and inclusion

Let T_1 denote $\bigcap_{\omega} \operatorname{RFM}(S_k)$, and let T_2 denote $\bigcap_{\omega} S_k$ (where $S_0 = S$). Note that each ring in the diagram contains the identity, whence T_1 and T_2 are unital.

It is easy to show that $T_1 = \operatorname{RFM}(T_2)$; that is, $\bigcap_{\omega} \operatorname{RFM}(S_k) = \operatorname{RFM}(\bigcap_{\omega} S_k)$. Now define $\psi: T_1 \to T_2$ by $\psi(X) = \mu_k(X)$ for any k. Then this map is well-defined (since the μ_k are defined by restriction), and it is easily shown to be a ring isomorphism by noting that all the μ_k are isomorphisms and that the horizontal sequences are ordered by inclusion. The construction is now completed by observing that $T_1 \cong T_2$, whence $\operatorname{RFM}(T_1) \cong \operatorname{RFM}(T_2) = T_1$.

At this point one may reasonably hope to obtain a more precise description of the subring T_2 of RFM(S) constructed above. Unfortunately, those coordinates in which elements of T_2 are allowed to have nonzero entries arise in a very unnatural, recursive way; such a coordinatewise description turns out to be quite unenlightening and is therefore omitted.

We conclude by noting a motivation for this construction. In [2, Section 6] Franzsen and Schultz investigate the following situation: let $_RM$ be free, let $\varepsilon = \varepsilon^2 \in \operatorname{End}(_RM)$ with $_RM\varepsilon \cong _RR$, and let α be an automorphism of $\operatorname{End}(_RM)$ such that $_RM\alpha(\varepsilon)$ is free, and of countably infinite rank. One may then conclude that $R \cong \operatorname{RFM}(R)$.

130

131

Using the aforementioned result of Camillo, we see that the example given in [2] of a ring R with $R \cong \operatorname{RFM}(R)$ is invalid; in particular, $\operatorname{RFM}(\mathbb{Z}) \not\cong \operatorname{RFM}(\operatorname{RFM}(\mathbb{Z}))$. However, using the proof of the theorem in [1], one can show that if α is any automorphism of $\operatorname{End}(_RM)$ with $_RM$ free, and if $\varepsilon = \varepsilon^2 \in \operatorname{End}(_RM)$ with $_RM\varepsilon$ finitely generated, then $_RM\alpha(\varepsilon)$ is finitely generated as well. Thus the situation described above in fact cannot occur. This then renders moot the need for Franzsen and Schultz to produce a ring with $R \cong \operatorname{RFM}(R)$, while leaving unanswered the question of the existence of such rings; further, it demonstrates that the isomorphism constructed in this article cannot be induced by an automorphism of RFM(S).

References

- V. Camillo, 'Morita equivalence and infinite matrix rings', Proc. Amer. Math. Soc. 90 (1984), 186-188.
- [2] W. Franzsen and P. Schultz, 'The endomorphism ring of a locally free module', J. Austral. Math. Soc. (Series A) 35 (1983), 308-326.
- [3] L. Fuchs, Infinite Abelian Groups, Vol. II (Series in Pure and Applied Mathematics, Academic Press, New York and London, 1973).

Department of Mathematics University of Colorado Colorado Springs, Colorado 80933 U.S.A.