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1. Introduction

This is a sequel to the author's (Phatarfod [9]) paper in which an analogue of
Wald's Fundamental Identity (F.I.) for random variables defined on a Markov
chain with a finite number of states was derived. From it the sampling properties
of sequential tests of simple hypotheses about the parameters occurring in the
transition probabilities were obtained. In this paper we consider the case of con-
tinuous Markovian variables. We restrict our attention to the practically important
case of a Normal Markov sequence X0,X1,X2,- • • such that

(1.1) Xr-m = p(Xr^-m) + Yr, (\p\ < 1, r = 1, 2, 3, • • •)

the Yr being independent normal variables with mean zero and variance a2.
For such a sequence of observations, constructing an S.P.R.T. of the simple

hypothesis m = m0 against the simple alternative m = ml when a2 and p are known
and deriving its sampling properties present no particular problems, since the
logarithm of the likelihood ratio can be written as

where
p(X0,X1,X2,--;Xn\m0)

+

2a2 a
2

The Zr's being mutually independent random variables, Wald's theory of sequential
analysis of independent observations holds. The test is carried out by plotting
£"= 1 (Xr-pXr_t) against n. The same is true of a sequential test of a2 = a%
against a2 = a\ when m and p are known.

However, the test one would normally like to perform for the sequence Xo,
X~i,X2,~ • • is about the parameter p. Consider, first, the case of the simple
hypothesis H0:p = p0 (usually p0 = 0) against H^ : p = pt (pt > p0, say), with
known values of m and a2, (here taken to be 0 and 1 respectively). We will assume
that Xo has the stationary distribution of the sequence. We then have the S.P.R.T.
as follows: Continue sampling while
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(1.2) log B < Z0+Zx + • • • + Zn < log A,

where

4
1 - P o 2

Z, = ( p ^

and accept Ho or ii^ according as the left-hand or the right-hand inequality is the
first not satisfied. Relation (1.2) reduces to

__ __ r-1
/ ) , - « « I 1 — /)? I r= 1 I 1

(1.4)
<

Pi-PoL 1-Pi

and the test is carried out by plotting £" = 1 Xr-tXr against X?=2-^-I- The
constants A and B are given by, using Wald's [12] argument (which remains valid
even if the observations are not independent), A ~ (1—s^/eo, B ~ ^/( l — e0),
where e0, ^ are the probabilities of the first and second kinds of error respectively.

The sequence {Zr} is no longer independent, and to derive the O.C. and A.S.N.
functions of the test one needs an analogue of Wald's Fundamental Identity for
the sequence {Zr} defined on a Markov sequence {Xr}. An examination of the
proof of the analogue for finite-state Markov chains given by Phatarfod [9],
shows that the following generalization holds:

Let Xo, Xt, X2, • • • be a Markov chain (discrete or continuous state space),
on which is defined a sequence of random variables {Zr}, Zr = h(Xr-1, Xr). Let
Ss denote the cumulative sum Z0+Zl+Z2+ • • • +ZN, and let n be the least
positive integer such that 5^ does not lie in the open interval (b, a), (b < 0, a > 0).
If the m.g.f. (for real 0 in an interval (0t, 02) around zero) of SN can be written for
large N as

(1.5) MN(9) ~ C(0)A?(0),

with Xt(0) = 1, AV(O) > A;(0)2, then

(1.6) £[exp(0SB)A7"(^)^(^l^n)] = C(0),

for all real 6 in (9±, 92) such that ^(0) ^ 1. (The functions C(0) and d(9) have the
relation E[d(9\X0)] = C{9).)

The proof is identical to the proof given in the earlier paper. The only require-
ment needed is that P[n > N] -> 0 as N -* oo. This follows automatically, because
(1.5) implies that SN is asymptotically normal with mean Nm = NX\(0) and
variance JVer2 = JVfA'/^-lUO)2], and hence
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P[n > JV] ̂  Pr [a < SN < b]

(^z^\ -& (b-

-» 0 as N ->• oo.

A considerable amount of work has been done to establish conditions under
which result (1.5) holds. The problem is essentially of generalizing results of Perron
and Frobenius for non-negative matrices. The earliest such generalization seems to
be due to Jentzsch [6] for integral operators with a positive kernel. More recently
results have been given by Krein and Rutman [8], Birkhoff [1], Karlin [7], Chun
[2], Harris [5] and Vere-Jones [11]. However, it is not immediately known how to
determine the quantity ^(9), the 'largest eigen value', and it seems to the present
author, that this can be determined only by ad hoc methods.

As in the case of the analogue for finite state Markov chains, Xt(9) takes the
role of the m.g.f. M(9) in the independence case, and has the usual properties e.g.
Ai(O) = E(Z) etc. Moreover, for the case considered above, it is found that ^(6)
is a convex function of 9 having a minima near zero. This gives a unique non-zero
real solution 90 for ^(9) = 1.

From the Identity (1.6), one can now readily obtain the usual results for the
random walk process {SN}. Unfortunately, except in special cases, only approxi-
mate expressions can be obtained. This is due to the fact that we ignore the excess
of Sn over the boundaries, and the terms C(9) and d(9\Xn) which depend on the
distribution of A"o, and the value of Xn respectively.

Putting 9 = 90 (whenever such a value exists) in (1.6), the probability of the
random walk terminating at b before a is given by,

ea6o — l

j
The average duration of the random walk process is given by (in a manner similar
to that in the case of finite state Markov chains (Phatarfod [10]),

(1.8) E{n)~hI^^

In § 2 we show that (1.5) holds for the Markov chain (1.1) with Zr's as in (1.3).
The O.C. and A.S.N. functions of the test are obtained from (1.7) and (1.8)
respectively. In § 3 we consider a Cox-type composite hypothesis test of Ho : p =
p0 against Hx = p = px when values of m and a2 are not known.

2. Test of the simple hypothesis p = p0

Consider the sequence X0,Xlt X2," ' given by

Xr = pXr^ + Yr (\p\ < 1 , r= 1 , 2 , 3 , • • • )
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the Yr being independent normal variables with mean zero and variance unity.
With the Zr's as defined in (1.3), and SN = ZQ + Z1 + Z2+ • • • +ZN, we

have for real 6,

MN{6) = £[exp(0SN)] = C fexp {-
r = l r = l

xdx0 dxi • • • dxN,
where

/1_n2\fl/2 (\—n2\*

The expression in the square brackets in the integrand is a quadratic form in
x0, xt, x2, • •', xN and hence, MN{6) may be written as (for values of 6 such that

is positive definite),

where AN+1 = (fly), the matrix of the quadratic form is given by

aa = l(i = 0, N), au = a(i # 0, N); (i,j = 0,1, 2, • • •, N)

a,j = b(|i— j \ = 1), a,-; = 0 otherwise.

To determine |^4N+11, we note

\AN+1\ = \DN\-b2\DN^\,

where D is a matrix similar to A, with 'a' instead of 1 as the element in the first row
and column. For \DN\ we have

(2.2) |Dw| = a|Dw_1|-62|Dff_2|,

with

(2.3) 1^1 = 1, \D2\ = a-b2.

From (2.2) and (2.3) we obtain,

(2.4) \DN\ = - J — [(1 - f e K -(1 -AO/£1,
(M1-M2)

and hence

(2.5) ^ V

where / i t , ju2 are the roots of the equation x2 — ax + b2 = 0; we take
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The following properties of fii(0), fi2(9) can be easily verified:

(1) Hi(0), Hz(O) are real and unequal for all 0 in (61, 02) where

o), 02 (>o).
(Pi-Po)(2-Po-Pi)

a r e r e a l and equal for 9 = 0l5 02.
(2) a > 0 for all 9 in (0t, 92), and hence ̂ (0) > 0, n2(9) = 0, ^(0) > /z2(0)

forall0in(01,02).
(3) ^i(0) is concave and n2{9) is convex in (0ls 02).
(4) The equation ^(0) = 1 has two solutions 0 = 0 and

Pi-Po

unless \p — po — Pi\ > 1, in which case 0O = 0 is the only solution of p-i(0) = 1.
For | p - P o - P i l = 1, the matrix AN+1 is singular when 0 = 0O.

We will restrict 0 in (0X, 02) and the values of p such that [p — p 0 — p t | < 1.
For such a range of values for 0 and p, we have p-i(0), H2{9) real, Hi(9) > 0,
0 = n2{9) < 1, /*i(0) > !*2{9), and a non-zero real solution 0O of ^ ( 0 ) = 1,
except when p = (pg + p^/2.

From (2.4) and (2.5) it can be seen that \Dr\ > 0 (r = 1, 2, • • •, N) and
|^4N+1| > 0, and hence the matrix AN+l is positive definite. Further, from the
properties of ^t(0), ju2(0) given above, we have from (2.1), (2.5) as N -> co,

4
-Po

where

It can be easily seen that (A"(0) - Ai (0)2) > 0, and hence the Identity (1.6) and
therefore results (1.7), (1.8) apply. We have the O.C. function as, (putting a =
log A, b = log B),

where

P1-P0

The limitation on the values of p is not of serious consequence, as the range of
permissible values of p include the interval (p0, px) and beyond. It is interesting
to note that the O.C. curve is identical to that of a test for the mean of a normal
distribution in the independent observations case.
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For the A.S.N. we have,

E ( n ) = 2{L(p) log B+(1-L(p)) log A]

Note

£,(Z) ^ [(Po
2(1-p )

For p = (po + Pi)A a formula can be obtained by differentiating (1.6) twice
w.r.t. '0' and putting 0 = 0. Also since 0(p) and L(p) are monotonic functions of
p, the test given above can be used to test composite hypotheses of the form
p fz p' against p > p', where m and a2 are known.

3. Test of composite hypothesis p = p0

We will now consider the general model given by (1.1) and derive a Cox-type
(Cox [3]) test of the composite hypothesis Ho : p = p0 against Hx: p = px

(Pi > Po)-
The likelihood of the observations Xo, Xt, X2, • • ; Xn assuming Xo has the

stationary distribution of the sequence is given by

p(x0, x t , • • •, xn) = const-exp - — [ ( x o - m ) 2 + ( x n - m ) 2 + ( l + p 2 )
I 2<T

r = l

Writing

s2 = K*o-*)2+l(
r = l

and

r = l

the expression in the square brackets above can be written as

The quantities x0 , xn, x, S2 and rn, therefore form a set of jointly sufficient statistics
for the parameters m, a2 and p. For large n we may ignore x0 and xB and conclude
that x, S2 and rn are asymptotically jointly sufficient for m, a2 and p. Moreover, the
distribution of rn as given by Daniels [4] is independent of m and a2. Furthermore
the transformation yt = axt + b ((/ = 0, • • • ,«) satisfies condition (iv) of Cox'
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Theorem. Hence a test can be constructed based on the 'observations' r2, r3, • • •,
rn. The asymptotic distribution of rn as given by Daniels has the p.d.f. (ignoring
terms of order 0{n~*)),

where

The test can be written: Continue sampling while

(3.2) log B < log L ( r " H < log A.

Substituting L(rn) from (3.1) in (3.2), using Stirling's approximation, and
ignoring terms O(n~2), the middle term in (3.2) reduces to

log

+

where

Nt n + 2 , ( , )
1 - P i

For fairly large n, we have (3.2) approximately as

>I - P Q ) ( 1 +P0P1)
}

2

from which acceptance numbers r* and rejection numbers r~ may be calculated.
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