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1. Let L^"\x) and Hn(x) be the «th Laguerre and Hermite polynomials, respectively.
Two well-known bilinear generating formulas are the Hardy-Hille formula [1, p. 101]

(1.1)

and the Mehler formula [1, p. 377]

This suggests the following problem. Consider the equation

I yJnWUyV =f(t)e<*k+>"Mg{xyc(t)}, (1.3)
n = 0

where fn(x) is a polynomial in x of degree n with highest coefficient equal to 1,

/ (0= YAJ", g(t)= f B.I-, (1.5)
n = O 0

Ao = Bo = 1. We shall also assume that ak = 1 and yo>'i}'2 ••• y * - i ^ 0- We seek all sets of
polynomials {/„(*)} which satisfy (1.3), (1.4) and (1.5).

We shall prove the following

THEOREM. The only solution of the functional equation (1.3), such that (1.4) and(\.S) hold,
is given by

fs+nk(x) = n W V l £ + 2 l / * ) ( * * M ) (̂  = 0 , 1 , . . . . k-1),

a, ^ are arbitrary constants.
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2. Proof of the theorem. If we replace y by \\y and t by ty in (1.3) and then put y = 0, we

get

fynfn(.xV = e'gixtcj. (2.1)
o

This in the same way leads to

f (2-2)
0

Formulas (2.1) and (2.2) give

(2-3)

By differentiating (2.3) s times (0 ̂  s < k), we see that

&\M =*-^' (0£s<fc), (2.4)

so that ynk+s i= 0 for s = 0 , 1 , . . . , k—1. This obviously implies that yn ̂  0 for all n.
Putting y = 0 in (1.3) we get

n=o n\

which yields, on putting x = 0,

n?o^W2 = / (°" (2'6)

From (2.6) we get

(2.7)

On the other hand, if we differentiate (2.5) k times with respect to x, we get

But we have from (2.3)

so that (2.8) becomes

a(t)f(t) = yk I , . (2.9)
n = o n \ { n + l ) l y
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Comparing (2.9) with (2.7) we get

yktf'(t) = ka(t)f(t). (2.10)

In the same way, we obtain from (2.5),

ZfL2kX0)- = ^ ( f l ( O ) V ( O .
o n\ I

which is rewritten as
co **(n + 2)

On the other hand, we see from (2.6) that

(2.12)

tk+1{tl-k/V)V = fc2E , , „ , „ , . , • (2-13)

Now (2.12) and (2.13) give

ylt{f'(t)}2 = 2y2*0/"(0-(fc-D/'(0}/0). (2.14)

Hence

f(t) = {l+Ai*)-'-1, (2.15)

where A and a are constants.
From (2.15) and (2.10) we get

^ (2.16)

Let us next differentiate (1.3) with respect to y and put y = 0. We get

£ ^ k I ) . (2.17)
O

Now if we differentiate (2.17) once with respect to x and put x = 0, we obtain
oo ^nfc+1

(2.18)

on the other hand, if we differentiate (2.17) k +1 times with respect to x and put x = 0, we get
oo A +*(»+!)
E . (2.19)

Comparing (2.19) and (2.18) we get
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Hence
c(t) = c1t(i+Atk)", (2.20)

where y. is a constant.
If we now differentiate (2.9) with respect to t, we get

E , p . (2.21)
o \,n\) y k ( n + 1 )

If we take the kth derivative with respect to x and with respect to y and then put x = y = 0,
we get

^ . l o y T T I W =/(0{c(0}*+^ {«W}2/(0.
Comparing this formula with (2.21), we obtain

vAt{aW(t) + a(t)f'(t)} = kyJ(t){c(t)}k+kckMt)}2f(t)-
This, together with (2.10), yields

<>'(<) = k{c(t)}\ (2.22)

Formulas (2.22), (2.20) and (2.16) require that

Ilk =-2. (2.23)

To determine g (/) we differentiate (1.3) s times with respect to y and put ̂  = 0 to get
00 jS + ltfl

o n\

which itself leads to
oo fS + kn

t)}'. (2.24)

Comparing coefficients of fs+*" we get

Consequently we obtain from (2.2) and (2.26)

; a + l+2s/fc;-£A (2.26)

Putting (2.26), (2.24), (2.20), (2.16), (2.15) in (1.3) we get
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Comparing (2.27) with (1.1) we see that

fs+kn(x) = n! AVZT2"*>(xkM) (0 £ s £ fc-1). (2.28)

Note that y0 = 1, y^ y2, ..., y^.j are arbitrary.
This completes the proof of the theorem.
If k = 1 we see that the only solution of the functional equation

I }
n = 0

where/(/), a(t), g(t), c(t) are defined as before, is essentially (1.1).
In case k = 2 we see that the solution of the functional equation

I vJnWUyy =/(0e(*2+y2M'M*M0} (2.29)
n = 0

is obtained from (1.1) in the following manner:
Denote the right-hand member of (1.1) by Fa(x, y, t). We then exhibit the general solu-

tion of (2.29) by replacing the right member by

where B is a non-zero constant.
The special case a = — ̂  leads to the Mehler formula (1.2). However it is not necessary

to assume a = — •£.
We remark that

f2n(x) = H;Xx2)
and

/2n+1(x)=xL(riV)
with a. arbitrary.

3. Remarks and generalization. It may be of interest to examine the more general problem
of solving the functional equation

S)}, (3.1)

where/„(*), gn(x) are polynomials of exact degree n and highest coefficient equal to 1. Hence
we require

flo = ai = ••• — ak-i = 0, bo = bx = . . . = bk-t = 0 .

If ak = 0 we obtain from (3.1)

which leads to
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Hence

We thus conclude that, if ak = 0, then

/„ = x".

Similar remarks apply in case bk = 0. Since this solution is trivial, we assume that

ak = bk = 1. (3.2)

With (3.2) in mind we get from formula (3.1)

and

which clearly shows that

/„(*) = Qn(x).

Hence the problem is reduced to the previous problem which was treated in § 2.
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