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A Note on Toric Varieties Associated with
Moduli Spaces

James J. Uren

Abstract. In this note we give a brief review of the construction of a toric variety V coming from a

genus g ≥ 2 Riemann surface Σg equipped with a trinion, or pair of pants, decomposition. This was

outlined by J. Hurtubise and L. C. Jeffrey. A. Tyurin used this construction on a certain collection of

trinion decomposed surfaces to produce a variety DMg , the so-called Delzant model of moduli space,

for each genus g. We conclude this note with some basic facts about the moment polytopes of the

varieties V. In particular, we show that the varieties DMg constructed by Tyurin, and claimed to be

smooth, are in fact singular for g ≥ 3.

1 Introduction

1.1 Setting

Let Σg be a compact oriented two manifold of genus g, and suppose that ∂Σg = ∅.
Let M(Σg) be the moduli space of gauge equivalence classes of flat SU (2) con-

nections on Σg . There is a well known identification of M(Σg) with the space

Hom(π1(Σg), SU (2))/SU (2) of conjugacy classes of representations of the funda-

mental group π1(Σg) into SU (2). Additionally, this space admits a symplectic form

Ω (see [1] for the details).

Now, given any simple closed loop C on Σg , we obtain a function fC on the space

Hom(π1(Σg), SU (2))/SU (2), sending a representation class ρ to

(1.1) fC (ρ) =
1
π arccos

(

1
2
tr(ρ([C]))

)

∈ [0, 1],

where [C] is the class of C in π1(Σg). In [3] Jeffrey and Weitsman proved that fC
is a Hamiltonian function for a U (1)-action on a large open dense subset, UC =

f −1
C ((0, 1)), of Hom(π1(Σg), SU (2))/SU (2). Moreover, if C and C ′ are two sim-

ple closed loops in Σg with [C] 6= [C ′], then the functions fC and fC ′ commute

({ fC , fC ′}Ω = 0) and the Hamiltonian flows of fC and fC ′ induce an action of a 2-

torus, U (1) × U (1), on UC ∩ UC ′ ⊆ M(Σg). If a third loop C ′ ′ exists, homotopy

inequivalent to C and C ′, then we obtain a 3-torus action, and we may continue this

process provided that additional curves can be found.

1.2 The Case of a Trinion

As an example, let D be a trinion (a 2-sphere with three disjoint discs deleted) and let

C1, C2, and C3 be the three boundary circles of D. Denote by M(D) the moduli space

of gauge equivalence classes of flat SU (2) connections on D.
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In [3] it was shown that the map

f = ( fC1
, fC2

, fC3
) : M(D) → R

3

ends M(D) bijectively to the set of triples (x1, x2, x3) satisfying the inequalities

x1 + x2 + x3 ≤ 2, x1 + x2 − x3 ≥ 0, x1 − x2 + x3 ≥ 0, −x1 + x2 + x3 ≥ 0.

In other words, the image of f is the tetrahedron in [0, 1]3 whose vertices are (0, 0, 0),
(1, 1, 0), (1, 0, 1), and (0, 1, 1). We will hereafter denote this tetrahedron by P(D).

1.3 Toric Structures Coming from Trinion Decompositions

On Σg , a maximal collection of pairwise disjoint, non-homotopic, simple closed

loops has size 3g − 3. Let C = {C1,C2, . . . ,C3g−3} be such a collection. Such a

set is called a marking of the Riemann surface Σg .
Recall that a trinion decomposition of Σg is a realization of the surface as a union

of 2g − 2 trinions D = {D1, D2, . . . , D2g−2} glued together along their boundary

circles. Given such a decomposition, we obtain a marking of Σg by taking our set C

to be the collection of the 3g − 3 common boundary circles along which the various

trinions in D are joined. On the other hand, it is easy to see that any marking of Σg

gives rise to a trinion decomposition of the surface.

Let us suppose that we are given a particular trinion decomposition of Σg . Let

D = {D1, D2, . . . , D2g−2} be the set of trinions in the decomposition, and let C =

{C1,C2, . . . ,C3g−3} be the corresponding marking of Σg . For each curve Ci ∈ C we

have the function fi = fCi
(cf. equation (1.1) and the set Ui = f −1

i ((0, 1)).) Let

U =
⋂3g−3

i=1 Ui .
We now state, without proof, two key facts from [3, 4].

Proposition 1.1 The marking C determines a 3g−3 dimensional torus K = R
3g−3/Λ

that acts effectively on U , preserving the symplectic form. The lattice Λ has rank 3g − 3

and is spanned by the 3g − 3 standard basis vectors ei in R
3g−3, along with the vectors

g j =
1
2
(e j1

+ e j2
+ e j3

) (for j = 1, 2, . . . , 2g − 2), where C j1
, C j2

, and C j3
are the three

boundary circles of the trinion D j ∈ D.

Proposition 1.2 Let f = ( f1, f2, . . . , f3g−3) : M(Σg) → R
3g−3. The restriction of f

to the set U is the moment map for the action of the torus K, and the closure of the image

of this moment map is a convex polyhedron P of dimension 3g − 3. Let D j ∈ D with

boundary circles C j1
, C j2

, and C j3
, and denote by π j the projection R

3g−3 → R
3 defined

by (x1, x2, . . . , x3g−3) 7→ (x j1
, x j2

, x j3
). For every j ∈ {1, 2, . . . , 2g − 2} the image

of the composition π j ◦ f is the tetrahedron P(D). The polytope P is the intersection
⋂2g−2

j=1 π−1
j (P(D)).

Alternatively, the polytope P can be described as the set of all points

(x1, x2, . . . , x3g−3) ∈ R
3g−3 such that for each j ∈ {1, 2, . . . , 2g − 2} the triple

(x j1
, x j2

, x j3
) satisfies the inequalities of the previous section, where again, the in-
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dices j1, j2, and j3 correspond to the three boundary circles of the j-th trinion in D.
In particular, P is always contained inside the unit cube [0, 1]3g−3.

2 From Trivalent Graphs to Toric Varieties

Let Γ be a trivalent graph of genus g. Note that we will allow for the possibility that Γ

has loops (edges connecting a vertex to itself) or multi-edges (two vertices in Γ may

be connected with more than one edge.) Let V (Γ) and E(Γ) denote the vertices and

edges of Γ respectively. Counting loops as two edges, we have |E(Γ)| = 3g − 3 and

|V (Γ)| = 2g − 2.
Such a graph gives us a genus g 2-manifold Σg equipped with a marking (or trin-

ion decomposition) in the following way (see [5]): pump up the vertices and edges

of Γ to 2-spheres and tubes respectively. The result is the manifold Σg and homotopy

classes of meridian circles of each of the tubes in the pumped up graph define a set C

of 3g − 3 disjoint, homotopy inequivalent, simple closed loops on the surface.

Applying Propositions 1.1 and 1.2, we obtain from the graph Γ a convex polytope

P(Γ) ∈ R
3g−3 and a lattice Λ(Γ) for the action of the 3g − 3 dimensional torus

K(Γ). This information is, in turn, all that is required to completely determine a

toric variety, the toric variety associated to the graph Γ, which we will denote by V(Γ).
The toric varieties corresponding to trinion decomposed surfaces were introduced

by Jeffrey and Hurtubise in [2]. A primary focus in [5] is a certain class of trivalent

graphs, the so-called multi-theta graphs, and their corresponding toric varieties. It is

to this case that we now turn our attention.

2.1 Multi-Theta Graphs

The multi-theta graph of genus g, denoted Θg , is best described (as in [5]) as a vertical

oval O crossed by g−1 horizontal edges. The 2g−2 vertices of the graph are separated

by a vertical axis of symmetry into two groups of size g − 1. Each vertex is joined by

an edge to the vertices immediately above and below, and its “twin” opposite the axis

of symmetry (with the obvious exception of the top pair and the bottom pair, which

are connected to each other by a double edge).

Example: g=2 In this case, our (multi-)theta graph consists of two vertices joined

by three edges. The marking for the corresponding surface Σ2 consists of three curves

C = {C1,C2,C3}, each curve coming from some edge in the graph. The underly-

ing trinion decomposition for Σ2 consists of two trinions D1 and D2 glued together

along their three boundary circles. We see that, according to Proposition 1.2, the

three dimensional polytope P(Θ2) is none other than the tetrahedron P(D) from the

previous section.

Now, the lattice Λ(Θ2) is spanned by e1 = (1, 0, 0), e2 = (0, 1, 0), and e3 =

(0, 0, 1), together with g1 = g2 = ( 1
2
, 1

2
, 1

2
). Let vi = g1 − ei , for i ∈ {1, 2, 3}, so

that Λ(Θ2) ∼= Zv1 ⊕ Zv2 ⊕ Zv3. Evidently, P(Θ2) is a lattice polytope with respect

to Λ(Θ2). One can verify that the normal fan of P(Θ2) – the fan generated by the

inward-pointing normals to the facets of P(Θ2) – is a strongly convex complete sim-

plicial fan. More is true, for we may define an isomorphism of the lattice Λ(Θ2) with
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the standard lattice Z
3 using

A =





0 1 1

1 0 1

1 1 0



 ,

and additionally, A maps the normal fan of P(Θ2) to the fan generated by (1, 0, 0),
(0, 1, 0), (0, 0, 1), and (−1,−1,−1). This is the normal fan for the standard 3-sim-

plex ∆3. It follows that the toric variety for the pair (P(Θ2),Λ(Θ2)) is the same as the

variety for the pair (∆3, Z
3), which is known to be CP3.

2.2 P(Θg) and the Variety V(Θg)

We conclude with two straightforward facts about the polytope P(Θg).

Lemma 2.1 Exactly 2g of the vertices of P(Θg) are vertices of the unit cube [0, 1]3g−3.

Proof Since P(Θg) is contained within [0, 1]3g−3, if x ∈ P(Θg) and x is itself a vertex

of [0, 1]3g−3, then x is necessarily a vertex of P(Θg). Now, if x is a vertex of the unit

cube, then x ∈ P(Θg) if its image under each of 2g − 2 projections π j is a vertex of

the tetrahedron P(D) (cf. Proposition 1.2). Such points correspond to labellings of

the edges of Θg with either a 0 or a 1, such that for each vertex v ∈ V (Θg), the triple

of edges at v are either all labelled 0, or exactly one is labelled 0.
Beginning with the top pair of vertices in Θg , we see that there are exactly four

admissible ways to label the group of edges emanating from the pair. After a choice

has been made for the top pair, there are two possible labellings for the undetermined

edges adjacent to the next pair. And, for each of the remaining g − 3 pairs of vertices

there are always two possible labellings, regardless of how the previous pair’s edges

were labelled. This gives a total of 4(2g−2) = 2g possible labellings.

Remark It must be noted that the method for counting vertices of P(Θg) in the

above argument is not exhaustive for g ≥ 3. That is, requiring that π j(x) be a vertex

of P(D) for every j ∈ {1, 2, . . . , 2g − 2} is enough to determine that x is a vertex of

P(Θg), but not necessary.

Proposition 5.4 of [5] asserts that all of the vertices of the polytope P(Θg) are

vertices of [0, 1]3g−3, that there are 2g in total, and that they are of the form

(⋆, ⋆′, 0, ⋆, ⋆′, 0, ⋆, . . . , ⋆), or (⋆, ⋆′, 1, ⋆, ⋆′, 1, ⋆, . . . , ⋆),

where ⋆ and ⋆ ′ are chosen freely from {0, 1}. We now see that this cannot be true. For

example, the above argument shows us that the point (1, 1, . . . , 1) cannot be a vertex

of P(Θg) for any g, as is claimed. This can also be seen by noting that (1, 1, . . . , 1)

does not satisfy the inequalities of Section 1.3 for any trinion in the decomposition

of P(Θg).

In the previous section we saw that V(Θ2) ∼= CP3. One might ask whether or not

any of the other varieties V(Θg) are also singularity free. Unfortunately, as we shall

soon see, this cannot be the case.
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Definition 2.2 An n-dimensional polytope P in R
n is said to be simple if its 1-ske-

leton is an n-regular graph.

Equivalently, an n-dimensional polytope P is simple if exactly n facets of P meet

at each vertex. It is a well-known fact that a smooth toric variety must have a simple

moment polytope.

Lemma 2.3 For every g ≥ 3, the polytope P(Θg) is non-simple.

Proof It follows from the proof of the previous lemma that the origin is always a

vertex of P(Θg). Now, from each trinion D j in the decomposition of the underlying

surface Σg we are given the set of four inequalities:

x j1
+ x j2

+ x j3
≤ 2, x j1

+ x j2
− x j3

≥ 0, x j1
− x j2

+ x j3
≥ 0 − x j1

+ x j2
+ x j3

≥ 0.

As we have seen, the 2g − 2 sets of inequalities of the above type define the polytope

P(Θg). Consider the last three inequalities in the above set. Each defines an affine

half-space in R
3g−3, and each of these half-spaces supports a different facet of P(Θg)

containing the origin. There are 3(2g − 2) = 6g − 6 such facets, and so P(Θg), which

has dimension 3g − 3, cannot be simple.

Remark It follows from this that the variety V(Θg) is singular for g ≥ 3. Moreover,

the above argument applies to any polytope P(Γ), so long as Γ is loop-free (note that

the origin is, in fact, always a vertex of P(Γ).) So the variety V(Γ) is singular whenever

Γ is a loop-free trivalent graph of genus g ≥ 3. In [5, Proposition 5.5] it was asserted

that not only is the polytope P(Θg) simple, but also that the set of edges emanating

from any vertex of P(Θg) forms a rational basis for R
3g−3. In other words, it was

claimed that the polytope P(Θg) is Delzant, and consequently that the corresponding

toric variety V(Θg), written there as DMg , is always smooth. This is plainly false,

since P(Θg) is not even simple.

References

[1] W. M. Goldman, The symplectic nature of fundamental groups of surfaces. Adv. in Math. 54(1984),
no. 2, 200–225. doi:10.1016/0001-8708(84)90040-9

[2] J. Hurtubise and L. C. Jeffrey, Representations with weighted frames and framed parabolic bundles.
Canad. J. Math. 52(2000), no. 6, 1235–1268.

[3] L. C. Jeffrey and J. Weitsman, Bohr-Sommerfeld orbits in the moduli space of flat connections and the
Verlinde dimension formula. Commun. Math. Phys. 150(1992), no. 3, 593–630.
doi:10.1007/BF02096964

[4] , Toric structures on the moduli space of flat connections on a Riemann surface: volumes and the
moment map. Adv. Math. 106(1994), no. 2, 151–168. doi:10.1006/aima.1994.1054

[5] A. N. Tyurin, Delzant models of moduli spaces. (Russian) Izv. Ross. Akad. Nauk. Ser. Mat. 67(2003),
no. 2, 167–180.

Department of Mathematics, University of Toronto, Toronto, ON M5S 3G3
e-mail: jjuren@math.toronto.edu

https://doi.org/10.4153/CMB-2010-109-4 Published online by Cambridge University Press

http://dx.doi.org/10.1016/0001-8708(84)90040-9
http://dx.doi.org/10.1007/BF02096964
http://dx.doi.org/10.1006/aima.1994.1054
https://doi.org/10.4153/CMB-2010-109-4

