# ON THE NONWANDERING SETS OF DIFFEOMORPHISMS OF SURFACES 

TOKIHIKO KOIKE

## § 1. Introduction

Let $M$ be a compact manifold without boundary. Let $f: M \rightarrow M$ be a $C^{1}$ diffeomorphism. Then the nonwandering set $\Omega(f)$ is defined to be the closed invariant set consisting of $x \in M$ such that for any neighborhood $U$ of $x$, there exists an integer $n \neq 0$ satisfying $f^{n}(U) \cap U \neq \phi$. In particular, the set $\operatorname{Per}(f)$ of all periodic points is included in $\Omega(f)$.

Generally, in the study of the orbit structure of diffeomorphisms their nonwandering sets play an essential role. Several results relating to the non-wandering sets established in these ten years or so have developed a new aspect of dynamics-the study of the orbit structure of dynamical systems. In his survey [8], Smale set up a concept called Axiom A, i.e. (a) $\Omega(f)=$ $\overline{\operatorname{Per}(f)}$, (b) Tf has a hyperbolic structure over $\Omega(f)$, i.e. there exists a $T f$ invariant continuous splitting $E^{s} \oplus E^{u}$ of $T M \mid \Omega(f)$-the restriction of the tangent bundle $T M$ to $\Omega(f)$-such that for some constants $C>0,0<\lambda<1$,

$$
\begin{array}{ll}
\left\|T f^{n}(v)\right\| \leq C \lambda^{n}\|v\|, & \forall v \in E^{s}, \forall n>0 \\
\left\|T f^{-n}(v)\right\| \leq C \lambda^{n}\|v\|, & \forall v \in E^{u}, \forall n>0
\end{array}
$$

After that, many important results were obtained in this direction.
On the other hand, Pugh [7] proved a very important theorem about the nonwandering sets. To state it, we shall explain the concept of genericity. Let Diff ${ }^{1}(M)$ be the set of all $C^{1}$ diffeomorphisms endowed with the $C^{1}$ topology. Then a property of diffeomorphisms is called generic if the diffeomorphisms having it form a residual subset of $\operatorname{Diff}^{1}(M)$.

Pugh's Density Theorem. The property $\Omega(f)=\overline{\operatorname{Per}(f)}$ is generic in Diff ${ }^{1}(M)$.

[^0]In this paper we shall study the nonwandering sets of diffeomorphisms of surfaces from the viewpoint of genericity. Our results are as follows: Let $M^{2}$ be a compact connected surface without boundary.

Theorem 1. The property that int $\Omega(f)=\phi$, or $f$ is an Anosov diffeomorphism is generic in $\operatorname{Diff}^{1}\left(M^{2}\right)$.

Remark. For a topological space $X$, the closure and the interior of $A \subset X$ are denoted by $\bar{A}$ and $\operatorname{int} A$ respectively.

A diffeomorphism $f: M \rightarrow M$ is called Anosov if $T f$ has a hyperbolic structure over $M$. For surfaces except a torus, there is no Anosov diffeomorphisms ([9], p. 90). So, in this case Theorem 1 is written as follows:

Theorem 1'. The property int $\Omega(f)=\phi$ is generic in Diff ${ }^{1}\left(M^{2}\right)$ if $M^{2}$ is not a torus.

A diffeomorphism $f$ is said to be topologically $\Omega$-stable if $\Omega(f)$ is homeomorphic to $\Omega(g)$ for all $g C^{1}$ near $f$. We have the following from Theorem 1.

Corollary. If $f \in \operatorname{Diff}^{1}\left(M^{2}\right)$ is topologically $\Omega$-stable, then $\operatorname{int} \Omega(f)=\phi$ or $f$ is an Anosov diffeomorphism.

The main stage in proving Theorem 1 is the following. First we shall fix our notation.

Definition. For an open subset $U$ of $M$, we denote by $\mathscr{H}(U)$ the set of $f \in \operatorname{Diff}^{1}(M)$ whose periodic points in $U$ are all hyperbolic, and by $\mathscr{D}(U)$ the set of $f \in \operatorname{Diff}^{1}(M)$ whose periodic points are dense in $U$.

Theorem 2. Let $M^{2}$ be a compact connected surface. Then for any open subset $U$ of $M^{2}$,

$$
\mathscr{D}(U) \cap \operatorname{int} \mathscr{H}(U) \subset \mathscr{D}\left(M^{2}\right) .
$$

Theorem 1 is proved in Section 2 and Theorem 2 in Section 4. Sections 3 and 5 are devoted to two propositions necessary for the proof of Theorem 2. In Appendix we shall prove a lemma about a non-transversal homoclinic point, which is necessary in Section 5.

Throughout this paper except Appendix, ' $M$ ' will denote a compact connected surface without boundary.

I would like to thank Professor M. Adachi for his guidance of this
area. I owe Professors G. Ikegami, M. Kurata and especially K. Shiraiwa many useful suggestions and criticisms.

## §2. Proofs of Theorem 1 and Corollary

In this section we prove Theorem 1, assuming Theorem 2. We denote by $\mathscr{A}$ the set of all Anosov diffeomorphisms of $M$.

Lemma 1. If $f \in \operatorname{int} \overline{\mathscr{D}(M)}$, then $f \in \overline{\mathscr{A}}$. Hence $\mathscr{A}$ is open and dense in int $\overline{\mathscr{D}(M)}$.

Proof. Let $f \in \operatorname{int} \overline{\mathscr{D}(M)}$. First, we suppose $f \notin \operatorname{int} \mathscr{H}(M)$. Some diffeomorphism $g$ near $f$ has a non-hyperbolic periodic point $p$. Since the dimension of $M$ is 2 , it is possible to make $p$ a sink or a source of a small $C^{1}$ perturbation $g_{1}$ of $g$, i.e., if $n$ is the period of $p$, then the eigenvalues of $T_{p} g_{1}^{n}$ have absolute values $<1$ (or $>1$ ). Obviously, $g_{1} \notin \mathscr{D}(M)$. This contradicts the hypothesis, because $g_{1}$ can be chosen sufficiently near $f$. Thus $f \in \operatorname{int} \mathscr{H}(M)$. We can choose $f_{1} \in \operatorname{int} \mathscr{H}(M) \cap \mathscr{D}(M)$ near $f$. We here apply a theorem of Mañé [3], i.e. int $\mathscr{H}(M) \cap \mathscr{D}(M)=\mathscr{A}$ if the dimension of $M$ is 2 . Hence we have $f_{1} \in \mathscr{A}$. Therefore, $f \in \mathscr{A}$.
q.e.d.

For each point $x \in M$, we define

$$
\mathscr{U}_{x}=\left\{f \in \operatorname{Diff}^{1}(M) ; x \notin \operatorname{int} \overline{\operatorname{Per}(f)}\right\} .
$$

Then we have
Lemma 2. If $f \notin \mathscr{U}_{x}$, then $f \in \mathscr{D}(M)$ or $f \in \overline{\operatorname{int} \mathscr{U}_{x}}$.
Proof. Let $f \notin \mathscr{U}_{x}$. By definition, $x \in \operatorname{int} \widehat{\operatorname{Per}(f)}$. Let $U$ be a small neighborhood of $x$ in $\overline{\operatorname{Per}(f)}$. When $f \in \operatorname{int} \mathscr{H}(U)$, by Theorem 2, we have $f \in \mathscr{D}(M)$. So it is sufficient to show that $f \in \overline{\operatorname{int} \mathscr{U}_{x}}$, when $f \notin \operatorname{int} \mathscr{H}(U)$. Then some $f_{1}$ near $f$ has a non-hyperbolic periodic point $p$ in $U$. Similarly, it is possible to make $p$ a sink or a source of some $C^{1}$ perturbation $f_{2}$ of $f_{1}$. Since $U$ is a small neighborhood of $x$, we can choose $h \in \operatorname{Diff}^{1}(M)$ with $h(x)=p$ in a small $C^{1}$ neighborhood of the identity of $M$. Put $g=$ $h^{-1} \cdot f_{2} \cdot h$. Clearly $g$ is $C^{1}$ near $f$. Naturally $x=h^{-1}(p)$ is a sink or source of $g$. Hence, for any $g_{1} \in \operatorname{Diff}^{1}(M)$ near $g$ we have $x \notin \operatorname{int} \overline{\operatorname{Per}\left(g_{1}\right)}$, or $g_{1} \in$ $\mathscr{U}_{x}$. This implies $g \in \operatorname{int} \mathscr{U}_{x}$. Since $g$ is near $f$, it follows that $f \in{\overline{\operatorname{int}} \mathscr{U}_{x}}$. q.e.d.

Lemma 3. int $\mathscr{U}_{x} \cup$ int $\overline{\mathscr{D}(M)}$ is dense in $\operatorname{Diff}^{1}(M)$.
Proof. Suppose $f \notin \overline{\operatorname{int} \mathscr{U}_{x}}$. It suffices to show $f \in \overline{\mathscr{D}(M)}$. When $f \notin \mathscr{U}_{x}$,
by Lemma 2, we have $f \in \mathscr{D}(M)$. When $f \in \mathscr{U}_{x}$ hence $f \in \mathscr{U}_{x}-\overline{\operatorname{int} \mathscr{U}_{x}}$, there is a sequence $f_{n} \notin \mathscr{U}_{x} \cup \overline{\text { int } \mathscr{U}_{x}}$ converging to $f$. By Lemma 2, $f_{n} \in \mathscr{D}(M)$. Hence $f \in \overline{\mathscr{D}(M)}$ follows.
q.e.d.

Now Theorem 1 is proved as follows: By Lemmas 1 and $3, \mathscr{U}_{x} \cup \mathscr{A}$ is generic in Diff ${ }^{1}(M)$. Really it contains an open dense subset of Diff ${ }^{1}(M)$. By the Pugh's density theorem, the set

$$
\mathscr{C}=\left\{f \in \operatorname{Diff}^{1}(M) ; \Omega(f)=\overline{\operatorname{Per}(f)}\right\}
$$

is generic. Let $K$ be a dense countable subset of $M$. Then

$$
\begin{aligned}
\mathscr{B} & =\bigcap_{x \in K}\left(\mathscr{U}_{x} \cup \mathscr{A}\right) \cap \mathscr{C} \\
& =\left(\left(\bigcap_{x \in K} \mathscr{U}_{x}\right) \cap \mathscr{C}\right) \cup \mathscr{A}
\end{aligned}
$$

is generic in Diff ${ }^{1}(M)$. Now we need only check that if $f \in\left(\bigcap_{x \in K} \mathscr{U}_{x}\right) \cap \mathscr{C}$ then int $\Omega(f)=\phi$. From $f \in \bigcap_{x \in K} \mathscr{U}_{x}$, we have int $\overline{\operatorname{Per}(f)} \cap K=\phi$. But, since $K$ is dense in $M$, int $\overline{\operatorname{Per}(f)}=\phi$. On the other hand, $f \in \mathscr{C}$ means $\overline{\operatorname{Per}(f)}=\Omega(f)$. Hence int $\Omega(f)=\phi$ follows. q.e.d.

Proof of Corollary. Let $f \in \operatorname{Diff}^{1}(M)$ be topologically $\Omega$-stable. First suppose $f \notin \mathscr{A}$. By Theorem 1, there is $g \in \operatorname{Diff}^{1}(M)$ near $f$ such that int $\Omega(g)=\phi$. By stability, it follows from the theorem of domain invariance that int $\Omega(f)=\phi$.

Next suppose $f \in \overline{\mathscr{A}}$. There is $f_{1} \in \mathscr{A}$ near $f$. Since $\Omega\left(f_{1}\right)=M$ ([9], p. 89), by stability, we have $\Omega(f)=M$. Hence by stability, $\Omega(g)=M$ for all $g$ near $f$. By Mañé [3], it follows that $f$ is Anosov. q.e.d.

## §3. Laminations

In this section we prepare a proposition for the proof of Theorem 2. Let us begin with definitions.

Definition. Let $f \in \operatorname{Diff}^{1}(M)$. For a hyperbolic periodic point $p$ of $f$, we denote by $W^{s}(p ; f)$ (resp. $W^{u}(p ; f)$ ) the stable (resp. unstable) manifold of $f$ at $p$. We define $E^{s}(p ; f)$ to be the tangent space of $W^{s}(p ; f)$ at $p$. Likewise $E^{u}(p ; f)$ is defined.

In what follows, we shall drop ' $f$ ' in these symbols when it does not give rise to confusion.

Definition. A hyperbolic periodic point is called a saddle if it is not a sink nor source. We denote by $\operatorname{Sd}(f)$ the set of all saddles of $f$.

Definition. $A C^{1}$ lamination of $M$ is a continuous foliation whose leaves are $C^{1}$ immersed submanifolds such that their tangent spaces, as a whole, form a continuous subbundle of $T M$.

Refer to [1, §7] for general definitions.
We shall prove the following.
Proposition 1. Let $f \in \operatorname{Diff}^{1}(M)$. Let $U$ be an open subset of $M$ such that:
(1) $U$ is invariant under $f$.
(2) The periodic points in $U$ are all saddles and are dense in $U$.
(3) There is a continuous splitting $E^{s} \oplus E^{u}$ of $T M \mid U$ whose splitting at $\forall p \in \operatorname{Sd}(f) \cap U$ is $E^{s}(p ; f) \oplus E^{u}(p ; f)$.

Then there is an $f$-invariant $C^{1}$ lamination $W^{s}$ on $U$ such that (a) all laminae are tangent to $E^{s}$, (b) stable manifolds $W^{s}(p ; f), \forall p \in \operatorname{Sd}(f) \cap U$, are its laminae. Likewise there is an f-invariant lamination $W^{u}$ on $U$ with the corresponding properties.

Proof. We want to construct a lamination on a neighborhood of $\forall x_{0}$ $\in U$. First, we take a coordinate neighborhood $(Q, \varphi)$ of $x_{0}$ with the following properties.
(4) $Q \subset U$.
(5) $\varphi(Q)=[-1,1] \times[-1,1]$.
(6) $\varphi\left(x_{0}\right)=(0,0)$.
(7) Identify $Q$ with $[-1,1] \times[-1,1]$ and $E^{s}$ with $T_{\varphi}\left(E^{s}\right)$. There is a $C^{0}$ map $w: Q \rightarrow R$ such that $|w(x)|<1 / 4$, and the vector (1, $w(x)$ ) spans $E^{s}(x), \forall x \in Q . \quad E^{s}(x)$ is the fiber of $E^{s}$ at $x$.

We, first of all, notice that stable manifolds $W^{s}(p), \forall p \in \operatorname{Sd}(f) \cap U$ are tangent to $E^{s}$. Because, if at a point $x \in W^{s}(p), E^{s}(x)$ is not tangent to $W^{s}(p)$, then $E^{s}\left(f^{\alpha n}(x)\right)=T f^{\alpha n}\left(E^{s}(x)\right)(\alpha$ is the period of $p)$ tends to $E^{u}(p)$ as $n \rightarrow \infty$ by hyperbolicity of $T_{p} f^{\alpha}$, contradicting continuity of $E^{s}$. Likewise unstable manifolds $W^{u}(p), \forall p \in \operatorname{Sd}(f) \cap U$, are tangent to $E^{u}$.

Let $\pi_{1}: Q \rightarrow[-1,1]$ be the projection on the first factor. Write $Q_{1}=$ $[-1,1] \times[-1 / 2,1 / 2] \subset Q$. For $\forall p \in \operatorname{Sd}(f) \cap Q$, let $K_{p}$ be the connected component of $W^{s}(p) \cap Q$ containing $p$. Let $h_{p}: K_{p} \rightarrow[-1,1]$ be the mapping defined by

$$
h_{p}(x)=\pi_{1}(x), \quad \forall x \in K_{p} .
$$

We want to show that $h_{p}$ is a homeomorphism if $p \in \operatorname{Sd}(f) \cap Q_{1}$.

First, $h_{p}$ is one to one, because $K_{p}$ is an integral curve of the vector field $x \mapsto(1, w(x)), \forall x \in Q$, which spans $E^{s}$ over $Q$. So we show $h_{p}$ is onto. We notice that $K_{p}$ cannot meet the top nor the bottom of $Q$, because the slope of $K_{p}$ is less than $1 / 4$. So $h_{p}$ not being onto implies $\bar{K}_{p}-K_{p} \neq \phi$. Let $q \in \bar{K}_{p}-K_{p}$. See the figure.


Thus $K_{p}$ includes one of the components of $W^{s}(p)-\{p\}$, say $C$. Since $f^{2 \alpha}(C)=C$, clearly we have $f^{2 \alpha}(q)=q$, namely $q \in \operatorname{Per}(f)$. Hence, by (2), $q \in \operatorname{Sd}(f)$. For $\forall x \in C, f^{-2 \alpha n}(x)$ tends to $q$ as $n \rightarrow \infty$. This implies $C \subset$ $W^{u}(q)$. Thus $C$ is tangent to $E^{s}$ and $E^{u}$ at once, which contradicts (3). Hence $h_{p}$ must be onto.

We denote by $\Pi$ the set of all $p \in \operatorname{Sd}(f) \cap Q$ such that $h_{p}$ is onto. By the above $\operatorname{Sd}(f) \cap Q_{1} \subset \Pi$. Let $\pi_{2}: Q \rightarrow[-1,1]$ be the projection on the second factor. When we put $V_{0}=\left\{\pi_{2} h_{p}^{-1}(0) ; p \in \Pi\right\} \subset[-1,1]$, it is easy to see that $V_{0}$ is dense in $[-1 / 2,1 / 2]$. For $\forall p \in \Pi$, we write $k_{u}=\pi_{2} \cdot h_{p}^{-1}$, where $u=\pi_{2} \cdot h_{p}^{-1}(0)$. Hence graph $\left(k_{u}\right)=K_{p}$. We define a function $v=$ $k(t, u), t \in[-1,1], u \in[-1 / 2,1 / 2]$ by the following:

$$
k(t, u)=\lim _{u^{\prime} \rightarrow u} k_{u^{\prime}}(t), \quad u^{\prime} \in V_{0}
$$

The aim of the following is to prove that curves $t \mapsto(t, k(t, u)), u \in$ [ $-1 / 2,1 / 2]$, are $C^{1}$ differentiable and tangent to $E^{s}$, and they form, as a whole, a $C^{1}$ lamination on a neighborhood of $x_{0}$.

1. $k(t, u)$ is well-defined: Let $(t, u)$ be fixed. Take $u_{1}, u_{2} \in V_{0}$ with $u_{1}<u<u_{2}$. If $p \in \operatorname{Sd}(f) \cap Q$ is in the domain between graph $\left(k_{u_{1}}\right)$ and graph $\left(k_{u_{2}}\right)$, then $p$ belongs to $\Pi$. This is proved by the method proving in the above that $h_{p}$ is onto, and by the fact that subarcs $K_{p}, K_{q}$ of different two stable manifolds never meet each other. Remark that this fact also plays an important role in the following.

So it is obvious that $\left\{K_{p} ; p \in \Pi\right\}$ meet the vertical segment $\{t\} \times$ $\left[k_{u_{1}}(t), k_{u_{2}}(t)\right] \subset Q$ densely. That is, the set $\left\{k_{u^{\prime}}(t) ; u^{\prime} \in V_{0}\right\}$ is dense in $\left[k_{u_{1}}(t), k_{u_{2}}(t)\right]$. Therefore, given $\varepsilon>0$, there is a finite sequence of numbers $u_{1}^{\prime}, u_{2}^{\prime}, \cdots, u_{n}^{\prime} \in V_{0}$ such that
(8) $u_{1}=u_{1}^{\prime}<u_{2}^{\prime}<\cdots<u_{n}^{\prime}=u_{2}$,
(9) $\quad k_{u_{i+1}}^{\prime}(t)-k_{u_{i}}^{\prime}(t)<\varepsilon, \forall 1 \leq i<n$.

Let $j$ be the suffix with $u_{j}^{\prime}<u<u_{j+1}^{\prime}$. By (9), for $\forall u^{\prime}, u^{\prime \prime} \in V_{0} \cap$ [ $\left.u_{j}^{\prime}, u_{j+1}^{\prime}\right]$,

$$
\left|k_{u^{\prime}}(t)-k_{u^{\prime \prime}}(t)\right|<k_{u_{j+1}^{\prime}}(t)-k_{u_{j}^{\prime}}(t)<\varepsilon .
$$

Hence $\left\{k_{u^{\prime}}(t) ; u^{\prime} \rightarrow u, u^{\prime} \in V_{0}\right\}$ is a Cauchy sequence.
2. The convergence $k_{u^{\prime}}(t) \rightarrow k(t, u)$ is $C^{0}$ uniform: Given $\varepsilon>0$, choose a finite sequence of numbers $t_{1}, t_{2}, \cdots, t_{n} \in[-1,1]$ such that
(10) $-1=t_{1}<t_{2}<\cdots<t_{n}=1$,
(11) $t_{i+1}-t_{i}<\varepsilon / 2, \forall 1 \leq i<n$.

We can take $u_{1}, u_{2} \in V_{0}$ such that
(12) $u_{1}<u<u_{2}$
(13) $k_{u_{2}}\left(t_{i}\right)-k_{u_{1}}\left(t_{i}\right)<\varepsilon, \forall 1 \leq i \leq n$.

By the way, if $\left|t-t_{i}\right|<\varepsilon$, by (7) we have

$$
\begin{aligned}
\left|k_{u_{1}}(t)-k_{u_{1}}\left(t_{i}\right)\right| & =\left|\int_{t_{i}}^{t} \frac{d}{d t} k_{u_{1}}(t) d t\right| \\
& =\left|\int_{t_{i}}^{t} w\left(t, k_{u_{1}}(t)\right) d t\right| \\
& \leq\left|t-t_{i}\right| / 4<\varepsilon / 4 .
\end{aligned}
$$

Likewise $\left|k_{u_{2}}(t)-k_{u_{2}}\left(t_{i}\right)\right|<\varepsilon / 4$. Let $u^{\prime} \in V_{0}, u_{1}<u^{\prime}<u_{2}$. For $\forall t \in[-1,1]$, choose $t_{i}$ with $\left|t_{i}-t\right|<\varepsilon$. Then

$$
\begin{aligned}
\left|k(t, u)-k_{u^{\prime}}(t)\right| \leq & k_{u_{2}}(t)-k_{u_{1}}(t) \\
\leq & \left|k_{u_{2}}(t)-k_{u_{2}}\left(t_{i}\right)\right|+\left|k_{u_{2}}\left(t_{i}\right)-k_{u_{1}}\left(t_{i}\right)\right| \\
& +\left|k_{u_{1}}(t)-k_{u_{1}}\left(t_{i}\right)\right|<\varepsilon / 4+\varepsilon / 2+\varepsilon / 4=\varepsilon .
\end{aligned}
$$

Thus we have $\left|k(\cdot, u)-k_{u^{\prime}}(\cdot)\right|<\varepsilon$ if $u^{\prime} \in V_{0},\left|u^{\prime}-u\right|<\delta$, where $\delta=$ $\min \left\{\left|u_{1}-u\right|,\left|u_{2}-u\right|\right\}$.
q.e.d.
3. $\left\{(d / d t) k_{u^{\prime}} ; u^{\prime} \rightarrow u, u^{\prime} \in V_{0}\right\}$ is uniformly convergent: Because

$$
\frac{d}{d t} k_{u^{\prime}}(t)=w\left(t, k_{u^{\prime}}(t)\right)
$$

and $k_{u}(t)$ is uniformly convergent.
q.e.d.

Therefore, $v=k(t, u),(t, u) \in[-1,1] \times[-1 / 2,1 / 2]$, is $C^{1}$ differentiable in $t$ and satisfies the differential equation $d v / d t=w(t, v)$.

It is easy to see that the mapping $H:[-1,1] \times[-1 / 2,1 / 2] \rightarrow Q$ defined by $H(t, u)=(t, k(t, u))$ is a homeomorphism (into). So we can define a $C^{1}$ lamination on a neighborhood of $x_{0}$ by letting its laminae be curves $t \mapsto$ $H(t, u), u \in[-1 / 2,1 / 2]$. To guarantee the existence of a global lamination $W^{s}$ on $U$, we need only check that two local laminations thus defined are always consistent with each other. But, otherwise, there must be a pair of stable manifolds having an intersection by the construction of laminae.

Clearly the lamination $W^{s}$ satisfies the desired conditions. q.e.d.

## §4. Theorem 2

For simplicity we denote by $U_{f}$ the $f$ orbit of $U \subset M$. The following proposition plays a basic role in proving Theorem 2.

Proposition 2. Let $U$ be an open subset of $M$. If $f \in \operatorname{int} \mathscr{H}(U)$, then there is a continuous splitting $E^{s} \oplus E^{u}$ of $T M \mid \overline{\operatorname{Sd}(f) \cap \overline{U_{f}}}$ whose splitting at $\forall p \in \operatorname{Sd}(f) \cap U_{f}$ is $E^{s}(p ; f) \oplus E^{u}(p ; f)$.

The proof will be given in the next section. Now we prove Theorem 2.
Theorem 2. For any open subset $U$ of $M$, we have

$$
\mathscr{D}(U) \cap \operatorname{int} \mathscr{H}(U) \subset \mathscr{D}(M) .
$$

Proof. Let $f \in \mathscr{D}(U) \cap \operatorname{int} \mathscr{H}(U)$. Clearly $\operatorname{Per}(f) \cap U_{f} \subset \operatorname{Sd}(f)$. So, $\operatorname{Sd}(f)$ is dense in $U_{f}$. Applying Proposition 2, we have a splitting $E^{s} \oplus$ $E^{u}$ of $T M \mid \bar{U}_{f}$ whose splitting at $\forall p \in \operatorname{Sd}(f) \cap U_{f}$ is $E^{s}(p ; f) \oplus E^{u}(p ; f)$. Hence, by Proposition 1, there are $f$-invariant laminations $W^{s}$ and $W^{u}$ such that $W^{s}(p ; f)$ and $W^{u}(p ; f), \forall p \in \operatorname{Sd}(f) \cap U_{f}$, are respectively their laminae.

It is sufficient to show $\bar{U}_{f}=M$, because $\operatorname{Per}(f)$ is dense in $U_{f}$. For this, we need only prove that for $\forall x_{0} \in \bar{U}_{f}$, there is a neighborhood of $x_{0}$ included in $\bar{U}_{f}$. Let us write $\Sigma=\operatorname{Sd}(f) \cap U_{f}$. We claim
(1) Let $p \in \Sigma$. Let $\varphi: R \rightarrow W^{s}(p), \varphi(0)=p$, be a parametrization of $W^{s}(p)$. Then $\varphi(\infty)=\lim _{t \rightarrow \infty} \varphi(t)$ never exists.

Proof of (1). Suppose there exists $\varphi(\infty)$. Let $\alpha$ be the period of $p$. First, $\varphi(\infty) \notin U_{f}$, because by Proposition $1 W^{s}(p)$ is a lamina of $W^{s}$. It is
also clear that $f^{2 \alpha}(\varphi(\infty))=\varphi(\infty)$. Since the laminations $W^{s}, W^{u}$ are transversal, we have $q \in \Sigma$ with $\varphi\{(0, \infty)\} \cap W^{u}(q) \neq \phi$. Let $y \in \varphi\{(0, \infty)\} \cap$ $W^{u}(q)$. Denote by $\beta$ the period of $q$. Since $y \in W^{u}(q), f^{-2 \alpha \beta n}(y) \rightarrow q$ as $n \rightarrow \infty$. Since $y \in \varphi\{(0, \infty)\}, f^{-2 \alpha \beta n}(y) \rightarrow \varphi(\infty)$ as $n \rightarrow \infty$. Hence $q=\varphi(\infty)$. This is a contradiction, because $\varphi(\infty) \oplus U_{f}$.
q.e.d.

By continuity of $E^{s} \oplus E^{u}$, we may choose a coordinate neighborhood $(Q, \psi)$ of $x_{0}$ satisfying the following (2) $\sim(4)$.
(2) $\psi(Q)=[-1,1] \times[-1,1]$
(3) $\psi\left(x_{0}\right)=(0,0)$
(4) Identify $Q$ with its image by $\psi$ and $E^{s}, E^{u}$ with $T \psi\left(E^{s}\right), T \psi\left(E^{u}\right)$ respectively. Then we have $C^{0}$ functions $w_{s}, w_{u}: Q \cap \bar{U}_{f} \rightarrow[-1 / 4,1 / 4]$ such that $\left(1, w_{s}(x)\right),\left(w_{u}(x), 1\right) \in T_{x} Q$ span respectively $E^{s}(x), E^{u}(x)$ for $\forall x \in Q \cap \bar{U}_{f}$.

Let $p \in \Sigma \cap Q$. We denote by $K_{p}^{s}$ (resp. $K_{p}^{u}$ ) the connected component of $W^{s}(p) \cap Q$ (resp. $W^{u}(p) \cap Q$ ) containing $p$. We express the coordinate system in $Q$ as $(t, v)$. Noting that $K_{p}^{s}$ is an integral curve of the vector field $x \mapsto\left(1, w_{s}(x)\right)\left(x \in Q \cap U_{f}\right)$, we have a function $v=k_{p}(t)$ with graph $\left(k_{p}\right)$ $=K_{p}^{s}$. Let $\Pi$ be the set of all $p \in \Sigma \cap Q$ such that the domain of $k_{p}$ is $[-1,1]$. Put $Q_{1}=[-1,1] \times[-1 / 2,1 / 2] \subset Q$. As in the previous section, we can prove $\Sigma \cap Q_{1} \subset \Pi$ by virtue of (1).

Let us fix a point $p_{0} \in[-1 / 4,1 / 4] \times[-1 / 4,1 / 4] \cap \Sigma$. Similarly as above, we have a function $t=h(v), v \in[-1,1]$ with $\operatorname{graph}(h)=K_{p_{0}}^{u}$. For $\forall p \in \Pi$, $K_{p}^{s} \cap K_{p_{0}}^{u}$ consists of just a point. Let $\pi_{2}(t, v)=v$ be the projection. Define $V_{0}=\left\{\pi_{2}\left(K_{p}^{s} \cap K_{p_{0}}^{u}\right) ; p \in \Pi\right\}$. Since $\Sigma \cap Q_{1} \subset \Pi, V_{0}$ is dense in [-1/2, 1/2]. For $\forall u^{\prime} \in V_{0}$, we put $k\left(t, u^{\prime}\right)=k_{p}(t)$, where $\pi_{2}\left(K_{p}^{s} \cap K_{p_{0}}^{u}\right)=u^{\prime}$. See the figure.


Now we define a function $v=k(t, u),(t, u) \in[-1,1] \times[-1 / 2,1 / 2]$ by

$$
\underline{k}(t, u)=\lim _{u^{\prime} \uparrow u} k\left(t, u^{\prime}\right), \quad u^{\prime} \in V_{0} .
$$

First, this is well-defined, because $k\left(t, u^{\prime}\right)$ is monotonuous in $u^{\prime} \in V_{0}$. As in the previous section, we have similarly that this convergence is $C^{1}$ uniform in $t \in[-1,1]$.

Likewise we define another function $v=\bar{k}(t, u),(t, u) \in[-1,1] \times$ [ $-1 / 2,1 / 2]$ by

$$
\bar{k}(t, u)=\lim _{u^{\prime} \downarrow u} k\left(t, u^{\prime}\right), \quad u^{\prime} \in V_{0} .
$$

We want to show $\underline{k}=\bar{k}$. Suppose that for some $t_{1}, u_{1} \underline{k}\left(t_{1}, u_{1}\right) \neq \bar{k}\left(t_{1}, u_{1}\right)$. Let $D$ be the region in $Q$ between the graphs of $k\left(\cdot, u_{1}\right)$ and $\bar{k}\left(\cdot, u_{1}\right)$. First we have $D \cap U_{f}=\phi$. If not, we can take two points $p_{1}, p_{2} \in \Sigma \cap D$. By (1), they belong to $\Pi$. So the region in $Q$ between $K_{p_{1}}^{s}$ and $K_{p_{2}}^{s}$ is included in $D$. But this is impossible, because $\underline{k}\left(t_{2}, u_{1}\right)=\bar{k}\left(t_{2}, u_{1}\right)$ where $\left(t_{2}, u_{1}\right) \in K_{p_{0}}^{u}$. Thus $D \cap U_{f}=\phi$.

We also have $D \cap U_{f} \neq \phi$. This is shown as follows. Put $x_{1}=$ $\left(t_{1}, \underline{k}\left(t_{1}, u_{1}\right)\right)$. We notice that the graphs of $k\left(\cdot, u^{\prime}\right), u^{\prime} \in V_{0}$, are included in $U_{f}$. So, $x_{1}=\lim \left(t_{1}, k\left(t_{1}, u^{\prime}\right)\right)\left(u^{\prime} \uparrow u_{1}, u^{\prime} \in V_{0}\right)$ is contained in $\bar{U}_{f}$. Hence we can choose a point $p \in \Sigma$ near $x_{1}$. Then $K_{p}^{u}$ meets the graph of $\underline{k}\left(\cdot, u_{1}\right)$ at a point near $x_{1}$. So it meets $D$, too. Since $K_{p}^{u} \subset U_{f}$, we have $D \cap$ $U_{f} \neq \phi$.

Thus we have a contradiction. Therefore, $k=\bar{k}$. Hereafter we write $k=k=\bar{k}$.

It is easily shown that the mapping $H:[-1,1] \times[-1 / 2,1 / 2] \rightarrow Q$ defined by $H(t, u)=(t, k(t, u))$ is a homeomorphism (into). Moreover, its image is in $\bar{U}_{f}$. So it is sufficient to show that $\operatorname{Im}(H) \supset[-1 / 2,1 / 2] \times[-1 / 4,1 / 4]$.

By (4), $K_{p_{0}}^{u}$ meets the segments $[-1 / 2,1 / 2] \times\{1 / 2\}$, and $[-1 / 2,1 / 2] \times$ $\{-1 / 2\} \subset Q$. Let these intersections be $y_{1}, y_{2}$ respectively. By definition, $\operatorname{graph}(k(\cdot, 1 / 2))$ goes through $y_{1}$, and $\operatorname{graph}(k(\cdot, 1 / 2))$ through $y_{2}$. Hence it follows from $|(\partial / \partial t) k(t, u)|=\mid w_{s}(t, k(t, u) \mid<1 / 4$ that for $\forall t \in[-1 / 2,1 / 2]$, $k(t, 1 / 2)>1 / 4$ and $k(t,-1 / 2)<-1 / 4$. Hence, as $u$ goes from $-1 / 2$ to $1 / 2$ with $t \in[-1 / 2,1 / 2]$ fixed, $k(t, u)$ varies from $k(t,-1 / 2)<-1 / 4$ to $k(t, 1 / 2)$ $>1 / 4$. By continuity of $k$, it follows that for $\forall t \in[-1 / 2,1 / 2],\{t\} \times[-1 / 4$, $1 / 4] \subset \operatorname{Im}(H)$. That is, $[-1 / 2,1 / 2] \times[-1 / 4,1 / 4] \subset \operatorname{Im}(H)$. Hence $x_{0}=$ $(0,0) \in \operatorname{int} \bar{U}_{f}$.

Thus we have proved Theorem $2 . \quad$ q.e.d.

## §5. Proposition 2

In the proof of Theorem 2, Proposition 2 still remains to be proved.

Proposition 2. Let $U$ be an open subset of $M$. If $f \in \operatorname{int} \mathscr{H}(U)$, then there is a continuous splitting $E^{s} \oplus E^{u}$ of $T M \mid \overline{\mathrm{Sd}(f) \cap \bar{U}_{f}}$ whose splitting at $\forall p \in \operatorname{Sd}(f) \cap U_{f}$ is $E^{s}(p ; f) \oplus E^{u}(p ; f)$.

Proof. We state two assertions, which will be proved later, and using them, we obtain the proof of Proposition 2.

Let $G M$ be the bundle over $M$ whose fiber at $x$ consists of all 1dimensional subspaces of $T_{x} M$. Let $d$ be the metric on $G M$ induced from a Riemann metric on $M$.

Assertion 1. There is a $C^{1}$ neighborhood $\mathscr{U}$ of $f$ such that

$$
\inf \left\{d\left(E^{s}(p ; g), E^{u}(p ; g)\right) ; g \in \mathscr{U}, p \in \operatorname{Sd}(g) \cap U_{g}\right\}>0 .
$$

Assertion 2. There is a positive integer ע such that

$$
\left\|T f^{\nu}\left|E^{s}(p)\|/\| T f^{\nu}\right| E^{u}(p)\right\| \leq 1 / 2, \quad \forall p \in \operatorname{Sd}(f) \cap U_{f}
$$

Now Proposition 2 is proved as follows: Let $x \in \overline{\operatorname{Sd}(f) \cap \bar{U}_{f}}$. Let $p_{n}, q_{n} \in \operatorname{Sd}(f) \cap U_{f}, n=1,2, \cdots$ be two sequences converging to $x$ such that $E^{s}\left(p_{n}\right), E^{u}\left(p_{n}\right) ; E^{s}\left(q_{n}\right), E^{u}\left(q_{n}\right)$ have a limit. Denote their limits by $F^{s}$, $F^{u} ; G^{s}, G^{u}$ respectively. It is sufficient to prove $F^{s}=G^{s}$ and $F^{u}=G^{u}$. Suppose $F^{s} \neq G^{s}$, for example. It follows from Assertion 1 that $F^{s} \neq F^{u}$, $G^{s} \neq G^{u}$. Our argument is divided into three cases.

1. The case $F^{s} \neq G^{u}$. It follows from Assertion 2 that

$$
\left\|T_{x} f^{k_{\nu}}\left|F^{s}\|/\| T_{x} f^{k \nu}\right| F^{u}\right\| \leq 1 / 2^{k}, \quad \forall k>0
$$

Since $G^{s} \neq F^{s}$ and $G^{u} \neq F^{s}$, we have by this that given $\varepsilon>0$, there is $k>0$ such that

$$
\begin{aligned}
& d\left(T_{x} f^{k \nu}\left(G^{s}\right), T_{x} f^{k \nu}\left(F^{u}\right)\right)<\varepsilon, \\
& d\left(T_{x} f^{\nu \nu}\left(G^{u}\right), T_{x} f^{k \nu}\left(F^{u}\right)\right)<\varepsilon .
\end{aligned}
$$

Hence we have

$$
d\left(T_{x} f^{k \nu}\left(G^{s}\right), T_{x} f^{k \nu}\left(G^{u}\right)\right)<2 \varepsilon .
$$

This clearly contradicts Assertion 1.
2. The case $F^{u} \neq G^{s}$. This is the same with the case 1 , if $F$ and $G$ are interchanged.
3. The case $F^{s}=G^{u}$ and $F^{u}=G^{s}$. By Assertion 2, we have

$$
\begin{aligned}
& \left\|T_{x} f^{\nu}\left|F^{s}\|/ /\| T_{x} f^{\nu}\right| F^{u}\right\| \leq 1 / 2, \\
& \left\|T_{x} f^{\nu}\left|G^{s}\|/\| T_{x} f^{\nu}\right| G^{u}\right\| \leq 1 / 2 .
\end{aligned}
$$

The above inequalities contradict each other, because $F^{s}=G^{u}$ and $F^{u}=G^{s}$. Thus we have derived a contradiction from the assumption $F^{s} \neq G^{s}$. Hence we have Proposition 2.
q.e.d.

To prove Assertions 1, 2 we prepare the following.
Assertion 3. For some small $C^{1}$ neighborhood $\mathscr{U}_{1}$ of $f$, there is a constant $0<\lambda<1$ such that for $\forall g \in \mathscr{U}_{1}, \forall p \in \operatorname{Sd}(g) \cap U_{g}$

$$
\begin{aligned}
& \left\|T g^{\alpha(p)} \mid E^{s}(p ; g)\right\|<\lambda, \\
& \left\|T g^{-\alpha(p)} \mid E^{u}(p ; g)\right\|<\lambda
\end{aligned}
$$

where $\alpha(p)$ means the $g$ period of $p$.
Proof of Assertion 3. Suppose otherwise. We may assume without loss of generality that for any $\varepsilon>0$, there exists $g$ in the $\varepsilon-C^{1}$ neighborhood of $f$ with $\left\|T g^{\alpha(p)} \mid E^{s}(p ; g)\right\|>1-\varepsilon$ for some $p \in \operatorname{Sd}(g) \cap U$. Let $\varepsilon_{1}$ $=1-\left\|T g^{\alpha(p)} \mid E^{s}(p ; g)\right\|$. Clearly $0<\varepsilon_{1}<\varepsilon$.

By Lemma $\mathrm{B}_{2}$ in Appendix, we have a $C \varepsilon-C^{1}$ perturbation $h$ of the identity of $M$ ( $C$ is a constant as in that lemma) such that
(1) $h(p)=p$.
(2) $T_{p} h=\left(1-\varepsilon_{1}\right)^{-1} I_{p}$ where $I_{P}: T_{p} M \longleftrightarrow$ is the identity.
(3) $h(x)=x$ for $x$ outside a small neighborhood of $p$.

We define $g_{1}=h \cdot g \in \operatorname{Diff}^{1}(M)$. By (1), (3), $g_{1}=g$ on the orbit of $p$. Clearly $E^{s}(p ; g)$ is invariant under $T_{p} g^{\alpha}(p)$. But we have

$$
\begin{aligned}
\left\|T_{p} g_{1}^{\alpha(p)} \mid E^{s}(p ; g)\right\| & =\left\|T_{p} h \cdot T_{p} g^{\alpha(p)} \mid E^{s}(p ; g)\right\| \\
& =\left(1-\varepsilon_{1}\right)^{-1}\left\|T_{p} g^{\alpha(p)} \mid E^{s}(p ; g)\right\|=1
\end{aligned}
$$

Since the dimension of $E^{s}(p ; g)$ is one, it follows that $p$ is not hyperbolic for $g_{1}$. By construction, $g_{1}$ is near $f$ in Diff ${ }^{1}(M)$, so $f \notin$ int $\mathscr{H}(U)$. This is a contradiction.
q.e.d.

Proof of Assertion 1. Suppose it is not true. Then, for any $\varepsilon>0$ we have $g \in \mathscr{U}_{1}$ with

$$
\tan d\left(E^{s}(p ; g), E^{u}(p ; g)\right)<2^{-1} \varepsilon(1-\lambda)
$$

for some $p \in \operatorname{Sd}(g) \cap U_{g}$, where $\mathscr{U}_{1}$ and $\lambda$ are the ones given in Assertion 3. Let $\alpha$ be the period of $p$. Take a small neighborhood $Q$ of $p$ with
(1) $\quad Q \nexists g^{n}(p), \forall 1 \leq n \leq \alpha-1$.

We denote by $W_{r}^{s}(p ; g)\left(W_{r}^{u}(p ; g)\right)$ the local stable (unstable) manifold of size $r>0$. We choose orthogonal coordinates ( $t, v$ ) in $Q$ with origin at $p$ such that the $t$-axis is $W_{r}^{s}(p ; g)$.

The function $v=\psi(t)$ representing $W_{r}^{u}(p ; g)$ has the form:
(2) $\psi(t)=c \cdot t+R(t), t \in(-r, r)$.
(3) $|c|<2^{-1} \varepsilon(1-\lambda)$.
(4) $R(0)=R^{\prime}(0)=0$.

By (4), taking $r$ small, we may assume:
(5) $\left|R^{\prime}(t)\right|<2^{-1} \varepsilon(1-\lambda), \forall t \in(-r, r)$.

So we have
(6) $|R(t)|<2^{-1} \varepsilon(1-\lambda) r, \forall t \in(-r, r)$.

Noting $p=g^{\alpha}(p)=(0,0)$, we define $C^{1}$ mappings $h_{1}, h_{2}:(-r, r) \rightarrow$ $(-r, r)$ respectively by
(7) $h_{1}(t)=\pi_{1} g^{\alpha}(t, 0)$,
(8) $h_{2}(t)=\pi_{1} g^{-\alpha}(t, \psi(t))$, where $\pi_{1}$ is the projection on the first factor. Since $\left|h_{1}^{\prime}(0)\right|<\lambda,\left|h_{2}^{\prime}(0)\right|<\lambda$, by taking $r$ small enough we have
(9) $\left|h_{1}(t)\right| \leq \lambda|t|,\left|h_{2}(t)\right| \leq \lambda|t|, \forall t \in(-r, r)$.

Put $b=r / 2$ and $\delta=(1-\lambda) b$. For $\forall t \in(-r, r)$ we have
(10) $|\psi(t)| \leq|c| r+|R(t)|<\varepsilon r(1-\lambda)=2 \varepsilon \delta$,
(11) $\left|\psi^{\prime}(t)\right| \leq|c|+\left|R^{\prime}(t)\right|<\varepsilon(1-\lambda)<\varepsilon$.

Let $x_{1}=(b, 0), x_{2}=(b, \psi(b))$. Then

$$
\begin{aligned}
& \left|\pi_{1} g^{\alpha}\left(x_{1}\right)-b\right|=\left|h_{1}(b)-b\right|>b-\lambda b=\delta, \\
& \left|\pi_{1} g^{\alpha}\left(x_{2}\right)-b\right|=\left|h_{2}(b)-b\right|>b-\lambda b=\delta .
\end{aligned}
$$

Hence we have
(12) $\left\|g^{\alpha}\left(x_{1}\right)-x_{1}\right\|>\delta$,
(13) $\left\|g^{-\alpha}\left(x_{2}\right)-x_{1}\right\|>\delta$.

We define a $C^{1}$ mapping $k: Q \rightarrow Q$ as follows: Let $\phi: \boldsymbol{R} \rightarrow \boldsymbol{R}$ be a $C^{1}$ function with $\phi(-\infty, 1 / 2]=1, \phi[1, \infty)=0$.
(14) $k(t, v)=\left(t, v-\phi\left(\left\{(t-b)^{2}+v^{2}\right\} / \delta^{2}\right) \cdot \psi(t)\right)$.

Then the following holds:
(15) $k(t, \psi(t))=(t, 0)$, if $|t-b|$ is sufficiently small.
(16) $k(x)=x$, if $\left\|x-x_{1}\right\|>\delta$.
(17) $k$ is near the identity of $Q$ in the $C^{1}$ sense when $\varepsilon$ is small.

The last is shown as follows. By (10), (17) is true in the $C^{0}$ sense. By (10), (11) and the fact that $\phi\left(\left\{(t-b)^{2}+v^{2}\right\} / \delta^{2}\right)=0$ if $|t-b|>\delta$, we have

$$
\begin{aligned}
&\left\|\frac{\partial}{\partial t}\{k(t, v)-(t, v)\}\right\| \mid \phi^{\prime}\left(\left\{(t-b)^{2}+v^{2}\right\} / \delta^{2}\right) \cdot 2 \delta^{-2}(t-b) \cdot \psi(t) \\
&+\phi\left(\left\{(t-b)^{2}+v^{2}\right\} / \delta^{2}\right) \cdot \psi^{\prime}(t) \mid \\
& \leq\left|\phi^{\prime}\right| \cdot 2 \delta^{-2} \delta \cdot 2 \varepsilon \delta+|\phi| \varepsilon \\
&=\left(4\left|\phi^{\prime}\right|+|\phi|\right) \varepsilon \rightarrow 0 .
\end{aligned}
$$

We also have the same result about $\partial / \partial v$. Thus (17) follows.
We extend $k$ to a mapping of $M \rightarrow M$ by letting $k(x)=x$ for $x$ outside $Q$. By (17) we make $k$ a diffeomorphism of $M$. Then we define $g_{1}=k \cdot g$ $\in \operatorname{Diff}^{1}(M)$. By (1), (16), we have
(18) $g_{1}^{n}(p)=g^{n}(p), \quad \forall n \in Z$.

In particular, $p$ is a periodic point of $g_{1}$.
By (1) and (16) we have

$$
g_{1}^{-\alpha}\left(x_{1}\right)=\left(g^{-1} k^{-1}\right)^{\alpha}\left(x_{1}\right)=g^{-\alpha}\left(x_{2}\right) .
$$

So it follows from (13), (9) that

$$
g_{1}^{-n \alpha}\left(g^{-\alpha}\left(x_{2}\right)\right)=g^{-n \alpha}\left(g^{-\alpha}\left(x_{2}\right)\right), \quad \forall n \geq 1
$$

Hence we have
(19) $\quad g_{1}^{-n \alpha}\left(x_{1}\right)=g^{-n \alpha}\left(x_{2}\right), \quad \forall n \geq 1$.

This implies that $x_{1} \in W^{u}\left(p ; g_{1}\right)$, because $g_{1}^{-n \alpha}\left(x_{1}\right)$ approaches $p$ as $n \rightarrow \infty$. By (15), we can prove similarly that any point of the form ( $t, 0$ ) with $|t-b|$ small enough is contained in $W^{u}\left(p ; g_{1}\right)$.

By (12) and (16), we have

$$
g_{1}^{\alpha}\left(x_{1}\right)=(k \cdot g)^{\alpha}\left(x_{1}\right)=k \cdot g^{\alpha}\left(x_{1}\right)=g^{\alpha}\left(x_{1}\right) .
$$

Similarly we have
(20) $g_{1}^{n a}\left(x_{1}\right)=g^{n a}\left(x_{1}\right), \quad \forall n \geq 1$.

This implies that $x_{1} \in W^{s}\left(p ; g_{1}\right)$. Also, we can prove similarly that any point of the form $(t, 0)$ with $|t-b|$ small enough is contained in $W^{s}\left(p ; g_{1}\right)$.

Thus it is proved that $x_{1}$ is a non-transversal homoclinic point of $g_{1}$. It is clear that the $g_{1}$ orbit of $x_{1}$ meets $U$ and hence $g_{1}$ has a nontransversal homoclinic point in $U$. By Lemma A in Appendix, we have a small perturbation of $g_{1}$ with a non-hyperbolic periodic point in $U$. This contradicts the hypothesis, i.e. $f \in \operatorname{int} \mathscr{H}(U)$.

For the proof of Assertion 2 we first prove the following. For $\forall p \in$ $\operatorname{Sd}(f) \cap U_{f}$, we define $N(p)$ to be the smallest positive integer $n$ such that

$$
\left\|T f^{n}\left|E^{s}(p ; f)\|/\| T f^{n}\right| E^{u}(p ; f)\right\|<\lambda .
$$

Clearly, $N(p)$ does not exceed the period of $p$.
Assertion 4. $\quad \sup \left\{N(p) ; p \in \operatorname{Sd}(f) \cap U_{f}\right\}<\infty$.
Proof. Given $\varepsilon>0$, take a positive integer $n_{0}$ such that
(1) $(1-\lambda)^{n_{0}}<\lambda \varepsilon^{2}$.

Suppose the above is not true. Then there is $p \in \operatorname{Sd}(f) \cap U_{f}$ with $N(p)$ $\geq n_{0}+3$. Let $\tau$ be the greatest integer such that $2 \tau+2 \leq N(p)$. Let $\alpha$ be the period of $p$. Then,
(2) $n_{0}+2 \leq 2 \tau+2 \leq N(p) \leq \alpha$.

We take unit vectors $V^{s} \in E^{s}(p ; f), V^{u} \in E^{u}(p ; f)$. In what follows, we simply write
(3) $p_{n}=f^{n-1}(p)$,
(4) $V_{n}^{s}=T f^{n-1}\left(V^{s}\right), V_{n}^{u}=T f^{n-1}\left(V^{u}\right), \forall n \in Z$.

Note that $p_{\alpha}=p_{0}$ but $V_{\alpha}^{s} \neq V_{0}^{s}, V_{\alpha}^{u} \neq V_{0}^{u}$.
By Lemma $\mathrm{B}_{2}$.in Appendix we construct $h=h_{t} \in \operatorname{Diff}^{1}(M)$ with the following properties (5) ~(11) in such a way that $h$ approaches the identity in the $C^{1}$ sense as $\varepsilon \rightarrow 0$.
(5) $h\left(p_{n}\right)=p_{n}, \forall 0 \leq n<\alpha$.
(6) $h(x)=x, \forall x$ outside a small neighborhood of $\left\{p_{n} ; 0 \leq n<\alpha\right\}$.
(7) $T_{p_{1}} h\left(V_{1}^{s}\right)=V_{1}^{s}, T_{p_{1}} h\left(V_{1}^{u}\right)=V_{1}^{u}+\varepsilon V_{1}^{s}$.
(8) $\forall 2 \leq n \leq \tau+1$;

$$
T_{p_{n}} h\left(V_{n}^{s}\right)=(1-\varepsilon)^{-1} V_{n}^{s}, \quad T_{p_{n}} h\left(V_{n}^{u}\right)=(1-\varepsilon) V_{n}^{u} .
$$

(9) $\forall \tau+2 \leq n \leq 2 \tau+1$;

$$
T_{p_{n}} h\left(V_{n}^{s}\right)=(1-\varepsilon) V_{n}^{s}, \quad T_{p_{n}} h\left(V_{n}^{u}\right)=(1-\varepsilon)^{-1} V_{n}^{u} .
$$

(10) $\forall 2 \tau+2 \leq n \leq \alpha-1$; $T_{p_{n}} h: T_{p_{n}} M \longleftrightarrow$ is the identity.
(11) $T_{p_{\alpha}} h\left(V_{\alpha}^{s}\right)=V_{\alpha}^{s}, T_{p_{\alpha}} h\left(V_{\alpha}^{u}\right)=V_{\alpha}^{u}-\varepsilon V_{\alpha}^{s}$.

Then we define $g=h \cdot f \in \operatorname{Diff}^{1}(M)$. By (5),
(12) $g^{n}(p)=f^{n}(p), \forall n \in \boldsymbol{Z}$.

It follows from (8), (9), (10) that
(13) $T_{p_{1}} g^{n}=T_{p_{1}} f^{n}, \forall 2 \tau \leq n \leq \alpha-2$.

Now we want to show that
(14) $T_{p_{0}} g^{\alpha}=T_{p_{0}} f^{\alpha}$.

For this, it is sufficient to show the following:
(15) $T_{p_{0}} g\left(V_{0}^{s}\right)=V_{\alpha}^{s}, T_{p_{0}} g\left(V_{0}^{u}\right)=V_{\alpha}^{u}$.

The first is easily shown, so we check the latter:

$$
\begin{array}{rlrl}
T_{p_{0}} g^{\alpha}\left(V_{0}^{u}\right) & =T_{p_{\alpha-1}} g T_{p_{1}} g^{\alpha-2} T_{p_{0}} g\left(V_{0}^{u}\right) \\
& =\left(T_{p_{2}} h T_{p_{\alpha-1}} f\right) \cdot\left(T_{p_{1}} f^{\alpha-2}\right) \cdot\left(T_{p_{1}} h T_{p_{0}} f\right)\left(V_{0}^{u}\right) & \quad \text { (by (13)) } \\
& =T_{p_{\alpha}} h T_{p_{1}} f^{\alpha-1} T_{p_{1}} h\left(V_{1}^{u}\right) & & \\
& =T_{p_{\alpha}} h T_{p_{1}} f^{\alpha-1}\left(V_{1}^{u}+\varepsilon V_{1}^{s}\right) & & (\text { by (7)) } \\
& =T_{p_{\alpha}} h\left(V_{\alpha}^{u}+\varepsilon V_{\alpha}^{s}\right) & & \text { (by (4)) } \\
& =\left(V_{\alpha}^{u}-\varepsilon V_{\alpha}^{s}\right)+\varepsilon V_{\alpha}^{s} & & \text { (by (11)) } \\
& =V_{\alpha}^{u} . & &
\end{array}
$$

It follows from (14) that $g^{\alpha}$ is hyperbolic at $p_{0}$ and
(16) $E^{u}\left(p_{0} ; g\right)=E^{u}\left(p_{0} ; g\right)$.

It is also clear by the construction of $h$ that
(17) $E^{s}\left(p_{n} ; g\right)=E^{s}\left(p_{n} ; f\right), \forall 0 \leq n<\alpha$.

Now we are in a position to conclude the proof. We estimate $d\left(E^{s}\left(p_{\tau+1} ; g\right), E^{u}\left(p_{\tau+1} ; g\right)\right)$. By virtue of (16) and (17), this is equal to the angle $\theta$ between $T_{p_{0}} g^{\tau+1}\left(V_{0}^{u}\right)$ and $E^{s}\left(p_{\tau+1} ; f\right)$.

Write $T_{p_{0}} g^{\tau+1}\left(V_{0}^{u}\right)=\left(w_{s}, w_{u}\right)$ regarding $E^{s}\left(p_{\tau+1} ; f\right) \oplus E^{u}\left(p_{\tau+1} ; f\right)$. Let us compute $w_{s}, w_{u}$.

$$
\begin{aligned}
T_{p_{0}} g^{\tau+1}\left(V_{0}^{u}\right) & =T_{p} g^{\tau}\left(\varepsilon V_{1}^{s}+V_{1}^{u}\right) \quad(\text { by (7)) } \\
& =\varepsilon T_{p} g^{\tau}\left(V_{1}^{s}\right)+T_{p} g^{\tau}\left(V_{1}^{u}\right) \\
& =\varepsilon(1-\varepsilon)^{\tau \tau} T_{p} f^{\tau}\left(V_{1}^{s}\right)+\left(1-\varepsilon \tau^{\tau} T_{p} f^{\tau}\left(V_{1}^{u}\right) .\right.
\end{aligned}
$$

Hence
(18) $\quad w_{s}=\varepsilon(1-\varepsilon)^{-\tau} T_{p} f^{\tau}\left(V_{1}^{s}\right), w_{u}=(1-\varepsilon)^{\tau} T_{p} f^{\tau}\left(V_{1}^{u}\right)$.

By (2) and the definition of $N(p)$, it follows that

$$
\begin{align*}
\left\|w_{u}\right\| /\left\|w_{s}\right\|= & \varepsilon^{-1}(1-\varepsilon)^{2 \tau}\left\|T_{p} f^{\tau}\left(V_{1}^{u}\right)\right\| /\left\|T_{p} f^{\tau}\left(V_{1}^{s}\right)\right\| \quad \text { (by (18)) }  \tag{18}\\
& <\varepsilon^{-1} \lambda^{-1}(1-\varepsilon)^{2 \tau} \\
& <\varepsilon^{-1} \lambda^{-1}(1-\varepsilon)^{n_{0}}<\varepsilon \quad \text { (by (1)) } .
\end{align*}
$$

Hence it follows that

$$
\cos \theta=\left(w_{s}+w_{u}\right) \cdot w_{u} /\left\|w_{s}+w_{u}\right\|\left\|w_{u}\right\|>(1-\varepsilon) /(1+\varepsilon) \longrightarrow 1,
$$

as $\varepsilon \rightarrow 0$.
Therefore, $\theta$ approaches 0 as $\varepsilon \rightarrow 0$, which contradicts Assertion 1.
q.e.d.

Proof of Assertion 2. By Assertion 4, let

$$
N=\sup \left\{N(p) ; p \in \operatorname{Sd}(f) \cap U_{f}\right\}<\infty
$$

Put $C=\|T f\|\left\|T f^{-1}\right\|$. We take a positive integer $m$ with $C^{N} \lambda^{m}<1 / 2$. Let $\nu=(m+1) N$.

For $\forall p \in \operatorname{Sd}(f) \cap U_{f}$, we define $q_{1}, q_{2}, \cdots, q_{r+1} \in \operatorname{Sd}(f)$ as follows:
(1) $q_{1}=p$.
(2) $q_{i+1}=f^{N\left(q_{i}\right)}\left(q_{i}\right), 1 \leq i \leq r$.
(3) $\nu-N \leq \sum_{i=1}^{r} N\left(q_{i}\right)<\nu$.

Since $N\left(q_{i}\right) \leq N, \forall 1 \leq i \leq r$, it follows that $r N \geq \nu-N=m N$ and hence $r \geq m$.

Noting $E^{s}, E^{u}$ are 1 dimensional, we have

$$
\begin{aligned}
\frac{\left\|T f^{\nu} \mid E^{s}(p)\right\|}{\left\|T f^{\nu} \mid E^{u}(p)\right\|} & \leq C^{N} \prod_{i=1}^{r} \frac{\left\|T f^{N\left(q_{i}\right)} \mid E^{s}\left(q_{i}\right)\right\|}{\left\|T f^{N\left(q_{i}\right)} \mid E^{u}\left(q_{i}\right)\right\|} \\
& \leq C^{N} \lambda^{r} \leq C^{N} \lambda^{m}<1 / 2
\end{aligned}
$$

(The second inequality follows from the definition of $N\left(q_{i}\right)$.) q.e.d.

## §6. Appendix

Let $M$ be a compact manifold without boundary. Let $f: M \rightarrow M$ be a $C^{1}$ diffeomorphism. The purpose here is to prove the following.

Lemma A. If $z \in M$ is a non-transversal homoclinic point of $f$, then $f$ can be approximated by a diffeomorphism with $z$ as a non-hyperbolic periodic point.

Remark. A similar result was proved by Newhouse [4] in a different way.

We will apply the perturbation lemmas below to the proof of Lemma A. We fix a metric $d$ on $M$ and a $C^{1}$ metric $d^{1}$ on a neighborhood of $I$ in $\operatorname{Diff}^{1}(M)$, where $I$ is the identity of $M$.

Lemma $\mathrm{B}_{1}$. There are constants $C>0, \eta>0$ depending only on $d$ and $d^{1}$ with the following property: Let $x_{1}, x_{2} \in M$. If $d\left(x_{1}, x_{2}\right)<\varepsilon \delta$ for $0<\varepsilon$ $<\eta, 0<\delta<\eta$, then we have a $(C \varepsilon)-C^{1}$ perturbation $k$ of I, i.e. $d^{1}(k, I)$ $<C \varepsilon$, such that $k\left(x_{1}\right)=x_{2}$, and if $d\left(y, x_{1}\right)>\delta, k(y)=y$.

Lemma $\mathrm{B}_{2}$. There are constants $C>0, \eta>0$ depending only on $d^{1}$ with the following property: Let $x \in M$ and let $L_{x}: T_{x} M \longleftrightarrow$ be a linear mapping. Let $I_{x}$ be the identity of $T_{x} M$. If $\left\|L_{x}-I_{x}\right\|<\varepsilon$ for $0<\varepsilon<\eta$, then
for any $\delta>0$ we have a $(C \varepsilon)-C^{1}$ perturbation $k$ of $I$ such that $k(x)=x$, $T_{x} k=L_{x}$, and if $d(y, x)>\delta, k(y)=y$.

These facts are well-known and can be proved easily, so we omit their proofs.

Proof of Lemma A. It is sufficient to consider the case where $z \in$ $W^{s}(p) \cap W^{u}(p)$ for some fixed point $p$ because the other cases can be treated similarly. For convenience we denote by $s, u$ the dimension of $W^{s}(p)$ and $W^{u}(p)$ respectively. In what follows, $D^{s}$ (resp. $D^{u}$ ) denotes the unit disc of $R^{s}\left(\right.$ resp. $\left.R^{u}\right)$ centered at 0 , and $B_{r}(x)$ the ball neighborhood of $x$ of radius $r>0$ in $M$.

We take a coordinate neighborhood $(U, \psi)$ of $p$ with the following properties (1) ~ (4).
(1) $\psi(U)=D^{s} \times D^{u}$.

From now on, we identify $U$ with $D^{s} \times D^{u}$.
(2) $D^{s} \times\{0\} \subset W^{s}(p),\{0\} \times D^{u} \subset W^{u}(p)$.
(3) $30<\lambda<1$;

$$
\begin{array}{ll}
\left\|T_{p} f(v, 0)\right\| \leq \lambda\|v\|, & \forall v \in \boldsymbol{R}^{s}, \\
\left\|T_{p} f^{-1}(0, w)\right\| \leq \lambda\|w\|, & \forall w \in \boldsymbol{R}^{u}
\end{array}
$$

(Note $T_{p} U \approx R^{s} \times \boldsymbol{R}^{u} .\|\cdot\|$ means the Euclidean norm.)
(4) $\forall x \in U \cap f(U) \cap f^{-1}(U)$;

$$
\left\|T_{x} f-T_{p} f\right\|<\alpha, \quad\left\|T_{x} f^{-1}-T_{p} f^{-1}\right\|<\alpha
$$

where $\alpha=(1-\lambda) / 4$.
Remark. As regards (3), refer to Nitecki [5], pp. $71 \sim 73$.
Let $x \in U \cap f(U) \cap f^{-1}(U)$. For $(v, w) \in \boldsymbol{R}^{s} \times \boldsymbol{R}^{u}$, we write $\left(v_{1}, w_{1}\right)=$ $T_{x} f(v, w),\left(v_{2}, w_{2}\right)=T_{x} f^{-1}(v, w)$. Then we have (5) $\sim(8)$ below.
(5) If $\|v\| /\|w\| \leq 1 / 2,\left\|v_{1}\right\| /\left\|w_{1}\right\| \leq 1 / 2$.

Proof. Let $\pi_{1}: \boldsymbol{R}^{s} \times \boldsymbol{R}^{u} \rightarrow \boldsymbol{R}^{s}, \pi_{2}: \boldsymbol{R}^{s} \times \boldsymbol{R}^{u} \rightarrow \boldsymbol{R}^{u}$ be projections.

$$
\begin{aligned}
v_{1} & =\pi_{1} T_{x} f(v, w) \\
& =\pi_{1}\left(T_{x} f-T_{p} f\right)(v, w)+\pi_{1} T_{p} f(v, 0)+\pi_{1} T_{p} f(0, w)
\end{aligned}
$$

Hence we have

$$
\left\|v_{1}\right\|=\alpha(\|v\|+\|w\|)+\lambda\|v\| \leq(\lambda / 2+\alpha / 2+\alpha)\|w\| \leq\|w\| / 2
$$

Similarly

$$
\begin{aligned}
w_{1} & =\pi_{2} T_{x} f(v, w) \\
& =\pi_{2}\left(T_{x} f-T_{p} f\right)(v, w)+\pi_{2} T_{p} f(v, 0)+\pi_{2} T_{p} f(0, w) .
\end{aligned}
$$

and hence

$$
\left\|w_{1}\right\| \geq \lambda^{-1}\|w\|-\alpha(\|v\|+\|w\|) \geq\left(\lambda^{-1}-\alpha / 2-\alpha\right)\|w\| \geq\|w\| .
$$

Thus $\left\|v_{1}\right\| /\left\|w_{1}\right\| \leq 1 / 2$ follows.
q.e.d.
(6) If $\|w\| /\|v\| \leq 1 / 2,\left\|w_{2}\right\| / /\left\|v_{2}\right\| \leq 1 / 2$.

The proof is similar to (5).
(7) If $\|w\| /\|v\| \leq 1 / 2,\left\|v_{1}\right\| \leq \lambda_{1}\|v\|$ where $\lambda_{1}=(1+\lambda) / 2$.

Proof. Decompose $v_{1}$ as in (5). Then we estimate

$$
\left\|v_{1}\right\| \leq \alpha(\|v\|+\|w\|)+\lambda\|v\| \leq(\lambda+2 \alpha)\|v\| \leq \lambda_{1}\|v\| .
$$

Thus we have (7).
q.e.d.
(8) If $\|v\| /\|w\| \leq 1 / 2,\left\|w_{2}\right\| \leq \lambda_{1}\|w\|$.

The proof is similar to (7).
We choose integers $n_{1}, n_{2}$ such that $f^{n_{1}}(z) \in D^{s} \times\{0\}, f^{-n_{2}}(z) \in\{0\} \times D^{u}$ respectively. Remark that these sets really imply their inverse images by $\psi$. Take $\delta>0$ so small that
(9) $f^{n}(z) \notin B_{\delta}\left(z_{1}\right) \cup B_{\delta}\left(z_{2}\right), \forall n ;-n_{2}<n<n_{1}$
where $z_{1}=f^{n_{1}}(z), z_{2}=f^{-n_{2}}(z)$.
Regarding $U \approx D^{s} \times D^{u}$, we write
(10) $z_{1}=\left(a_{1}, 0\right), z_{2}=\left(0, a_{2}\right)$.

Let $\varepsilon>0$ be arbitrary. We define

$$
\begin{aligned}
& F^{u}=\left\{\left(a_{1}, w\right) \in D^{s} \times D^{u} ;\|w\|<\varepsilon \delta\right\}, \\
& F^{s}=\left\{\left(v, a_{2}\right) \in D^{s} \times D^{u} ;\|v\|<\varepsilon \delta\right\} .
\end{aligned}
$$

If $n_{3}$ is sufficiently large, then $f^{-n_{3}}\left(F^{s}\right)$, $f^{n_{3}}\left(F^{u}\right)$ are represented by $C^{1}$ mappings $h_{1}: D^{s} \rightarrow D^{u}$, and $h_{2}: D^{u} \rightarrow D^{s}$ respectively. Furthermore, we can assume
(11) $\left\|h_{1}\right\|<\varepsilon \delta,\left\|h_{2}\right\|<\varepsilon \delta$
(12) $\left\|T h_{1}\right\|<\varepsilon / 2,\left\|T h_{2}\right\|<\varepsilon / 2$.

Let $V$ be a nonzero vector in $T_{z} W^{s}(p) \cap T_{z} W^{u}(p)$. We put
(13) $V_{1}=T_{z} f^{n_{1}}(V), V_{2}=T_{z} f^{-n_{2}}(V)$.

Clearly $V_{1}$ has the form $\left(v_{1}, 0\right)$ with $v_{1} \in \boldsymbol{R}^{s}$, and $V_{2}$ has the form ( $0, w_{2}$ ) with $w_{2} \in \boldsymbol{R}^{u}$. We put
(14) $\quad x_{1}=\left(a_{1}, h_{1}\left(a_{1}\right)\right), x_{2}=\left(h_{2}\left(a_{2}\right), a_{2}\right)$.

Since $x_{1}=f^{-n_{3}}\left(F^{s}\right) \cap F^{u}, x_{2}=F^{s} \cap f^{n_{s}}\left(F^{u}\right)$, it follows that
(15) $\quad x_{2}=f^{n_{3}}\left(x_{1}\right)$.

We put
(16) $\quad w_{1}^{\prime}=T_{a_{1}} h_{1}\left(v_{1}\right)$.

By the definition of $h_{1}$ there is $v_{2} \in \boldsymbol{R}^{s}$ such
(17) $\left(v_{1}, w_{1}^{\prime}\right)=T_{x_{2}} f^{-n_{3}}\left(v_{2}, 0\right)$.

Let us write $\left(v_{i}^{*}, w_{i}^{*}\right)=T_{x_{2}} f^{-i}\left(v_{2}, 0\right), i=0,1, \cdots, n_{3}$. Since $\left\|w_{0}^{*}\right\| /\left\|v_{0}^{*}\right\|=0$ $<1 / 2$, it follows inductively by (6) that $\left\|w_{i}^{*}\right\| /\left\|v_{i}^{*}\right\| \leq 1 / 2, i=0,1, \cdots, n_{3}$. Hence it follows by (7) that
(18) $\quad\left\|v_{2}\right\| \leq \lambda_{1}^{n_{3}}\left\|v_{1}\right\|$.

Likewise we put
(19) $\quad v_{2}^{\prime}=T_{a_{2}} h_{2}\left(w_{2}\right)$.

By the definition of $h_{2}$ there is $w_{1} \in \boldsymbol{R}^{u}$ such that
(20) $\quad\left(v_{2}^{\prime}, w_{2}\right)=T_{x_{1}} f^{n_{3}}\left(0, w_{1}\right)$.

Applying (5) and (8) as above, we have
(21) $\left\|w_{1}\right\|<\lambda_{1}^{n_{3}}\left\|w_{2}\right\|$.

By (18), (21), for sufficiently large $n_{3}$ we have
(22) $\left\|w_{1}\right\| / /\left\|v_{1}\right\|<\varepsilon / 2$,
(23) $\left\|v_{2}\right\| / /\left\|w_{2}\right\|<\varepsilon / 2$.

We define
(24) $V_{1}^{\prime}=\left(v_{1}, w_{1}+w_{1}^{\prime}\right), V_{2}^{\prime}=\left(v_{2}+v_{2}^{\prime}, w_{2}\right)$.

Then we have

$$
\begin{aligned}
T_{x_{1}} f^{n_{3}}\left(V_{1}^{\prime}\right) & =T_{x_{1}} f^{n_{3}}\left(v_{1}, w_{1}+w_{1}^{\prime}\right) \\
& =T_{x_{1}} f^{n_{3}}\left(v_{1}, w_{1}^{\prime}\right)+T_{x_{1}} f^{n_{3}}\left(0, w_{1}\right) \\
& =\left(v_{2}, 0\right)+\left(v_{2}^{\prime}, w\right) \quad(\text { by }(17),(20)) \\
& =V_{2}^{\prime} .
\end{aligned}
$$

That is,
(25) $\quad T_{x_{1}} f^{n_{3}}\left(V_{1}^{\prime}\right)=V_{2}^{\prime}$.

By (24), (13), (22), (23) and (12), we estimate
(26) $\left\|V_{1}-V_{1}^{\prime}\right\| /\left\|V_{1}\right\|<\varepsilon$,
(27) $\left\|V_{2}-V_{2}^{\prime}\right\| /\left\|V_{2}^{\prime}\right\|<\varepsilon$.

By (26) we have a linear mapping $L_{1}: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{m}(m=\operatorname{dim} M)$ such that
(28) $L_{1}\left(V_{1}\right)=V_{1}^{\prime}$,
(29) $\left\|L_{1}-I\right\|<\varepsilon$, where $I$ is the identity of $\boldsymbol{R}^{m}$.

For example, take an orthogonal basis $\left\{V_{1}, e_{2}, \cdots, e_{m}\right\}$, and define $L_{1}$ by

$$
\begin{aligned}
& L_{1}\left(t_{1} V_{1}+t_{2} e_{2}+\cdots+t_{m} e_{m}\right)=t_{1} V_{1}^{\prime}+t_{2} e_{2}+\cdots+t_{m} e_{m} \\
& \forall t_{i} \in R ; 1 \leq i \leq m
\end{aligned}
$$

Similarly, by (27) we have a linear mapping $L_{2}: \boldsymbol{R}^{m} \rightarrow \boldsymbol{R}^{m}$ such that
(30) $L_{2}\left(V_{2}^{\prime}\right)=V_{2}$,
(31) $\left\|L_{2}-I\right\|<\varepsilon$.

By the way, we defined $z_{1}=f^{n_{1}}(z), z_{2}=f^{-n_{2}}(z)$. By (10), (11) and (14) we have
(32) $\left\|z_{1}-x_{1}\right\|<\varepsilon \delta$,
(33) $\left\|z_{2}-x_{2}\right\|<\varepsilon \delta$.

By (29), (31), (32) and (33) we can apply Lemmas $\mathrm{B}_{1}$ and $\mathrm{B}_{2}$ to constructing $k \in \operatorname{Diff}^{1}(M)$ such that
(34) $k\left(z_{1}\right)=x_{1}, T_{z_{1}} k=L_{1}$.
(35) $k\left(x_{2}\right)=z_{2}, T_{x_{2}} k=L_{2}$.
(36) $k(x)=x, \forall x \notin B_{\hat{o}}\left(z_{1}\right) \cup B_{\hat{j}}\left(z_{2}\right)$.
(37) $k$ is a $(C \varepsilon)-C^{1}$ perturbation of the identity of $M$ ( $C$ is the one in Lemmas $B_{1}$ and $B_{2}$ ).

Now we shall conclude the proof. Define $g=k \cdot f \in \operatorname{Diff}^{1}(M)$. First, it follows easily from (9), (15), (34), (35) and (36) that $z$ is a periodic point of $g$ of period $n_{1}+n_{2}+n_{3}$. We show that

$$
T_{z} g^{n_{1}+n_{2}+n_{3}}(V)=V
$$

which implies that $z$ is not hyperbolic.

$$
\begin{array}{rlrl}
T_{2} g^{n_{1}+n_{2}+n_{3}}(V) & =T_{x_{1}} g^{n_{2}+n_{3}} T_{z_{1}} k T_{z} f^{n_{1}}(V) \quad \text { (by (9), (36)) } \\
& =T_{x_{1}} g^{n_{2}+n_{3}} L_{1}\left(V_{1}\right) & & (\text { by (13), (34)) } \\
& =T_{x_{1}} g^{n_{2}+n_{3}}\left(V_{1}^{\prime}\right) & & (\text { by (28)) } \\
& =T_{z_{2}} g^{n_{2}} L_{2}\left(V_{2}^{\prime}\right) & & \text { (by (25), (35)) } \\
& =T_{z_{2}} f^{n_{2}}\left(V_{2}\right) & & \text { (by (9), (36); (30)) } \\
& =V & & \text { (by (13)). }
\end{array}
$$

Clearly $g$ is near $f$ in $\operatorname{Diff}^{1}(M)$ by virtue of (37).

## References

[1] M. Hirsch, C. Pugh and M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, 1977.
[2] R. Mañé, Expansive diffeomorphisms, Proc. Symp. on Dynamical Systems-Warwick, Lecture Notes in Math., 468, 162-174, Springer-Verlag, 1975.
[3] - Contributions to the stability conjecture, Topology, 17 (1978), 383-396.
[4] S. Newhouse, Quasi-elliptic periodic points in conservative dynamical systems, Amer. J. Math., 99 (1977), 1061-1087.
[5] Z. Nitecki, Differentiable dynamics, The M.I.T. Press, Cambridge, Mass., 1971.
[6] V. Pliss, The coarseness of a sequence of linear systems of second-order differential
equations with periodic coefficients, Diff. Uravneniya, 7 (1971), 261-270.
[7] C. Pugh, An improved closing lemma and a general density theorem, Amer. J. Math., 89 (1967), 1010-1021.
[ 8 ] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc., 73 (1967), 747-817.
[9] J. Franks, Anosov diffeomorphisms, Proc. Symp. Pure Math., 14, Amer. Math. Soc. (1970), 61-93.

Kyoto University


[^0]:    Received July 21, 1978.
    Revised November 24, 1978.

