
JFP 33, e12, 18 pages, 2023. c© The Author(s), 2023. Published by Cambridge University Press. This is an Open 1
Access article, distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted re-use, distribution and reproduction, provided the original article is
properly cited.
doi:10.1017/S095679682200017X

F U N C T I O N A L P E A R L

Certified, total serialisers with an application to
Huffman encoding

R A L F H I N Z E
RPTU Kaiserslautern-Landau, Germany

(e-mail: ralf.hinze@cs.rptu.de)

1 Introduction

The other day, I was assembling lecture material for a course on Agda. Pursuing an
application-driven approach, I was looking for correctness proofs of popular algorithms.
One of my all-time favourites is Huffman data compression (Huffman, 1952). Even though
it is probably safe to assume that you are familiar with this algorithmic gem, a brief
reminder of the essential idea may not be amiss.

A common representation of a textual document on a computer uses the ASCII character
encoding scheme. The scheme uses seven or eight bits to represent a single character. The
idea behind Huffman compression is to leverage the fact that some characters appear more
frequently than others. Huffman encoding moves away from the fixed-length encoding
of ASCII to a variable-length encoding, in which more frequently used characters have a
shorter bit encoding than rarer ones. As an example, consider the text

eight�in�the�evening (1.1)

and observe that the letter e occurs four times, whereas v occurs only once. The code table
shown below gives a possible encoding for the eight different letters occurring in the text.

� 111 e 01 g 1101 h 000

i 100 n 101 t 001 v 1100
(1.2)

The more frequent a character, the shorter the code. Using the encoding above, the
text (1.1) is compressed to the following bit string:

01100110100000111110010111100100001111011100011011001011101

The compressed text only occupies 59 bits, comparing favourably to the 160 bits of the
standard ASCII encoding.

There is an impressive proof of correctness and optimality given in Coq (Théry, 2004).
Unfortunately, the formalisation is slightly too elaborate to be presented in a single

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1017/S095679682200017X
https://orcid.org/0000-0001-5678-0286
mailto:ralf.hinze@cs.rptu.de
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S095679682200017X&domain=pdf
https://doi.org/10.1017/S095679682200017X


2 R. Hinze

lecture as it consists of more than 6K lines of code. The excellent text book on “Verified
Functional Programming” (Stump, 2016) contains a case study on “Huffman Encoding
and Decoding.” Alas, even though framed in Agda, the chapter treats neither correctness
nor optimality.

So I decided to give it a go myself. Compared to the formalisation in Coq, my goals
were more modest and more ambitious at the same time. More modest, as I decided to
concentrate on correctness: decoding an encoded text gives back the original string. More
ambitious, as I was aiming for a compositional design: Huffman compression should work
seamlessly with standard bit serialisers.

Setting up a library for de/serialisers turned out to be a challenge in its own right. Indeed,
we dedicate half of the pearl to its design and implementation. From an implementation
perspective, a serialiser is like a pretty printer, except that its output, a bit string, is not par-
ticularly pretty. Likewise, a deserialiser can be seen as a simple recursive-descent parser. A
parser is a partial function: it fails with an error message if it does not recognise the input; a
recursive-descent parser may also fail to terminate. The library addresses the two sources
of partiality in different ways. The first type of failure is unavoidable: if a deserialiser
is applied to faulty data, it may unexpectedly exhaust the input. However, a deserialiser
applied to the output of its mate should return the original value, like a Huffman decoder.
To establish correctness, the library offers a set of proof combinators that allow the user
to link parsers to printers. The second type of failure, non-termination, should ideally be
avoided altogether: we aim for total parsing combinators, parsers that come with a termi-
nation guarantee. It will be interesting to see how this goal can be achieved in the spirit
of combinator libraries, hiding the nitty-gritty details from the user. Now, without further
ado, let’s see the core library in action.

The complete Agda code can be found in the accompanying material. Appendix 1 lists
some basic types and functions.

2 Sneak preview

To illustrate the trinity of printer, parser, and proof combinators, we use the type of bushes,
defined below, as a running example. (A similar datatype is required later for Huffman
encoding, so our efforts are not wasted.)

data Bush : Set where
Leaf : Bush
Fork : Bush → Bush → Bush

For each type A whose elements we wish to serialise, we define a module called
Codec-A.

module Codec-Bush where

Printing combinators. A bit string or code is generated using ε, _·_, O, and I. The encoder
for bushes employs all four combinators.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 3

encode : Bush → Code
encode (Leaf) = O · ε
encode (Fork t u) = I · encode t · encode u · ε

An encoder for elements of type A is typically defined by structural recursion on A, encode
is no exception. Each constructor is encoded by a suitable number of bits followed by the
encodings of its arguments, if any. For the example at hand, a single bit suffices. In gen-
eral, we require �log2 n� bits if the datatype comprises n constructors. (Of course, we may
also apply Huffman’s idea to the encoding of constructors using variable-length instead of
fixed-length bit codes.) Concatenation _·_ is associative with ε as its neutral element, so
the trailing εs seem a bit odd—odd, but convenient as we shall see shortly.

Parsing combinators. Decoders can be most conveniently defined using do-notation as
the type of decoders has the structure of a monad.

{-# TERMINATING #-}
decode′ = O: return Leaf

I: do t ← decode′; u ← decode′; return (Fork t u)

The decoder performs a case analysis on the first bit of the implicit input bit string, and
then, it decodes the arguments, if any. In the best, or, worst tradition of Haskell, decode′

is defined recursively. Unfortunately, Agda is not able to establish its termination. All
is safe, however: the case analysis O: . . . I: . . . consumes a bit, so both recursive calls
process strictly smaller bit strings. The pragma preceding the definition communicates our
findings to Agda.

We have come across a well-known problem in parsing: a recursive-descent parser may
fail to terminate if the underlying grammar is left-recursive. Consequently, when decoders
are defined recursively, we need to make sure that each recursive call is guarded by at least
one case combinator. Are we happy to accept the potential threat of non-termination? No!
We should be able to do better than that. And indeed, the parser library features a grown-up
version of case analysis that allows for safe recursive calls.

decode : Decoder Bush
decode = O-rec: (λ bush → return Leaf)

I-rec: (λ bush → do t ← bush; u ← bush; return (Fork t u))

The combinator O-rec:_I-rec:_ can be seen as a recursion principle for bit strings; it passes
the ability to issue recursive calls to each branch. All is well now: Agda happily accepts
the definition; decode terminates on all inputs.

Proof combinators. We have created two independent artefacts: an encoder and a
decoder. It remains to relate the two: we require that decoding an encoded value gives
back the original value. To capture this property, we make use of a ternary relation, relat-
ing bit strings, values, and decoders: s 〈 a 〉 p holds iff p “applied” to s returns a. The
correctness criterion then reads

∀ (a : A) → encode a 〈 a 〉 decode. (2.1)

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


4 R. Hinze

The library offers six proof combinators for discharging the proof obligation, presented
as proof rules below. (Each rule is actually the type of the proof combinator—“propositions
as types” at work.)

ε 〈 a 〉 return a
ε-axiom

s 〈 a 〉 p t 〈 b 〉 q a

s · t 〈 b 〉 p �= q
· -rule

The axiom relates the unit of the monoid to the “unit” of the monad; the rule relates the
multiplication of the monoid to the “multiplication” of the monad.

s 〈 a 〉 p

O · s 〈 a 〉 (O: p I: q)
O-rule

t 〈 a 〉 q

I · t 〈 a 〉 (O: p I: q)
I-rule

The case parser consumes a bit and then acts as one of the branches. The recursive variant
additionally passes “itself” to the branch.

s 〈 a 〉 P (O-rec: P I-rec: Q)

O · s 〈 a 〉 (O-rec: P I-rec: Q)
O-Rule

t 〈 a 〉 Q (O-rec: P I-rec: Q)

I · s 〈 a 〉 (O-rec: P I-rec: Q)
I-Rule

The proof of correctness then typically proceeds by structural recursion on the type of
the to-be-encoded values, here the type of bushes.

correct′ (Leaf) = O-Rule ε-axiom
correct′ (Fork t u) = I-Rule (·-rule (correct′ t) (·-rule (correct′ u) ε-axiom))

Two remarks are in order.
The definition of encode features trailing εs so that all three artefacts, printers, parsers,

and proofs, exhibit exactly the same structure. Any deviation incurs additional proof effort
as monoid and monad laws do not hold on the nose, for example, s · ε is not definitionally
equal to s, only propositionally.

Each proof combinator takes a couple of implicit arguments—the variables appear-
ing in the proof rules. Agda happily infers these arguments from the data provided, with
one exception: the ·-rule needs p and q as explicit arguments. Consequently, the proof is
actually more verbose.

correct : ∀ (t : Bush) → encode t 〈 t 〉 decode
correct (Leaf) = O-Rule ε-axiom
correct (Fork t u) =
I-Rule (·-rule decode (λ t′ → do u′ ← decode; return (Fork t′ u′)) (correct t)

(·-rule decode (λ u′ → return (Fork t u′)) (correct u)
(ε-axiom)))

On the positive side, the additional arguments show very clearly how the parsing process
proceeds, creating a Fork in two steps.

Codecs. For convenience, the three entities are wrapped up in a record.

record Codec (A : Set) : Set where
field encode : A → Code

decode : Decoder A
correct : ∀ (a : A) → encode a 〈 a 〉 decode

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 5

data Natural : Set where
zero : Natural
succ : Natural → Natural

module Codec-Natural where
encode : Natural → Code
encode (zero) = O · ε
encode (succ n) = I · encode n · ε
decode : Decoder Natural
decode = O-rec: (λ natural → return zero)

I-rec: (λ natural → do n ← natural; return (succ n))

correct : ∀ (n : Natural) → encode n 〈 n 〉 decode
correct (zero) = O-Rule ε-axiom
correct (succ n) = I-Rule (·-rule decode (λ n′ → return (succ n′)) (correct n)

(ε-axiom))

Natural : Codec Natural
Natural = record {Codec-Natural}

Fig. 1. A codec for natural numbers.

For each serialisable type A : Set we define a codec A : Codec A. You may want to view
Codec as a property of a type, or as a type class and Codec A as an instance dictionary.

Bush : Codec Bush
Bush = record {Codec-Bush}

The definition makes use of a nifty Agda feature: the syntax record {M} : R constructs a
record of type R, using suitable components from the module M.

For reference, Figure 1 shows a codec for a second example, the naturals. This completes
the description of the interface. Next, we turn to the implementation, starting with parsing
combinators as their design dictates everything else.

3 Parsing combinators

The goal is clear: our parsing combinators should come with a termination guarantee as
Agda is not able to establish termination of recursively defined decoders. To understand
the cure, let us delve a bit deeper into the problem.

First, we introduce the type of bit strings. A bit string is either empty, written [], or a
binary digit, 0 or 1, followed by a bit string.

data Bits : Set where
[] : Bits
0 1 : Bits → Bits

The problem. A decoder is a deterministic parser, combining state, bit strings of type Bits,
and partiality, the Maybe monad (see Appendix 1). Not using any special combinators, a
decoder for bushes can be implemented as follows.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


6 R. Hinze

{-# TERMINATING #-}
decode : Bits → Maybe (Bush × Bits)
decode [] = undefined
decode (0 bs) = return (Leaf , bs)
decode (1 bs) = do (t , bs′) ← decode bs

(u , bs′′) ← decode bs′

return (Fork t u , bs′′)

Observe how the state, the bit string, is threaded through the program. Putting the termi-
nation spectacles on, the first recursive call is benign as bs is an immediate substring of
1 bs. The second recursive call is, however, problematic as decode is applied to the string
returned from the first call. Agda has no clue that bs′ is actually smaller than bs.

The recursion pattern is an instance of course-of-values recursion or strong recursion
where a function recurses on all smaller values, for example, where f (n + 1) is computed
from f (0), . . . , f (n). Perhaps a short detour is worthwhile to remind ourselves of this
induction and recursion principle.

Detour: strong versus structural recursion. Say, P : N → Set is a property of the
naturals, established by strong induction. Strong induction can be reduced to struc-
tural induction by proving a stronger property: Q m = P 0 ∧ · · · ∧ P m, or, avoiding
ellipsis Q m = ∀ n → m � n → P n.

Say, f : N → A is a function from the naturals, defined by strong recursion. Strong
recursion can be reduced to structural recursion by defining a stronger function:
g m : ∀ n → m � n → A. Consider as an example,

f : (n : N) → N
f (zero) = 1
f (succ n) = sf n where

sf : (i : N) → N
sf (zero) = f (zero)
sf (succ i) = f (succ i) + sf i

This is the simplest, non-trivial example I could think of: f (n + 1) is given by the sum
of all smaller values: f (0) + · · · + f (n). (Do you see what f computes?) Its stronger
counterpart is given by

g : (m : N) → ∀ n → m � n → N
g m (zero) (zero) = 1
g (succ m) (succ n) (succ m�n) = sg n m�n where

sg : (i : N) → m � i → N
sg (zero) below = g m (zero) below
sg (succ i) below = g m (succ i) below + sg i (�-transitive below succ-n�n)

If we remove the first and the third argument of g and the second argument of the
helper function sg, we get back the original definition: g m n m�n ≡ f n for all natural
numbers m and n with m�n: m � n. In particular, f can be reduced to its counterpart:
f n = g n n �-reflexive. Observe that g is defined by structural recursion on the first
argument; the helper function maintains the invariant that the “actual” argument i is at
most m.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 7

The solution. Returning to our application, we would like to define decoders by strong
induction over the length of bit strings. As a preparatory step, we replace the original
definition of Bits by an indexed type that records the length.

data Bits : N → Set where
[] : Bits (zero)
0 1 : Bits n → Bits (succ n)

Compared to the number-theoretic example above, there is one further complication: we
need to relate the length of the residual bit string returned by a parser to the length of its
input. Exact numbers are not called for; it suffices to know that the length of the output is
at most the length of the input. To this end, we introduce Bits� n, the type of bit strings of
length below a given upper bound n.

record Bits� (n : N) : Set where
constructor _such-that_
field {size} : N

bits : Bits size
below : n � size

The record features three fields, the first of which is hidden, indicated by curly braces. If
the decoder transmogrifies, say, bs : Bits i to bs′ : Bits j with i�j : i � j, then the residual
output of type Bits� i is given by bs′ such-that i�j.

Finally, we have all the gadgets in place, to define a decoder that is approved by Agda’s
termination checker. As to be expected, its type is more involved. In a sense, decode says:
I can decode a bit string of size i, but I am happy to accept any bit string of smaller size; I
promise to return a bush and a string, the length of which is at most the size of the string
given to me.

decode : (i : N) → ∀ {j} → i � j → Bits j → Maybe (Bush × Bits� j)
decode i (zero) [] = undefined
decode (succ i) (succ i�j) (0 bs) = return (Leaf , bs such-that succ-n�n)
decode (succ i) (succ i�j) (1 bs) =

do (t , bs′ such-that j�k) ← decode i i�j bs
(u , bs′′ such-that k�m) ← decode i (�-transitive i�j j�k) bs′

return (Fork t u , bs′′ such-that �-transitive succ-n�n (�-transitive j�k k�m))

Voilà, decode is defined by structural recursion on the natural number i. To reduce clut-
ter, the actual size of the bit string is passed implicitly. In the recursive case, we have
bs : Bits j, bs′ : Bits k, and bs′′ : Bits m with j � k and k � m. All that remains to be
done is to hide the plumbing of state and proofs.

Hiding the plumbing. A decoder is a function from bit strings to an optional pair of things
and bit strings, promising not to increase the length of the string.

IDecoder : Set → (N → Set)
IDecoder A i = ∀ { j} → i � j → Bits j → Maybe (A × Bits� j)

Both IDecoder A and Bits� are indexed by naturals numbers, and they are functions
of type N → Set. But there is more to them, they are actually functors: IDecoder A is a

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


8 R. Hinze

covariant functor from the preorder (N, �), viewed as a category, to the category of sets
and total functions. Its action on arrows is defined

lower : (i � j) → (IDecoder A i → IDecoder A j)
lower i�j p = λ j�k bs → p (�-transitive i�j j�k) bs

The function lower makes precise the idea that a decoder can be applied to any shorter bit
string. By contrast, Bits� is a contravariant functor: we may relax the upper bound.

raise : (i � j) → (Bits� j → Bits� i)
raise i�j (bs such-that j�k) = bs such-that �-transitive i�j j�k

Turning to the implementation of the monad operations, the definition of return is
standard, except for the proof that the length is unchanged.

return : A → IDecoder A i
return a = λ i�j bs → Maybe.return (a , bs such-that �-reflexive)

The implementation of monadic bind is more interesting.

relax : i � j → Maybe (A × Bits� j) → Maybe (A × Bits� i)
relax i�j = Maybe.map (λ (a , bs) → (a , raise i�j bs))

_>>=_ : IDecoder A i → (A → IDecoder B i) → IDecoder B i
p >>= q = λ i�j bs →

p i�j bs Maybe.>>= λ (a , bs′ such-that j�k) →
relax j�k (lower i�j (q a) j�k bs′)

The value a returned by p is passed to the continuation q. Since we wish to apply q a to the
residual input bs′, we need to lower its index. This move has a knock-on effect: the upper
bound of q’s result is consequently too low and needs to be relaxed in a final step.

The case combinator dispatches on the first bit of the input bit string. It fails if the input
is exhausted. This is the single source of undefinedness—the correctness proofs guarantee
that this failure never happens for “legal” inputs.

O:_I:_ : (p q : IDecoder A i) → IDecoder A i
(O: p I: q) (zero) [] = undefined
(O: p I: q) (succ i�j) (0 bs) = relax succ-n�n ((lower succ-n�n p) i�j bs)
(O: p I: q) (succ i�j) (1 bs) = relax succ-n�n ((lower succ-n�n q) i�j bs)

Again, we first lower the index and then adjust the upper bound of the result. The proof
succ-n�n : succ n � n records the fact that bs is one element shorter compared to 0 bs
or 1 bs.

It is time to bring in the harvest! The implementation of recursive case analysis merits
careful study.

O-rec:_I-rec:_ : (P Q : ∀ { i} → IDecoder A i → IDecoder A i)
→ (∀ { i} → IDecoder A i)

O-rec: P I-rec: Q = recurse _ where
recurse : ∀ i → IDecoder _ i
recurse i (zero) [] = undefined

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 9

recurse (succ i) (succ i�j) (0 bs) = relax succ-n�n (P (recurse i) i�j bs)
recurse (succ i) (succ i�j) (1 bs) = relax succ-n�n (Q (recurse i) i�j bs)

The recursor is defined by structural induction on its first argument. The entire set-up—the
use of indexed types, keeping track of bounds—serves the sole purpose of enabling this
definition. Observe that the type of branches involves a local quantifier: the branches work
for any index, in particular, they happily accept the recursive call at index i − 1.

Ultimately, the four combinators enable the user to construct decoders that work for any
index.

Decoder : Set → Set
Decoder A = ∀ { i} → IDecoder A i

4 Pretty-printing combinators

For reasons of efficiency, encoders use John Hughes’ representation of lists (Hughes,
1986), specialised to bit strings.

Code : Set
Code = ∀ { i} → Bits i → Bits� i

Encoders are dual to decoders. While decoders promise not to increase the size of the bit
string, encoders guarantee not to decrease its size. To capture this invariant, we need the
dual of Bits�, bit strings of size above a given bound:

record Bits� (n : N) : Set where
constructor _such-that_
field {size} : N

bits : Bits size
above : n � size

Composition of functions and proofs then serves as concatenation with the identity as
its neutral element.

ε : Code
ε = λ bs → bs such-that �-reflexive

_·_ : Code → Code → Code
f · g = λ bs → let bs′ such-that i�j = g bs in

let bs′′ such-that j�k = f bs′ in
bs′′ such-that �-transitive i�j j�k

The combinators O and I increase the size by one.

O I : Code
O = λ bs → 0 bs such-that n�succ-n
I = λ bs → 1 bs such-that n�succ-n

As an amusing aside, the proof that Code is a monoid makes use of the fact that (N, �)
is a category: �-transitive is associative with �-reflexive as its neutral element.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


10 R. Hinze

5 Proof combinators

Decoders are partial functions. Given an arbitrary bit string, a decoder might fail, unex-
pectedly exhausting the input. The correctness criterion (2.1) guarantees that this does not
happen if a decoder is applied to an encoding. This guarantee is, in a sense, the sole pur-
pose of the whole exercise. The ternary relation _〈_〉_ underlying (2.1) relates a code, an
element, and a decoder.

_〈_〉_ : Code → A → Decoder A → Set
code 〈 a 〉 decode =
∀ k → (bs : Bits k) → ∀ i → (i�j : i � size (code bs)) →

decode i�j (bits (code bs)) ≡ Just (a , bs such-that above (code bs))

The function code prepends some bits to bs; the decoder removes this prefix returning the
value a and bs. This relation must hold for any upper bound i.

The implementation of the proof combinators is fairly straightforward. The code
is, however, not too instructive, so we content ourselves with two illustrative exam-
ples. (The definition of the remaining combinators can be found in the accompanying
material.)

The axiom ε-axiom holds definitionally: Agda can show its correctness solely by
unfolding definitions, witnessed by the use of ≡-reflexive : a ≡ a.

ε-axiom : ε 〈 a 〉 return a
ε-axiom i bs j j�k = ≡-reflexive

To establish the O-rule,

O-rule : (s 〈 a 〉 p) → (O · s 〈 a 〉 (O: p I: q))
O-rule premise i bs (succ j) (succ j�k) =
≡-congruent (relax succ-n�n) (premise i bs (succ j) (�-transitive succ-n�n j�k))

we apply the premise to the argument of relax succ-n�n.
Now that the core library is in place, we can finally deal with the motivating example,

Huffman Encoding. Its implementation turns out to be a nice exercise in datatype-generic
programming.

6 Application: Huffman encoding

Before diving into the mechanics of Huffman compression, let us state the guiding princi-
ples of the design: (1) we would like to seamlessly combine statistical compression with
standard serialisers; (2) we aim to avoid irrelevant detail, such as: Is the code unambigu-
ous? Does the alphabet contain at least two characters? Huffman encoding typically relies
on a dictionary, mapping characters to codes; Huffman decoding makes use of a code tree.
Does the dictionary contain a code for each to-be-encoded character? Is the code tree actu-
ally related to the dictionary? And so forth, and so forth . . . In other words, we are aiming
for a clean, lean interface.

We proceed in three steps, defining a codec for a single character, for a sequence of
characters, and for Huffman code trees.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 11

6.1 Encoding and decoding characters

The central property of variable-length encodings is that no code is a prefix of any other
code. This property is guaranteed by construction if a code tree is used instead of a code
table. The code tree corresponding to Table (1.2) is depicted below.

The character ‘i’, for example, is encoded by 1 (0 (0 [])). So, as a first requirement, we
assume that a code tree is given to us. A code tree is either a singleton, written � c �, or
a binary node t � u, where t and u are code trees (the bushes of Section 2 are code trees
without codes).

data Tree (Alphabet : Set) : Set where
�_� : Alphabet → Tree Alphabet
_�_ : Tree Alphabet → Tree Alphabet → Tree Alphabet

The code tree above is represented by

code = ((� ‘h’ � � � ‘t’ �) � � ‘e’ �)
� ((� ‘i’ � � � ‘n’ �) � ((� ‘v’ � � � ‘g’ �) � � ‘�’ �))

Using this encoding, we can compress the text (1.1), but not genius, as neither u nor s
have an encoding. This motivates the second requirement: we need evidence that the to-
be-compressed character is contained in the code tree.

data _∈_ (c : Alphabet) : Tree Alphabet → Set where
here : c ∈ � c �
left : c ∈ t → c ∈ (t � u)
right : c ∈ u → c ∈ (t � u)

The evidence c ∈ t can be seen as a path into the tree. For example,

i-am-in : ‘i’ ∈ code
i-am-in = right (left (left here))

certifies that ‘i’ is in the code tree code: starting at the root, it can be found going to the
right and then twice to the left.

Perhaps surprisingly, no further requirements are necessary: our Huffman compressor
takes a pair such as (‘i’ , i-am-in), consisting of a single character and a proof that this
character is contained in the code tree. Observe that the type of the second component
depends on the value of the first component (in the “propositions as types” paradigm a
proposition such as c ∈ t is a type). In other words, the data are a dependent pair, an
element of a � type (Alphabet is an implicit type argument, indicated by curly braces).

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


12 R. Hinze

In : {Alphabet : Set} → Tree Alphabet → Set
In {Alphabet} t = � Alphabet (λ c → c ∈ t)

Elements of the type In t can be seen as self-certifying data: data that can be readily
serialised.

module Codec-In where
encode : ∀ { t : Tree Alphabet} → In t → Code
encode (c , here ) = ε

encode (c , left p) = O · encode (c , p) · ε
encode (c , right p) = I · encode (c , p) · ε

The encoder turns the evidence, the path into the code tree, into a bit string, ignoring both
the code tree and the character!

The decoder has to resurrect the path. For this to work out, the code tree is required.

decode : ∀ (t : Tree Alphabet) → Decoder (In t)
decode � c � = return (c , here)
decode (t � u) = O: (do (c , p) ← decode t ; return (c , left p))

I: (do (c , p) ← decode u; return (c , right p))

The bits steer the search, the decoder stops if a leaf is reached. Note that we do not use the
recursive case combinator; decode is recursively defined by induction on the structure of
the code tree.

The proof of correctness replicates the structure of encoder and decoder.

correct : ∀ { t : Tree Alphabet} → ∀ (c : In t) → encode c 〈 c 〉 decode t
correct (c , here) = ε-axiom
correct (c , left p) = O-rule (·-rule (decode _) (λ (c′ , p′) →

return (c′ , left p′)) (correct (c , p)) ε-axiom)
correct (c , right p) = I-rule (·-rule (decode _) (λ (c′ , p′) →

return (c′ , right p′)) (correct (c , p)) ε-axiom)

For brevity, we henceforth omit the correctness proof—in all the examples, it can be
mechanically derived from the encoder.

Provided with a code tree, the Huffman serialiser happily deals with a single self-
certified character.

In : ∀ (t : Tree Alphabet) → Codec (In t)

Before we tackle the encoding of strings, it is worthwhile recording what we do not
need to assume. We do not require that the character has a unique code; it may appear
multiple times in the code tree. (Perhaps, bit strings are used to exchange secret messages.
Using different codes for the same letter may slightly improve security.) Neither do we
require that each element of Alphabet appears in the code tree. (If the underlying alphabet
is large—the current Unicode standard defines 144,697 characters—then a text will rarely
include each character.) Finally, the compressor works for arbitrary code trees, including
trees that consist of a single leaf. These extreme cases feature a fantastic compression rate
as no bits are required. (Usually some care must be exercised to avoid sending the decoder

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 13

into an infinite loop. The decoder presented in Stump (2016) exercises this care but fails
with an error message instead!)

6.2 Encoding and decoding sequences

Let us be slightly more ambitious by not only considering strings, sequences of characters,
but sequences of arbitrary encodable values. There are at least two options for defining a
suitable container type; we discuss each in turn.

The obvious choice is to use standard lists, given by the definition below.

data List (Elem : Set) : Set where
[] : List Elem
_::_ : Elem → List Elem → List Elem

The type features two data constructors; to distinguish between empty and non-empty lists
we need one bit.

module Codec-List {A : Set} (A : Codec A) where
encode : List A → Code
encode [] = O · ε
encode (a :: as) = I · encode A a · encode as · ε
decode : Decoder (List A)
decode = O-rec: (λ list → return [])

I-rec: (λ list → do a ← decode A; as ← list; return (a :: as))

The codec for List takes a codec for A to a codec for List A.

List : {A : Set} → Codec A → Codec (List A)

You may recognise the type pattern if you are familiar with Haskell’s type classes or with
datatype-generic programming.

Unfortunately, if we compose the list encoder with our Huffman encoder, then the com-
pression factor suffers, as the code for each character is effectively prolonged by one bit.
By contrast, the standard Huffman compressor, which operates on strings, simply concate-
nates the character codes; the decompressor keeps decoding until the input is exhausted.
Alas, this approach is in conflict with our modularity requirements: such a codec cannot
be used as a component of other codecs. (Imagine compressing tree-structured data such
as HTML, using the statistical compressor for leaves, paragraphs of text.)

We can save the additional bit per list item if we keep track of the total number of items.
In other words, we may want to use a vector, a length-indexed list, instead of a standard
list.

data Vector (Elem : Set) : Natural → Set where
〈〉 : Vector Elem zero
_,_ : Elem → Vector Elem n → Vector Elem (succ n)

The constructor names are chosen to reflect that a vector is really a nested pair. Like the
type of lists, Vector features two data constructors. However, only one of these is available

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


14 R. Hinze

for each given length—there is only one shape of vector. So the good news is that no bits
are required to encode the constructors.

module Codec-Vector {A : Set} (A : Codec A) where
encode : { i : Natural} → Vector A i → Code
encode 〈〉 = ε

encode (a , as) = encode A a · encode as · ε
decode : (i : Natural) → Decoder (Vector A i)
decode (zero) = return 〈〉
decode (succ i) = do a ← decode A; as ← decode i; return (a , as)

The encoder and the decoder are driven by the length argument, which is passed implicitly
to encode and explicitly to decode.

Vector : {A : Set} → Codec A → (i : Natural) → Codec (Vector A i)

Of course, for our application at hand we need to store the length alongside the vector,
another case for dependent pairs:

List′ : Set → Set
List′ A = � Natural (Vector A)

Inspecting the type on the right-hand side, we note that we already have a codec for naturals
and vectors, so we are left with defining a codec for �-types.

Encoding dependent pairs is not too hard, the main challenge is to get the type signature
right. A dependent pair (a , b) : � A B consists of a field a : A and a field b : B a. This
dependency is reflected in the types of the codecs:

module Codec-� {A : Set} (A : Codec A)
{B : A → Set} (B : (a : A) → Codec (B a)) where

encode : � A B → Code
encode (a , b) = encode A a · encode (B a) b · ε
decode : Decoder (� A B)
decode = do a ← decode A; b ← decode (B a); return (a , b)

The implementation is identical to a codec for standard pairs, except that the first field is
passed to the codec for the second field.

Sigma : {A : Set} → Codec A →
{B : A → Set} → ((a : A) → Codec (B a)) →

Codec (� A B)

Assembling the various bits and pieces,

List′ A = Sigma Natural (Vector A)

is a space-efficient codec for sequences. Well, not quite. A moment’s reflection reveals
that we have not gained anything: List A and List′ A produce bit strings of exactly the
same length. (This tells you something about the relation between lists, naturals, and vec-
tors.) We have chosen to represent naturals in unary. Consequently, the vector length n

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 15

is encoded by a bit string of length n+ 1. That said, a cure is readily at hand: we simply
switch to a binary or ternary representation.

We seize the opportunity and define a general codec for representation changers. Given
an isomorphism A ∼= B, we can turn a codec for A into a codec for B. The functions
witnessing the isomorphism are called to and fro.

module Codec-Iso (iso : A ∼= B) (A : Codec A) where
encode : B → Code
encode b = encode A (fro iso b)

decode : Decoder B
decode = do a ← decode A; return (to iso a)

Map : (A ∼= B) → (Codec A → Codec B)

We chose to replace unary numbers by ternary1 numbers, obtaining the final implemen-
tation of the encoder for sequences:

List′ : {A : Set} → Codec A → Codec (List′ A)
List′ A = Sigma (Map Ternary∼=Natural Ternary) (Vector A)

Our library is taking shape. s
We can, for instance, confirm that the introductory example (1.1) is compressed to

59 bits—we assume below that text : Vector (In code) 20 is provided from somewhere.

_ : size (encode (Vector (In code) 20) text []) ≡ 59
_ = reflexive

_ : size (encode (List′ (In code)) (20 , text) []) ≡ 67
_ = reflexive

Additional 8 bits are needed to store the length.

6.3 Encoding and decoding code trees

All that remains to be done is to define a codec for Huffman trees. The type of code trees is
a standard container type, so this is a routine exercise by now—the codec for bushes, see
Section 2, serves nicely as a blueprint.

module Codec-Code-Tree {A : Set} (A : Codec A) where
encode : Tree A → Code
encode � a � = O · encode A a · ε
encode (t � u) = I · encode t · encode u · ε
decode : Decoder (Tree A)
decode = O-rec: (λ tree → do a ← decode A; return � a �)

I-rec: (λ tree → do t ← tree; u ← tree; return (t � u))

Tree : {A : Set} → Codec A → Codec (Tree A)

1 Why? Well, the details are actually irrelevant for the application at hand, but since you asked: We deal with
variable-width, not fixed-width numbers. Hence, the datatype Ternary features four constructors, one for each
ternary digit plus an end-of-list constructor, see Appendix 1. Four constructors can be conveniently encoded
using two bits, not wasting precious bit space. For example, the ternary representation of 20, the length of (1.1),
is 0t 1 3 2, which occupies 2 · 4= 8 bits.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


16 R. Hinze

A Huffman compressor stores the code tree alongside the encoded text. Since the encod-
ing depends on the tree this is another example of a dependent pair—actually, quite a nice
one. (Once you start looking closely, you notice that dependent pairs are everywhere.)

Huffman : Set → Set
Huffman Alphabet = � (Tree Alphabet) (λ t → List′ (In t))

An element of the type is a dependent pair consisting of a code tree and a length-encoded
list of self-certifying characters. The corresponding codec is obtained simply by changing
the font.

Huffman : {Alphabet : Set} → Codec Alphabet → Codec (Huffman Alphabet)
Huffman Alphabet = Sigma (Tree Alphabet) (λ t → List′ (In t))

Voilà, again. The compositional approach shows its strengths. In particular, it is easy to
change aspects. For example, to compress a list of lists of characters, we simply replace
the inner codec by List′ (List′ (Compress t)).

7 Conclusion

Overall, this was an enjoyable exercise in interface design.
The six proof rules of Section 2 nicely summarise the interface; the user of the library

needs to know little more. The implementation of the recursive case combinator posed the
greatest challenge: how to hide the details of the termination proof behind the abstrac-
tion barrier of the combinator library? Our solution draws inspiration from Guillaume
Allais’ impressive library of total parsing combinators (Allais, 2018). Unfortunately, his
approach was not immediately applicable as it is based on the fundamental assumption
that a successful parse consumes at least one character, too strong an assumption for our
application.

The combination of statistical and structural compression was a breeze, once the idea of
self-certifying data was in place. The definition of codecs is an instance of datatype-generic
programming (Jansson & Jeuring, 2002). It was pleasing to see that the technique carries
over effortlessly to dependent types and proofs.

The modular implementation of the Huffman compressor provides some additional
insight into the mechanics of Huffman encoding. The usual treatment of sequences is
inherently non-modular and imposes an additional constraint: singleton code trees are
not admissible. Our modular compressor needs roughly 2 · log3 n additional bits to store
the length n of the encoded text—a small price one is, perhaps, willing to pay for
modularity.

Last but not least, Huffman-encoded data make a nice example for dependent pairs, an
observation that is perhaps obvious, but which I have not seen spelled out before.

Conflicts of Interest

None.

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X


Functional Pearl: Certified, total serialisers 17

Supplementary materials

For supplementary material for this article, please visit http://doi.org/10.1017/
S095679682200017X

References

Allais, G. (2018). agdarsec — Total parser combinators. Journées Francophones des Langages
Applicatifs. Available at: http://gallais.github.io/index.html.

Huffman, D. A. (1952). A method for the construction of minimum-redundancy codes. Proc. IRE.
40(9), 1098–1101.

Hughes, R. J. M. (1986). A novel representation of lists and its application to the function “reverse”.
Inf. Process. Lett. 22(3), 141–144.

Jansson, P. & Jeuring, J. (2002). Polytypic data conversion programs. Sci. Comput. Program. 43(1),
35–75.

Stump, A. (2016). Verified Functional Programming in Agda. Association for Computing Machinery
and Morgan & Claypool.

Théry, L. (2004). Formalising Huffman’s algorithm. Research report. Università degli Studi
dell’Aquila.

1 Appendix

Natural numbers. The standard ordering on the naturals, m succeeds n, is defined

data _�_ : N → N → Set where
zero : n � zero
succ : n � m → succ n � succ m

The datatype overloads the constructors zero and succ: the proof zero states that zero (the
natural) is the least element; succ captures that succ (the successor function) is monotone.
It is straightforward to show that � is reflexive and transitive and that succ n � n.

�-reflexive : n � n
�-transitive : n � m → m � k → n � k
succ-n�n : succ n � n

The inverse relation, m precedes n, is given by m � n = n � m.

Partial functions. In Agda, a partial function from A to B can be modelled by a total
function of type A → Maybe B.

data Maybe (Elem : Set) : Set where
Nothing : Maybe Elem
Just : Elem → Maybe Elem

undefined : Maybe A
undefined = Nothing

The type constructor Maybe forms a monad: return is the identity partial function and bind,
“>>=,′′ denotes postfix application of a partial function.

return : A → Maybe A
return a = Just a

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

http://doi.org/10.1017/S095679682200017X
http://doi.org/10.1017/S095679682200017X
http://gallais.github.io/index.html
https://doi.org/10.1017/S095679682200017X


18 R. Hinze

_>>=_ : Maybe A → (A → Maybe B) → Maybe B
Nothing >>= k = Nothing
Just a >>= k = k a

It is straightforward to verify the monad laws.

Ternary numbers. For completeness, here is the type of ternary numbers.

data Ternary : Set where
0t : Ternary
_1 _2 _3 : Ternary → Ternary

Eau-de-Cologne = 0t 1 2 3 3 3 1 1 1

https://doi.org/10.1017/S095679682200017X Published online by Cambridge University Press

https://doi.org/10.1017/S095679682200017X

	Functional Pearl
	Introduction
	Sneak preview
	Parsing combinators
	Pretty-printing combinators
	Proof combinators
	Application: Huffman encoding
	Encoding and decoding characters
	Encoding and decoding sequences
	Encoding and decoding code trees

	Conclusion
	Appendix


