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ON CHARACTERS OF HEIGHT ZERO
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Abstract

Every irreducible ordinary character in a p-block of a finite metabelian group is of height 0 if and
only if the defect group of the /»-block is abelian.
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Brauer conjectured that all ordinary characters in a />-block B of a finite group
G have height 0 if and only if the defect group of B is abelian. Fong in [2], [3],
[4], and [5] has given proofs of various cases of this conjecture. In this note we
prove this for the metabelian groups.

THEOREM. Let G be a finite metabelian group and B be a p-block of G. Then
every ordinary character of B has height 0 // and only if the defect group of B is
abelian.

PROOF. We use the results in [1]. Let Q be the p-Sylow subgroup of the
commutator group G', then G' = Q X A, where/?} \A\. Let H be a subgroup of
G', H D Q, such that G'/H is cyclic. Then H = Q X A, p \ |A|. For any
subgroup L of G' let K(L) D G', and K(L)/L be a maximal abelian subgroup
of N(L)/L. If A C L C H, we may pick K(A) C K(L) C K(H). Let a be a
linear modular representation of K(A) with ker a n G' = H and B(p, H) be the
collection of all ordinary representations T'G where 7" is a linear representation
of K(L) D AT(A), L C H, G'/L cyclic, H/L a />-group, with ker T' n G' = L
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and T'KW (/-conjugate to a. See [1, §2]. All these representations T'G are

irreducible. Include in B(a, H) the characters of T'G and the irreducible com-

position factors of f'G. From [1, §4], B(a, H) is a />-block and the /?-Sylow

subgroup P of K(H) is its defect group. [Any/>-block of G is given by B(a, H), a

and H as described above.] Note that P n G' = Q.

First assume P is abelian and let m G P. Although this follows from the

results in [3] and [4], we give below an easy proof for the special case. Since

K(H)/H is abelian, ir~lkir = k(mod H) for all k G A. But A = H n A, and
hence ir~lkir = /c(mod A) for all k G A. Since ir~lkir = k for all k G Q, it
follows that ir-lkn = k(mod A) for all k G G'. Thus P C tf(A) and /> |
|AT(//)/A:(A)|. Since every (irreducible) representation T'G in fi(a, 7/) is induced
by a linear representation T of JT(L) D K(A), of some L, it follows that the
degree of T'G divides \G/K(A)\ but is divisible by \G/K(H)\. Thus every
ordinary character in B(o, H) has height 0.

Now assume P is non-abelian. We shall construct an irreducible character in
B(a, H) of height greater than 0. Let R = P n K(A). If fc G AT(A), w G /?, then
Ar'irA: = 7r(mod A). But A n R = 1, and thus k~xitk = IT for all IT G 7? and all
k G #(A). Thus P is not contained in K(A), that is, R c P, R abelian, and
K(A) = /? X Kx,p\\Kx\, with A C AT1; Kx/A abelian. There is a linear ordinary
representation V of #(A), V(jr) - 1 for all IT G /? and F = a, ker K = ker a.
Since 1 ¥= P' C /? there is a linear ordinary representation Wo of P ' , ker Ŵ o =
Lo and | / " / ^ o l > 1- Since R/ Lo is abelian, an extension W, of Pf0 to R exists.
Here ker Wx n P ' = Lo. Define the linear representation W of K(A) by JF(T)
= WX(TT) for all TT G R and *F(&) = 1 for all k G AT,. Let T(k) = V(k)W(k) for

all k G /T(A). Then T is a linear representation of ^(A) and T = a. Let
L = ker T n G' and AT(L) D AT(A). Then L n P ' = LQ and thus there are
77-, G P ' and 7T e P such that 77~17717r ^ ir,(mod Lo). This means that w~V,w ^
7r,(mod L) or P is not contained in K(L). Let 7" be an extension of T to K(L),
then T'G is irreducible and since f'K(A) = a, T'G G 5(a, / / ) . Now since T'G is of
degree \G/K(L)\ and /?| |AT(//)/A:(L)|, it follows that its character x is of
positive height. This completes the proof of the theorem.
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