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A finite set covering theorem Ill

Alan Brace and D.E. Daykin

Let n, 8, t be integers with & > ¢t > 2 . If a family of =n
different subsets of a set S , with s elements, has the

properties,

(i) each member belongs to a set of (t+1) members which

together have union § ,

(ii) no member belongs to a set of ¢ members which together

have union S ,

then we prove that 7 = (t+1)° %) . The result is best

possible.

1. Introduction

Small letters denote non-negative integers and large letters denote
sets. We denote the set {i, i+1, ..., j} by [Z, j] , with the proviso

[, J) = 9@ if ever Z >j . If the t (disjoint) sets X5 Xys eees X

t
of a given family have union S , we say that these t sets cover S ,

that the family has a (disjoint) t-cover over S , that X, is in a
(disjoint) t-cover over S , that Xl and X2 are together in a
(disjoint) t-cover over S , etc.

Given & > t > 2 , our main problem, in this terminology, will be to
find the maximum possible number of sets in a family N of »n different
subsets of S = [1, s8] chosen so that each member is in a (¢+l)-cover,
but not in a %-cover over S . In considering this problem an important

example is the family
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F={x:X=Pug@q, Pcl1, t+1], |P| = 1; @ < s\[1, t+x1]}
which contains

fle, ) = (¢+1)2°7 072

subsets of S5 . Each of the singletons {1}, (2}, vees {t}, {t+1} of F
is in a (t+l)-cover over S , and since each set of F always contains
just one element of [1, t+1] it follows that every set of F is in a
(t+1)-cover over S , but not in a t-cover. Thus in our main problem the
maximum possible value of n is at least f(s, t) , and we will show not
only that this is best possible, but also, when ¢ > 3 in the extreme
case, that N can always be obtained from F by permuting elements of

S .

We observe that subsets of ¢ do not belong to F , which is a point
of some importance, because, as we will see in the final section, if we can
find a set belonging to N which has a non-empty subset that does not,
then the main problem is easy to solve. For this reason we first consider
a parallel but subsidiary problem, on what we call basic families, in which

this does not happen.

Given 8 > t > 1 , a family of different subsets of an s-set § ,

with properties,
(i) the family covers S ,
(ii) no t members of the family cover § ,

(iii) if the set X ©belongs to the family all subsets of X ,
including @ , also belong to the family,

will be called a basic family N(s, t) whose cardinality we will denote by
n(s, t) . For brevity, we will always take the set S used in defining
N(s, t) to be [1, 8] , unless another possibility is indicated. One
further definition we need is the term major set, which is a member of

N(s, t) which is not a subset of any other member.

Our subsidiary problem now is to find the maximum possible number of
sets in a basic family in which every non-empty set is in & (t+l)-cover
over S . From []] the maximum possible number of sets in any basic

family is (1:+2)23-t-'l , which gives an upper bound in the subsidiary
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problem and also, incidentally, in the main problem. On the other hand

consideration of the family
¢=1{rp:pPcl1, t-1], |P| =1} v {@ : @c s\[1, t-1]}
shows that in our subsidiary problem n{s, t) is at least

s=-t+1 + (t—2) ,

gls, t) =2
and the next result tells us that this is best possible.

THEOREM 1. If every non-empty set of a basic family N(s, t) is in
a (t+l)-cover over S then n(s, t) =g(s, t) .

To prove this theorem, which we do in Section 3, we use a partition

introduced in [7]. This partition, which we will denote by Ach , is

discussed in the next section, where we establish some properties of it
that will be useful to us. It is in the final section that we return to
the main problem and, using the above theorem, completely solve it.
Throughout these sections we will write such expressions as X v {1} in
the form X Ul so long as the meaning is clear, and all operations in
expressions involving sets and families will be carried out from left to
right, so that for example XuY\Z stands for (XuY)\Z .

2. The partition Aue

Given a basic family N(s, t) and elements a, B € 5 , let
B={x: xuaB ¢ N(s, t), Xua\B € N(s, t), XuB\a € N(s, ¢t)} ,

and consider the seven families A4, BO’ Ba’ BB’ Ca’ CB, D , where

A

{x : xwuB € N(s, t)} ,

B . ={x:X¢B;a B¢tx},

B ={x:xeB, acix},
B,={x:xe€eB, B €x},

¢ ={x: Xua\B € N(s, t), XuB\a ¢ N(s, ¢)} ,

€, = {x : xwa\B ¢ N(s, t), XUB\a € N(s, t)} ,
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D = {x : xua\8 t N(s, t), XB\a  N(s, t)} .

These families are pairwise disjoint and have union N(e, t) , and so

define a partition of WN(s, £) which we will denote by AaB .

When we apply AaB we always ensure, among other things, that A4 is

non-empty. In this case the sets @, {a}, {B}, {a, Bl of N(e, t) will
belong to A , and also since X € A implies that X vua u B ,
Xua\B, X\auB, X\o\B € 4 , we may write |A| = ba . Similarly, since

X € ¢, implies that X va, o € C, » We may write lcal =2c, end in

exactly the same way we may write ICBI = 202 . Examination of the

families B BB reveals that

a’

Ba={Y:.Y=Xu0t,XGBO} s BB={Y:Y=XUB,X€BO} s

end thus IBOI s |Bu| , lBBI have a common value which we will denote by

b . The number of sets in WN(s, t) is given by
(1) nle, t) = ba+ 3b + 2(cl+02) +d,
where we have put |D| =d .

We now establish two useful properties of AOLB which arise when

N(s, t) satisfies one or the other of two important extra conditions. Our

first result is:

LEMMA 1. If N(s, t) 1is a basic family containing at least one
doubleton in which every non-empty set ie in a (t+l)-cover over S , then
we can always choose G, B € S 8o that when AOLB ig applied to N(s, t)

weget a#0 and d = t-2.

Proof. When ¢t = 2 +the lemma follows by letting &, B belong to the

doubleton we know N(s, 2) contains.

When ¢t > 2 the proof is by double induction on 8, t . We assume
the theorem is true for 8-1, t-1 and then establish it for s, t . To do
this we distinguish two cases depending on whether or not N(s, t)

contains a singleton major set.

Case (a). N(s, t) contains a singleton major set, say {s} .
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In this case the family N' = N(s, t)\{s} is clearly a basic family
N(s-1, t-1) of n(s, t) - 1 different subsets of S\s of which at least
one is a doubleton. Furthermore every non-empty set of N(s, t) , other
than {s} , is in a (t+l)-cover over S with ¢t other sets of N(s, t)
of which one must be {6} , so obviously every non-empty set of N' must
be in a t-cover over S\s . Hence N' satisfies the conditions of the

lemma for &-1, t-1 and we can choose a, B € S\s so that when AaB is

applied to N' weget a #0 and d = t-3 . Thus if we use the same
o, B to apply AGS to N(s, t) , then because the set {8} must belong

to D we obviously get a # 0 and d = t-2 , which shows that the lemma

is true in this case.
Case (b). N(s, t) contains no singleton major set.

The set {e} € N(s, t) is in a (#+l)-cover. over S with ¢ other
sets of N(s, t) . Replace each of these t sets which is not already a

major set with & superset which is a major set. Thus we have a

(t+1)-cover over S involving {s} and ¢ major sets of N{s, t) . Put
Mb =@ and my = 0 and denote these ¢ major sets by Ml’ M2, ceey Mt
in that order in such a way that, given Mo, M., ..., @j—l ,

| \j-l
mo={M\ U M|, G=1,2,...,¢)
AV

is a maximum with respect to the remaining sets Mﬁ, cesy Mt . Renumber

elements of S\& so that
N T ( )
AIN\ U M =]1+ m, % m s, (Gg=1,2, .y t) .
AP ko K xk=0 K

Since {8} 1is not a major set of N(s, t) there is at least one
doubleton conteining {8} in WN(a, t) . Let this doubleton be {z, 8}
vhere x is as large as possible.

Iyt 7y

Let j; be such that ) m, <%= ) my -

k=0 k=0

Ir jl =t thenput a=x2 , B =g , and in the partition Axe the
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(t-1) sets My, M, belong to D , and we get a # 0 and

ey Mt-l
dz=t-1.

If jl <t and m; = 1 for jl < j <t then no set of N(s, t) can
contain more than one of the elements s - (t—jl), +..y 8 . Hence for the
set {z} € N(s, t) to be in a (t+l)-cover over S there must be (t—jl)
major sets containing separately the elements s - (t—jl), ...y 8~1 Dbut
not containing the elements x or s . In the partition Axs these
(t-jl) major sets together with the (jl-l) sets Ml, M2, ooy Mbl-l
belong to D and we get a # 0 and d = t-1 .

If jl <t and mj > 2 for jl <J =t thenput 0 =g -2 ,

B =8-1, and in the partition As-2,s—l the (t~1) major sets
Ml’ M2, eees Mt—l belong to D , and we get a #0 and d2 ¢t-1 .
Now let jl < j2 <t and mj = 2 for jl < g = j2 and mj = 1 for

<4 =t . If there is a set {y, z} € N(s, t) such that

j2
2 m, <y = 2 m, and 2 m, < z <8 , then after interchanging s
= k=0 X ko

and 2 of S we have the second possibility above. Otherwise put
@ =g - (t-j,} -2 and B =8 - (t-j,) - 1 and in the partition Ay the

Jy together with the (t—j2+1) major

-1 major sets Mi, Mé, ey Mj2-1

sets containing separately the elements 8 -~ (t—jz), ..+s 8 but not the
elements 8 - (t—jz) -2 or s - (t—jz) - 1 belong to D and we get
a#0 and d=t .

A1l possibilities in this second case are now exhausted and the lemma
follows.

The second result we will need is:

LEMMA 2. If WN(s, t) is a basic family for which n(s, t) <is
maximal and if on applying AaB the family BB ig nom-empty, then each
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set of Bg i8 in one or more t-covers over S\a , and the (t-1) other
sets in every such t-cover belong to D .

8 then the two sets Tl and {o} together with

some (t-1) other sets Ty» T3, sess T, of N(s, t) must cover § ,

else we can adjoin the set T, ua to N(s, t) without creating a

Proof. If Tl € B

t-cover, which contradicts our assumption that n(s, t) is maximal. If

T2 belongs to one of 4, Ba’ Ca then the ¢ sets Tl’ Zbua, T3, ceey Tt

belong to N(s, t) and cover § which is a contradiction. Also, if Zé

belongs to one of Bo, BB’ CB ,then the t sets Tlua\B, TZUB’ T3, cees Tt

belong to WN(e, t) and cover § , which is again a contradiction. Thus

T,

each set other than T1 in each such t-cover over S\a involving Tl .

belongs to D and the lemma follows by applying the same argument to

This completes our discussion of the partition AaB .

3. Proof of Theorem 1

In proving this theorem there is obviously no loss of generality in
assuming that n(s, t) is maximal. Thus throughout this section we will
assume that N(s, t) is a basic family in which every non-empty set is in
a (t+l)-cover over S , and that it contains the maximum possible number

of sets.

In the simple case when 8 =t + 1 only @ and singletons can belong
to N(s, t) , and so n(s, s-1) = s + 1 = g(e, s-1) , which shows the
theorem is true for values of 8, t satisfying this relationship. Proof
in the general case is by induction on & . We assume the theorem is true
for 8', t when 1< ¢t <g' <g and establish it for 8, t by showing
that the further assumption n(s, t) > g(s, t) always leads to a

contradiction.

Since we are assuming n{s, t) is maximal, when -8 > t+1 the family
N(s, t) must contain at least one doubleton. Thus Lemma 1 applies to
N(s, t) in the general case and we can always choose a, B € S so as to

get a #0 and d = t-2 in the partition AaB . With no loss of
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generality we assume these values of a, 8 are 1, 2 respectively, and
we then distinguish two cases depending on the relative values of b and

d arising when Al2 is applied to WN(s, t) .

Case (a). t-2 =.d < b+t-2 .
The above inequality shows that in this case B2 is non-empty, and so
it contains at least one set, say Tl s whose cardinality, which by

definition must be at least two, is greater than or equal to the

cardinality of every other set in B Lemma 2 now tells us that there

5 .

are (t-1) other sets Ty, T3,- eees T, in N(s, t) , which must belong to

t
D , and which together with Tl form a t-cover of S\1 . We lose no

generality in assuming this is a disjoint t-cover because, remembering

that all subsets of each set Ti (¢£=2, ..., t) also belong to
N(s, t) , we can obviously replace each T, (=2, ..., t) by a set

T;: S T; chosen so that the ¢ sets Tl, Té, cees T;: are disjoint and

cover S\l , and it then follows from Lemma 2 that each of these new sets
T;: (¢ =2, ..., t) also belongs to D .

Using these facts we will now obtain our contradiction for this case
by showing that from the family Vl of different subsets of S\1 defined

by
Vl=.4' uBouBéuCiuCéuH,
A'={x :xea,1¢x},
Bé=32\1'1,

c’={X:xecl,1¢x},

Q
N -
n

x:xec,,2¢x,
BH=WU:xcr, (i=2, .evs t), X €D},

we can always derive a feamily satisfying the conditions of the theorem at

s-1, t which contains, however, more than g(s-1, t} members.
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If X € Vl , clearly all subsets of X belong to Vl and also the

sets {2} , Tl\2, Tys ++e» T, belong to V, and cover S\1. Thus V

1
satisfies the first two conditions for a basic family. Now suppose the ¢
sets X X vy X

t

10 %o» ¢ belong to Vl and cover S\1 . Since the element

2 must be covered by at least one of these sets, say Xl » belongs either
to A' or B! s X

5 If Xl €A' the ¢t sets X,ul, X belong to

1 22 °° t
N(s, t) and cover S , which is a contradiction. On the other hand if

X. € B, then by Lemma 2 the remaining sets X ces X

1 2 2* t

X2 u X3 U...u Xt E_T2 u T3 U...uU Tt . This means that for the ¢ sets

‘ to cover S\1 we must have Tl c Xl , which contradicts

the definition of T, - Thus V, contains no t-cover over S\1 , which

is the third condition for a basic family. Noting that

€ HcC D , and so

X

1 X2, oy X

la'l =2a , |8l =b, Byl =b-1, |cjl=c

Ol l’

the number of sets in V. is given by

1

[vi] = 2a + 2b + (e +e,) + (h-1) .

Thus
2|v,| =ka +3b+ 2(cl+02) +d + [b-d+2(h-1)] ,
which upon using (1) gives

2|V1| = n(g, t) + [b-d+2(r-1)] .

Remembering that in this case d < b+t-2 while h 2 ¢-1 , our assumption

that n(s, t) > gle, t) now yields

2|V1| >gls, t) + t-2=2g9(s-1, ¢t) ,

that is

|V1| > gls-1, ) .

Thus V; is a basic family N(e-1, t) of more than g(s-1, t)
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different subsets of S\1 .

From Vl we will now derive a nev family that will be denoted by

Vi » Which is also a basic family N(s-1, t) of more than g(s-1, ¢)

different subsets of S\1 , but in which every singleton is in a
(t+1)-cover over S\1 . This will immediately give the contradiction we

mentioned above, because if every singleton in this new family Vk is in a

(t+l)-cover over S\1 , then obviously so is every other non-empty set of
Vk .
Noting that if x € I, the (t+1) sets {z} , Tl\x, Tps vees Ty

belong to V1 and cover S\1 , it is clear that all singletons {x} C Tl

and all sets 12 (¢ =2, ..., t) which are themselves singletons, are

already in (t+l)-covers over S\l in Vl . Thus we suppose, with no

loss of generality, that each set Ti , other than the sets

Tl, T2, ceey 13 , is a singleton, and we then define a sequence of families
Vl, V2, aes Vk , where k < j =t , as follows., Assuming VZ-l , where
1 =2 2 , has been defined, if every singleton subset of TZ U... VU Tj is

in a (t+l)-cover over S\1 in Vl—l we set I - 1=k and end the
sequence. On the other hand if some singleton subset of TZ U... u 13 is,
not in such a (t+l)-cover we assume, with no loss of generality, that it

is {xz} c TZ and then define the next family in the sequence to be

?
Luvyur, A\,

1- l 1-1

where

|- . -
VZ-{Y.Y-XU::Z,XCT 1.

-1
Clearly Vﬁ covers S\1 , contains at least as many members as Vl )

and if X € Vk then so do all subsets of X . Thus to complete this case

we only have to show that when k> 1 no t sets of Vk cover S\1 , and

that every singleton of V, is ina (t+1)~cover over S\1 .
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So suppose that, whereas each family Vi (1 =4 <1) contains no

t-cover, the ¢ sets Xl, X2, ves

some of the Xi (£ =1, ..., t) must belong to Vi V] TZ-l , because this

, Xt of VZ do cover S\1 . Clearly

is the essential difference between V and VZ in respect to t-covers

-1
over S\1 . Now if no X; is T, . the (t+1) sets {xz} s
Xl\xl, cees Xt\xZ belong to VZ-l and cover S\l , while if Xl-l = TZ—l

]
and X, € V; the (t+1) sets Lrl}

\x \x

xl\xz, cees Xy 5 70 X7_1 Mqs Xz\xz, e Xt\xz

will belong to V and cover S\1 . Thus, because the singleton {xz}

-1
in V, , is not ina (t+l)-cover over S\1 , it follows that one of the

. ' ]
Xi , say XZ~1 , is TZ-l and of the rest none belong to VZ . Now

suppose there exists m satisfying 1 £m < I-1 , such that the set Ih

does not appear among the Xi whereas the sets T

1 TZ—l do appear

among the Xi . In this case it is easy to see that among the ¢ sets

xl\c X \x \x

me1r s X\ T T K\

Z cens Xt\xm+l there are at
most ¢t sets belonging to Kﬂ and covering S\1 , which is =
contradiction. Thus every one of the (I-1) sets Tl, ceey TZ—l must
appear among the Xi and we suppose, with no loss of generality, that the
t-cover over S\1 in VZ actually consists of the sets

Ty eeey TZ—l’ XZ’ veey X Now-every one of these sets also belongs to

1 t
N(e, t) , because if some Xi , where I =1 =t , does not belong to
N(e, t) it must be a subset of Tl U... U TZ—l , which implies N(s, t)

has a t-cover over S , a contradiction. Thus Lemma 2 applies and tells

us that the sets XZ’ ooy X, belong to HC D . But TZ does not belong

t
to VZ s, Which means that X1 U ... U Xt C Tl U... U Tt , and then because
the sets Tl’ ey Tt are disjoint it follows that the ¢ sets
Xl’ cees Xt of VZ cannot possibly cover S\1 . Thus if each family Vi
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(2 =1, ..., I-1) contains no t-cover over S\1 then neither does Vi s
and it follows by induction on I that V, , like Vl , contains no
t-cover over S\1 .

Our final requirement that every singleton subset of Vk is in a

(t+1)-cover over S\1 , is easy to check. If zx € T, the (t+l) sets

T)s wevs 1 {x}, Tk\x, Tk+1’ ++-» T, Delong to Vk and cover S\1 ,
and if « € T, (1 =m <k-1) the (¢+1) sets {x}, Ty, ..., T 1>
Tm\x VT L, Tm+l\xm+1 UL s e Tk—l\xk—l U T, Tk\xk, Thps * oo T,

also belong to Vk and cover S\1 . Thus, remembering that by definition

1

it follows that all singletons in Vk are in (t+l)-covers over S\1 .

of Vk every singleton subset of Tk+ U.oo U Tj is in a (¢t+1l)-cover,

This completes the case.
Case (b). b+t-2 =d .

In this case we obtain our contradiction by showing that from WN(s, t)
we can always derive another family, satisfying the conditions of the
theorem for s8', t , where 1 <t < g8' < g , but which contains more than

gle', t) members.

With no loss of generality, we suppose that the common intersection of

the major sets of the family A defined by applying A12 to N(s, t) is
[1, j+1] , wvhere J =2 1 , and putting Wo = N(s, t) we define a sequence

of families W., W is defined, we

0’ "1°
apply Ai,i+1 to W, , end (using generic notation) define W, by

. Wj as follows. Assuming Wi-l

W.=A'UBOUC1':UC'.

7’+luD,

=N
[}

x:xea, i¢x},
c%:{x:xeci,i¢x},
' - . ’
Crpp=:xec, ., i+l ¢ X} .

We claim that Wj is a basic family N(s-j, t) of more than
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g(s-j, t) different subsets of S\[1, j] in which every singleton is in a
(t+l)-cover over S\[1, j] . If this is so, the contradiction mentioned

above arises for h% and the case is complete.

Clearly Wﬁ is a family of different subsets of S\[1, j] and if X

belongs to hb so do all subsets of X . Roughly speaking sets of Wi-l

and of Wi differ only with respect to elements < and <+l , and so if

W,_, ecovers S\[1, ©Z-1] then W, covers S\[1, Z] because when Ai,i+1

is applied to W, (£ =1, ..., §) the corresponding femily A' , which

-1

must contain the set [Z+1, j+1] , is non-empty. Also if Wi—l contains

no t-cover over S\[1, i~1] whereas the t-sets Xl, X ., X, of Wi

20 e Ay
do cover S\[1, 2] , then since the element (Z+1) is covered by W, , one
of these ¢t sets, say Xl , must belong to A' . This implies that the
and cover S\[1, ©Z-1] , which

t sets Xlui, X,, +..y X, belong to Wi-

t 1
is a contradiction that shows Wi contains no t-cover over S\[1, Z] .
Thus by induction on Z the cover of S\[1, J] in h& contains more than

t sets and W3 is therefore & basic family.

Now consider what happens when A.

1,041 is applied to Wi-l N
(=2, ..., §) from the point of view of the numbers of sets involved.
The singleton {i+1} together with some ¢ other sets Xl, ey Xt of

N(s, t) cover S , and so after truncation each Xk (k=1, ..., t)

gives rise to & corresponding set Yk in Wi-l . These sets Yl, veey Y

must be different, for if say ¥, = Y, , then Xl\[l, i-1] = x2\[1, i-1]

t

and the t sets [1, ¢+1], X., ..., X, belong to N(s, t) and cover

t
S , which is a contradiction. Using generic notation, the element < only
occurs in sets of Wi—l that belong to A , which incidentally means that

B, = @ and b=0. Thus if 7 € Yl say, the set Yl u {Z+1} belongs to
i1 o

Xlu[l, 1+1), X, co0s X

the set X, v [1, i+1] belongs to WN(e, t) and the t sets

‘ of WN(e, t) cover S , which is a contradiction.
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Also if 1+1 € Yl say, then <+l € Xl and the ¢t sets X

ykin

10 X2, ceey Xt

belong to N(e, t) and cover S , which is again a contradiction. Thus

none of the ¢ sets Yl, oo Yt can have ei

ther 7 or

1+l adjoined

and so when A, . is applied to W. they belong to D . Hence b =

1,1+1 1-1

and d = t and the inequality b+t-2 <= d , which in this case holds when

A12 is applied to Wb » &lso holds when Ai,i+l
(i= 2, vouy J)

Now suppose the number of sets in Wf—l (z=1, ...
than g(s-i+l, t) . Then using generic notation, since

- 1] ? '
Wi =A" v Bo V) Ci V] Ci+

and clearly

|a'] =22, |8yl =b, |c}| =¢ lc

l 3>

the number of sets in Wi is given by

]Wi] 2a+b+ecy +oc,

Hence

1 Y D

ial = >

+d .

2[W;| = ba + 3b + 2(e;*e,) +d + (d-b) ,

which, on using (1) and the inequality b+t-2 <=d , gives

is applied to Wi-

1

, J) 1is greater

[p| =4,

alwy| = |w;_| + (t-2) > g(s-i41, ¢) + (t-2) = 2g(e-, ¢) ,

that is

(W, >gle-t, t) .

Thus by induction on % our assumption that n(e, t) > g(s, t) for

Wy = N(s, t) gives |W3| > gls-4, t) .

So far we have shown that WH is a basic family N(s-j, t) of more

than g(e-j, t) different subsets of S\[1, j] , and hence to finish this

case and the theorem we now only have to Justify the claim that every

singleton set of WB is a (t+1)-cover over S\[1, j] .
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The singleton {j+1} of W3 is obviously in a (t+l)-cover over
S\[1, 7] in h& , because the set [1, j+1] of WN(s, t) was in a

(t+l)-cover over S in N(s, t) . For each singleton {z} c S\[1, j+1]
there must be at least one set Xl say, which belongs to the family A4

defined by applying A12 to WN(s, t) , such that {x} and X, are

together in a (t+l)-cover over S in N(s, t) . Otherwise, either

X1 u x could be adjointed to N(s, t) , Which contradicts the assumption

that n(s, t) is maximal, or x belongs to every major set of A
implying x € [1, J*1] , which is again a contradiction. Thus, if the

(t-1) other sets in this t-cover are X2, ceey Xt , then clearly the
(t+1) sets

{z}, x\M1, 41, X\, 41, -ens X\, F]

belong to h& and cover S\[1, j] . Hence every singleton of Wj is in a
(t+1)-cover over S\[1, 4] .
This completes the proof of Theorem 1.

It is interesting to note that the extreme value g(s, t) can be
attained in ways other than (G . For instance, given ¢ 21 when ¢ > 2
and 8 =29 + t - 1 the family

G'={P:pPcl1, t-2], |P| = 1} v {@ : @ c S\[1, t-2], |Q| = q}

satisfies the conditions of Theorem 1 and contains g{e, t) members.
However, both ¢ and G' do contain (¢-2) singleton msjor sets and,
although we do not prove it, it is not very difficult to show that this

property characterizes N(s, t) in the extreme case.

4. The main theorem

With Theorem 1 proved in the last section it is now easy to establish

our main result:

THEOREM 2. Given 8 >t >2 , if N is a family of n different
subsets of S = [1, 8] chosen so that each member is in a (t+l)-cover but

not in a t-cover over S , then

(i) n = fle, t), and
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(it} when t > 3 <in the extreme case N is obtainable from F by

permuting elements of S .
The result is best posgible.

Proof of (Z). When 8 = t + 1 only singletons can belong to N and
so (1) is true for this simple case. Proof in the general case
8§ >t + 1 , where from our example F we know that the maximum value of n
is at least f(s, t) , is by induction on & . We assume the theorem is
true for s8-1, t and then establish it for 8, ¢ by showing that if we
assume #» is maximal and greater than f(s, t) , then we get a

contradiction.

These assumptions yield the inequality n > f(s, t) Z g(s, t) - 1
wvhen ¢t >2 and s > t + 1 , and so by comparing the conditions of
Theorems 1 and 2 (and remembering that the empty set always belongs to
basic families) there must clearly be a set belonging to N which has a
non-empty subset Z that does not belong to ¥ . Obviously the only
reason why Z cannot be adjoined to N is because it would not be in a
(t+l)-cover over S . Thus no non-empty subset of Z belongs to N and
we may assume, with no loss of generality, that 2 is the singleton {s}.
In these circumstances we claim that for any X belonging to N the sets
Xus and X\s also belong to N . If &8 ¢ X the set X U s cannot be
in a t-cover over S Dbecause it would imply that {8} is already in a
(t+l)-cover over S which is a contradiction, and if X is in a
(t+l)-cover over S so obviously is X U g . On the other hand if 8 € X

then the set X\s cannot be in a t¢t-cover over S , and since there are ¢t

sets Xl’ cees Xt belonging to N which together with X cover S
(while we have shown that Xl U g belongs to N ), clearly the (¢+1)
sets X\s , Xlus, X2, ceey Xt cover S . Hence whichever possibility

arises, since #n is maximal, both X v s and X\s must oelong to N .
Thus N contains exactly twice as many sets as the family

N =1{x : x € N, 8t X} of different subsets of S\s , which is obviously
a family that satisfies the conditions of the theorem for s~1, £ . Hence
n = 2f(s-1, t) = f(s, t) which contradicts our assumption that

n > f(s, t) and establishes (Z).

Proof of (i¢). If n = f(s, t) , then for ¢t >3 and s >t +1 wve
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find n = f(s, t) > g(s, t) - 1 . This inequality means that we can apply
the reasoning used in the proof of (7), and so when ¢t > 3 in the extreme
case we can always derive from N another family N' containing

f(e=1, t) members, which satisfies the conditions of the theorem for

s-1, t . Hence, because this result is obviously true when s =¢ + 1 ,

(22) follows easily by induction on s .

This completes the proof of our main theorem.
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