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When do shape changers swim upstream?
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Using a multiple-scale analysis, Walker et al. (J. Fluid Mech., vol. 944, 2022, R2) obtain
the long-time behaviour of a shape-changing swimmer in a Poiseuille flow. They show
that the behaviour falls into one of three categories: endless tumbling at increasing distance
from the midline of the flow; preserved initial behaviour of the swimmer; or convergence to
upstream rheotaxis, where the swimmer is situated at the midline of the flow. Furthermore,
a single swimmer-dependent constant is identified that determines which of the three
behaviours is realised.
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1. Introduction

Understanding the behaviour of microswimmers in flow environments has a wide
range of applications; from upstream contamination by bacteria in medical devices
(Figueroa-Morales et al. 2020), to the vertical migration of phytoplankton in turbulence
(Lovecchio et al. 2019). To predict how a microswimmer moves through a flow
environment, we need to track the swimmer’s orientation and position; these are coupled
because changes in orientation can depend on space if the flow field is non-uniform, and
changes in position occur due to swimming, which depends on orientation, as well as
advection by the fluid.

Because of their small size, microswimmers typically live in the world of low Reynolds
numbers, where inertial effects can be neglected (Purcell 1977). In this Stokes flow limit,
the motion of spheroidal particles in simple shear was first described by Jeffery (1922), and
shown to be valid for all axisymmetric particles by Bretherton (1962). These results have
been used to study hydrodynamic phenomena in microswimmer suspensions (e.g. Pedley
& Kessler 1992). In general, for a swimmer with orientation p, the change in orientation
is governed by

dp
dt

= 1
2
Ω × p + Bp · E · (I − pp), (1.1)
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where Ω is the vorticity, E is the rate-of-strain tensor and B is the Bretherton constant
(which ranges from zero for a sphere to unity for an infinitely thin rod). Microswimmers
can display interesting dynamics distinct from the dynamics exhibited by passive colloids,
as highlighted by Zoettl & Stark (2013) who used a dynamical systems approach to identify
that elongated swimmers in Poiseuille flow can undergo either tumbling or swinging
behaviour.

Microswimmers typically propel themselves through fluid environments by changing
their shape in a periodic manner, for example by the beating of long whip-like flagella, or
shorter cilia which cover the surface of the swimmer (Elgeti, Winkler & Gompper 2015).
Walker et al. (2022) (WIMGD) take a minimal model to account for shape changing; they
use the model of Jeffery, (1.1), but allow the Bretherton constant, B, and swimming speed
to be an oscillatory function of time. WIMGD show that this simple model can capture the
key long-time dynamics of swimmers, in particular they are able to identify a single shape
parameter which captures whether swimmers undergo rheotaxis, that is that the swimmers
stably orientate themselves to swim upstream.

2. Overview

Applying (1.1) to planar Poiseuille flow, Omori et al. (2021) introduced and numerically
analysed the following system of ordinary differential equations describing the transverse
coordinate y and swimmer orientation θ , with θ = 0 corresponding to the direction of flow
and y = 0 the centreline:

dy
dt

= ωu(ωt) sin θ, (2.1)

dθ

dt
= γ y[1 − B(ωt) cos 2θ ]. (2.2)

The shape-changing nature of the swimmers is captured here by allowing the swimming
speed, u, and Bretherton constant, B, to be oscillatory functions, where ω � 1 is the high
frequency period of the oscillations. The parameter γ is a fixed (positive) characteristic
shear rate of the flow.

In order to understand the observed dynamics, WIMGD define z(t) = y(t)/w1/2 and,
inspired by Zoettl & Stark (2013), introduce a Hamiltonian-like quantity

H(t) := γ

2〈u〉z2 + g(θ), (2.3)

where g is a closed form analytic function that only depends on B, and 〈(·)〉 denotes the
average value over an oscillatory period.

WIMGD introduce fast and intermediate time scales: T = ωt; τ = ω1/2t, and
implement a multiple-scale analysis, formally defining z(t) = z(T, τ, t) and θ(t) =
θ(T, τ, t), treating each time variable as independent. At leading order, WIMGD find that
the intermediate time scale dynamics directly corresponds to the dynamics for a fixed
shape particle,

z0τ = 〈u〉 sin θ0, (2.4)

θ0τ = γ z0[1 − 〈B〉 cos 2θ0]. (2.5)

Over the intermediate time scale τ , this yields the result that the leading-order expression
for the Hamiltonian-like quantity given by H0(t) (equal to H(t) with z = z0 and
θ = θ0) is conserved. Now, on considering H0 as a fixed quantity, as identified by
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Figure 1. Phase portrait on the intermediate time scale, τ , showing contours of H0. Solutions in the
shaded region where H0 > g(0) correspond to tumbling motion whereas trajectories with H0 < g(0) exhibit
swinging motion. The stationary point (z0, θ0) = (0, π) corresponds to upstream swimming, i.e. rheotaxis,
with H0 = g(π). Taken from WIMGD.

Zoettl & Stark (2013) and illustrated in figure 1, two types of behaviours are observed: if
H0 > g(0) the swimmers tumble and there is monotonic evolution of θ0; else if H0 < g(0),
the swimmers exhibit a swinging motion with θ0 oscillating between two values. Also
note in figure 1 the existence of the unique equilibrium point (z0, θ0) = (0, π) which
corresponds to rheotaxis and H0 taking its minimum value of g(π).

In order to examine the long-time dynamics of the swimmers, WIMGD examine the full
dynamics of H(t). Specifically, they introduce the function h(T, τ, t) = H2T + H1τ + H0t
to represent the O(1) terms in the full derivative dH/dt. Averaging over a period in T and
then period in τ yields the long-time evolution equation

dH0

dt
= γ f (H0)W, (2.6)

where W is a constant that can be calculated purely from the shape properties of the
swimmer. The quantity f (H0) is shown to be negative for all H0 and so the sign of dH0/dt
is determined by the constant W. Specifically, the fixed point H0 = g(π) corresponding
to the rheotactic configuration (z0, θ0) = (0, π) is globally stable if W > 0 and unstable if
W < 0.

WIMGD illustrate the asymptotic calculations with the specific example of
u(T) = α + β sin T and B(T) = δ + μ sin(T + λ). In this case, if βμ > 0 then λ ∈ (0, π)

corresponds to W < 0 and tumbling, whereas λ ∈ (π, 2π) corresponds to W > 0 and
rheotaxis, as illustrated in figure 2, which also demonstrates the good agreement between
the full solutions of the dynamical system with the asymptotic approximation.

3. Future

The elegant analysis of WIMGD has the potential to be applied and extended to a wide
range of topical questions in the field of active biofluids, and there are open questions to
determine the range of applicability of the results. In particular, WIMGD assumed shape
changing can be modelled through periodic oscillations in the Bretherton constant (valid
for axisymmetric particles in steady Stokes flow) and swimming speed. When considering
individual microswimmers, the detailed mechanisms of propulsion, for example gait, can
affect the swimming speed, as demonstrated theoretically and recently experimentally by
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Figure 2. The value of H as computed from the full numerical solution (blue), (2.1)–(2.3) and
approximate solution (black), (2.6), for three phase shifts λ ∈ {4π/5, π, 6π/5} and parameters (α, β, δ, μ) =
(1, 0.5, 0.32, 0.3). Adapted from WIMGD.

using dynamically similar robotic models (Diaz et al. 2021). Furthermore, swimmers can
swim in chiral patterns when propulsive torque and propulsive force are not aligned, and
the unsteady nature of Stokes flow and external fields can also affect their swimming
velocity and rotation rate (Maity & Burada 2022). The role of external fields, such
as gravity, light or chemical gradients is also incorporated in recent work by Lauga,
Dang & Ishikawa (2021), who identified a new instability in suspensions of biased
microswimmers. Because of the ability of swimmers to cross streamlines, their dispersion
is quite different to passive colloids, and current work aims to identify the correct
population-level transport models for microswimmers (e.g. Fung, Bearon & Hwang 2022);
incorporating the shape-changing effects of WIMGD would be an interesting development
in such population-level models.
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