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1. Introduction
In (7), Wright gives an enumerative proof of an identity algebraically

equivalent to that of Jacobi, namely
2n-1z-1) = n(l-^2")~1I^r 22r . (1)

Here, and in the sequel, products run from 1 to oo and sums from — oo to oo
unless otherwise indicated. We give here a simplified version of his argument
by working directly with (1), the substitution leading to equation (3) of his
paper being omitted. We then supply an alternative proof of (1) by means
of a generalisation of the Durfee square concept utilising the rectangle of
dimensions vby v + r for fixed r and maximal v contained in the Ferrers graph
of a partition.

After receiving a pre-publication copy of (7), I discovered that Sylvester
((5), pp. 34-36) had already given a proof of (1) of the required type. However,
perhaps because of his somewhat verbose and unclear style, his work on this
topic has apparently been almost completely ignored in recent times except
by MacMahon, who gave ((4), § 323) a generalisation of Sylvester's idea. Thus
all the familiar proofs have involved analysis ((3), pp. 282-283) or at least
rather tricky algebraic arguments involving polynomials and series ((2),
pp. 282-283). Furthermore, the two proofs given below are considerably
more transparent than Sylvester's, though in a sense variants of it, and provide
a clear insight into the nature of (1).

It seems desirable, moreover, to provide a complete enumerative proof of
Jacobi's identity in its original form, namely

2"~1z~1)= X> r V . (2)

Given (1), this problem reduces to the corresponding one for

which has been solved by Vahlen ((1), p. 146). However, we can supply a
more direct proof by establishing a simple one-to-one correspondence.

2. Notation and conventions
Unless otherwise indicated, small Roman and Greek letters will denote
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u u

positive integers and the summands of finite sums such as ]T c, = £ c, will
1 » = 1

be arranged in non-decreasing order. In sums or products, the index will
always be a subscript or an exponent and will be omitted (like t above) when
there is no risk of ambiguity. Empty sums or products are to be interpreted
as 0 or 1 respectively, and all correspondences are one-to-one.

In the following we shall be concerned with certain representations of an
integer A ^ 0 as a sum and we make the convention that 0 has one representa-
tion or partition of the type being considered without explicit mention. We
ignore the conditions of validity of formal operations with series and products,
which are well-known and, moreover, essentially irrelevant in the present
context (see (3), p. 276).

The reader is referred to (3), Chapter 19 for concepts not explained in the
text. Of the other references, we shall only assume knowledge of (7) in the
main body of the text.

3. Proof of (2) based on Wright's method
00 00

We write the right member of (2) as £ £ Cmr*™2-* anc* prove that
m = 0 r = — oo

fl, m=r2

Cmr = , (4)
l0, m * r2'

Consider for fixed r any representation R of m of the form

m= Ir(2fl ,-l)+f (2fe,-l)+f 2c,; v ̂  0, u ̂  0, (5)
I I I

where the summands in each sum are distinct. Now on expanding the product
in (2) formally, we find without difficulty that

Cmr = ! ( - ! ) " , (6)
R

where the sum is extended over all representations of m in the form (5). Then,
by (5), Cm _r = Cmr, so that we may take r ^ 0 in the sequel. Next, (5) is
equivalent to

(m + r)/2=a + y; a = "f a,+ £ (ft,-1), y = £ c,. (7)
i i i

Now if m<r2, (7) is clearly insoluble since a, 2: /, whereas if/?? = r1, v = u = 0
and a, = t only. Hence by (6),

(0, m<r2

Cm,= \ 2 (8)
U, m =r2.

Assume henceforth that m>r2 and write k = a — r(r+ l)/2. Then there
is a correspondence, given by the second figure in (7), between the representa-
tions of a given by (7) and the unrestricted partitions of k. (Our notations
and conventions agree with equation (6) of (7) except that his n is our a).
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Let £ eg be an unrestricted partition of it. Then by (7)

u h

H = y + k =(m — r2)/2 = £ c,+ £ eg, c,<c, + l ( J^ l ) (9)

in which / i>0 since m>r2 by hypothesis. Consider the composite partition
of n given by (9) which we denote by B = Br Thus by (6),

Cmr = £ ( - l ) u , (10)

which is, of course, the coefficient of x? in the expansion of (3). We now
write

h b

Z e9 = Z >Vi>

where v; 2: 0 is the multiplicity of / among the eg but vo>0, v,,>0. Then B^
corresponds to the partition

P —fit = ( c i » •••> c u | a v o . •••. b v b ) ; c i < • • • < c u - ( 1 1 )

We now establish a correspondence between the /? with u even and those
with u odd. Then on replacing B by jS in (10), we shall have

Cmr = 0, m>r2, (12)

and the proof of (4) is complete by (8). We distinguish two cases in (11).

(i) ct ^ a or the v; absent. Then we take /J into

(c2, . . . . c j c j , ava, ..., ..., fovfc), C!<a

••2, ..., cu | a(va + l), ..., bvb), ct = a.

(ii) q > a o r the c, absent. Then we take P into

P' = (a, c,, ..., cu | o ( v o - l ) , ..., ftvj,).

It is clear that if /? satisfies (i), /?' satisfies (ii) and conversely, so that we have
the required correspondence and (12) is proved.

We next consider a result of Vahlen's (6), a direct proof of which is an
immediate corollary of the preceding analysis. Let S be a representation of
/ 7z 0 in the form

D + r v u

i = Z (3f l<-i)+ Z(3fo<~2)+ Z3c« (13)
1 1 1

in which the conditions of (5) hold, and put Alr =(— 1)r £(—1)", which is
s

in effect the function evaluated by Vahlen. We then have, by (13),

(/ + r)/3 = "Z o, + £ (b, -1) + £ c,. (14)
i I I

Now the right members of (14) and (7) are identical, so that
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Then / = (3m + r)/2, and by (4), after putting — r for r,

-IY, Z=(3r2-r)/2

" ' 0,Z*(3r2-r)/2,

which is Vahlen's result. Our variant of Wright's method is considerably
simpler than Vahlen's original proof.

To conclude this section, we note that a direct proof of Jacobi's identity
for 11(1 — x")3 ((3), Theorem 357) can also be obtained using the method above,
by working with 11(1 -JC")(1 -x"z)(l -x"z~l) ((3), 19.9.4, with z = - f l . How-
ever, the details are a little tedious and not very interesting combinatorially.

4. Alternative proof of (1)
Put 11(1 +x2n~1z)(l + x2n~1z~l) = Ezy/*)- Now fr{x) enumerates repre-

sentations of m 2; 0 in the form

m = "£ (2a,-1)+ £ (26,-1), v S; 0, (15)
I i

where the conditions of (5) hold. As before, we may take r ^ 0 and (15) is
then equivalent to

(TO - {(» + r)2 + vz})/2 = (m - r2)/2 - v(v + r)

= X > , - O + t (&,-*), (16)
I I

where the last two sums are unrestricted partitions (with non-negative sum-
mands). By (16) we have x~rZfr{x) = gr{x2) where

gXy) = f:yvlv+r) r i ( i - j ' r l r i ( i - / r 1 = ft a-/)-1, (17)
O i l 1

in which the last equality arises by comparison with (1). For r = 0 this is
familiar ((3), Theorem 351), and we prove (17) by generalising the pictorial
argument used there.

We denote by P any partition of h such that h = di + ... + dp, with
dY ^ . . ^ dp. Let F be the Ferrers graph of P and identify the nodes of F
with a finite set of lattice points (p, q) such that 1 ^ p, 1 ^ q and that (p, 1)
is a node of F for 1 ^ p ^ dv. Consider for fixed r Si 0 the nodes (r+ X, X),
which occur if </t jg r+1 , and let j be the maximum value of k. Then the
nodes (p, q) with p ^ r+y, ^ g / form a unique rectangle Dr " inscribed " in
F such that the base and altitude differ by r. If Dr does not occur, we say that
j = 0. For y>0, every partition P is uniquely dissected into Dr and two
" ta i l s " representing partitions into at mosty+r and at most j parts resp.
P is then enumerated by that term of the sum in (17) for which v = j , which
is also true for j — 0 since we are then considering partitions with at most
r parts.
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In response to my inquiry about its occurrence in the literature, Dr Wright
pointed out that (17) can be derived from the main formula of ((4), § 263)
as follows. We interchange MacMahon's a and x, put xr in place of a, and

r

multiply through by \\ (1 — Xs)""1.
i
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