ON ALGEBRAIC GROUPS DEFINED BY JORDAN PAIRS

OTTMAR LOOS

Introduction

Let G be an algebraic group over a field k, and let ψ be an action of the multiplicative group k_m of k on G by automorphisms. We say ψ is an *elementary action* if it has only the weights $0, \pm 1$; more precisely, if there exist subgroups H, U^+, U^- of G such that (i) H is fixed under ψ , (ii) U^+ and U^- are vector groups and $\psi_t(x) = t^{\pm 1}x$ for $t \in k_m$, $x \in U^{\pm}$, (iii) $\Omega = U^- \cdot H \cdot U^+$ is open in G, and (iv) G is generated by H, U^+, U^- . This situation is characteristic for the complexifications of the automorphism groups of bounded symmetric domains (see, e.g., [9, 16]). A typical example is $G = \mathbf{GL}_n$ with (matrices being decomposed into 4 blocks) ψ given by

$$\psi_t \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a & tb \\ t^{-1}c & d \end{pmatrix}$$
.

If G is reductive and U^+ and U^- are one-dimensional, then an elementary action is essentially equivalent to an elementary system in the sense of Demazure [7, Exp. XX], with the technical difference that we consider an external torus action instead of a sub-torus of G acting by conjugation.

After some preliminaries, our first goal (§ 4) is to find relations describing the structure of G in terms of the generators H, U^+, U^- . Since H normalizes U^+ and U^- this essentially amounts to a formula expressing products in $U^+ \cdot U^-$ in terms of their components in $\Omega = U^- \cdot H \cdot U^+$. In more detail, let \mathfrak{B}^{\pm} be the Lie algebra of U^{\pm} . Then there are ψ -equivariant isomorphism $\exp: \mathfrak{B}^{\pm} \to U^{\pm}$, and there is a unique Jordan pair structure on $\mathfrak{B} = (\mathfrak{B}^+, \mathfrak{B}^-)$ such that, for $x \in \mathfrak{B}^+$, $y \in \mathfrak{B}^-$, the product $\exp(x) \cdot \exp(y)$ belongs to Ω if and only if (x, y) is quasi-invertible, and in this case

$$(*) \qquad \exp(x) \cdot \exp(y) = \exp(y^x) \cdot b(x, y) \cdot \exp(x^y).$$

Here x^y , y^x denotes the quasi-inverse in $\mathfrak B$ and b is a morphism from the set of quasi-invertible pairs of $\mathfrak B$ into H which has properties analogous to the "Bergmann transformations" B(x, y) of a Jordan pair. The formula

(*) is the higher-dimensional analogue of Demazure's formula (F) ([7, Exp. XX, Th. 2.1]). In case U^+ and U^- are conjugate by an element of G^0 , one can show that the Jordan pair $\mathfrak B$ contains invertible elements and hence is the Jordan pair defined by a (not canonically determined) unital quadratic Jordan algebra; see Borel-Tits [4, § 5] and Springer [20, 2.21–2.26].

Next we show how to reconstruct G, given $\mathfrak B$ and H. The necessary ingredients for this are an action ρ of H on $\mathfrak B$ by automorphisms and a morphism b from the quasi-invertible pairs of $\mathfrak B$ into H, satisfying suitable conditions (5.1). Then for every "Jordan system" ($\mathfrak B$, H, ρ , b) there exists an "elementary system" (G, ψ), and this establishes an equivalence of categories. In case H is the automorphism group of $\mathfrak B$ and $\rho = \mathrm{Id}$, and under restrictions on k and $\mathfrak B$, Koecher proved the existence of G by realizing it as a group of birational transformations; see [11, 12, 13]. The proof given here (5.2–5.9) is more direct but also more computational. The Lie algebra of G was studied extensively by Tits [21], Koecher [10], and Meyberg [17].

In §6, we prove that the unipotent radical of G and the Jacobson radical of $\mathfrak V$ are related by the formula

$$R_u(G) = N^- \cdot R_u(H) \cdot N^+$$

where $N^{\pm} = \exp(\text{Rad }\mathfrak{B}^{\pm})$. We also show that the automorphism group of a separable Jordan pair is reductive and its identity component consists of inner automorphisms, a result due to Springer [20] in the Jordan algebra case. Finally, we give a description of the group G(k) of k-rational points by generators and relations.

The desire to replace the base field k by an arbitrary base ring leads naturally to considering group schemes and Jordan pairs which are finitely generated and projective k-modules. In view of recent work of H. P. Petersson [18] on orders in Jordan pairs over quotient fields of Dedekind rings, this degree of generality seems not without interest. It turns out that the formal theory of § 3–§ 5 is easier to handle in the framework of group sheaves (in the flat topology). Representability questions are then treated separately; if the base ring is Dedekind, they have satisfactory answers (5.13). We have therefore adopted this point of view, in particular, since it involves very little extra effort as compared to a more classical approach.

The author wishes to express his thanks to P. Gabriel for a stimulating conversation. Also, the hospitality of the University of California at

Irvine during the final preparation of the manuscript is gratefully acknowledged.

§1. Notations and Preliminaries

- 1.1. Let k denote a commutative base ring and k-alg the category of commutative k-algebras. We follow the notations and conventions of [5]. In particular, schemes are considered as special k-functors (covariant functors from k-alg into sets). If X is a k-functor we write $x \in X$ for $x \in X(R)$, $R \in k$ -alg. The base extension of X from k to K is denoted by X_K or $X \otimes_k K$. A sheaf is a k-functor which is a sheaf in the flat (= fppf) topology. We refer to [5, p. 10, p. 50] for the notion of open (closed) subfunctor. It is easily seen that an open (closed) subfunctor of a sheaf is itself a sheaf. A k-functor X is called separated if the diagonal in $X \times X$ is closed. The following result can be proved along the lines of [5, p. 296].
 - 1.2. Lemma. Let

$$F \longrightarrow G$$

$$u \downarrow \qquad \qquad \downarrow v$$

$$X \stackrel{p}{\longrightarrow} Y$$

be a Cartesian square of sheaves where p is an epimorphism of sheaves. Then u is an open (closed) imbedding if and only if v is.

1.3. COROLLARY. Let $p: X \to Y$ be an epimorphism of sheaves and $E = X \times_Y X \subset X \times X$ the equivalence relation defined by p. Then Y is separated if and only if E is closed in $X \times X$.

This follows by considering the Cartesian square

1.4. A subfunctor U of a k-functor X is called *dense* if, for all open $V \subset X$, and all closed $Z \subset V$ such that $Z \supset U \cap V$ we have Z = V, and this property remains valid in all scalar extensions. If X is a scheme then this notion of dense is the same as "universally schematically dense"

- (cf. EGA IV, 11.10). The following lemma will be used often (cf. SGA3, Exp. XVIII, 1.7, and EGA IV, 11.10.10).
- 1.5. Lemma. Let X be a smooth separated finitely presented k-scheme with connected non-empty fibres, and let U be an open subscheme of X. Then the following conditions are equivalent.
 - (i) U is dense in X.
 - (ii) There exists a fppf extension R of k such that $U(R) \neq \emptyset$.
 - (iii) $U(K) \neq \emptyset$ for all algebraically closed fields $K \in k$ -alg.
- 1.6. Lemma (Cf. SGA3, Exp. XVIII, Prop. 1.1). Let U be a dense subfunctor of X.
 - (a) U_R is dense in X_R , for all $R \in k$ -alg.
 - (b) If $U \subset U' \subset X$ then U' is dense in X.
 - (c) If V is open in X then $U \cap V$ is dense in V.
 - (d) If $V \subset U$ is dense in U then V is dense in X.
 - (e) If $U' \subset X$ is open and dense then $U \cap U'$ is dense in X.
 - (f) $U \times Y$ is dense in $X \times Y$, for any k-functor Y.
- (g) If $f, g: X \to Y$ are morphisms into a separated k-functor Y which agree on U then f = g.

The proofs are mostly straightforward and are omitted.

- 1.7. Lemma. Let $p: X \to Y$ be an epimorphism of sheaves, and let U be a subfunctor of Y such that $p^{-1}(U)$ is dense in X. Then U is dense.
- *Proof.* Let $V \subset Y$ be open, $Z \subset V$ closed, and assume $U \cap V \subset Z$. Then $p^{-1}(V)$ is open in $X, p^{-1}(Z) \subset p^{-1}(V)$ is closed, and $p^{-1}(U) \cap p^{-1}(V) \subset p^{-1}(Z)$. Hence $p^{-1}(Z) = p^{-1}(V)$. Now $p: p^{-1}(V) \to V$ is an epimorphism of sheaves, and therefore Z contains the image sheaf of $p^{-1}(V)$ under p which is V.
- 1.8. A k-group functor is a covariant functor from k-alg into the category of groups. If G is a k-group sheaf and A and B are subsheaves of G then $A \cdot B$ denotes the image sheaf of $A \times B$ under multiplication. The multiplicative group of k is denoted by k_m , the additive group of a finitely generated projective k-module \mathfrak{M} by \mathfrak{M}_a . Thus $\mathfrak{M}_a(R) = \mathfrak{M}_R = \mathfrak{M} \otimes_k R$, for all $R \in k$ -alg. The Lie algebra of a k-group functor G is denoted by Lie G. We follow [7, p. 209] and write $e^{ix} \in G(k(\varepsilon))$ for $x \in \text{Lie }(G)$ (where $k(\varepsilon)$ is the ring of dual numbers). If $G = \mathfrak{M}_a$ is a

vector group we identify $\operatorname{Lie}(\mathfrak{M}_a)$ with \mathfrak{M} and set $e^{\epsilon x} = \epsilon x$. If $G \subset \operatorname{GL}(\mathfrak{M})$ is linear then we identify $\operatorname{Lie}(G)$ with the set of $x \in \operatorname{End}(\mathfrak{M})$ such that $e^{\epsilon x} = \operatorname{Id} + \epsilon x \in G(k(\epsilon))$. (Here $\operatorname{GL}(\mathfrak{M})$ is the k-group functor $R \mapsto \operatorname{GL}(\mathfrak{M}_R)$). The adjoint representation of G(k) on $\operatorname{Lie}(G)$ is defined by $\operatorname{Int}(g)e^{\epsilon x} = e^{\epsilon \operatorname{Adg} \cdot x}$, where $\operatorname{Int}(g)h = ghg^{-1}$.

§2. Jordan Pairs

2.1. Let \mathfrak{B}^+ and \mathfrak{B}^- be finitely generated and projective k-modules, and let $Q_+ \colon \mathfrak{B}^+ \to \operatorname{Hom}(\mathfrak{B}^-, \mathfrak{B}^+)$ and $Q_- \colon \mathfrak{B}^- \to \operatorname{Hom}(\mathfrak{B}^+, \mathfrak{B}^-)$ be quadratic maps. For $\sigma = \pm$ define trilinear compositions $\mathfrak{B}^{\sigma} \times \mathfrak{B}^{-\sigma} \times \mathfrak{B}^{\sigma} \to \mathfrak{B}^{\sigma}$, $(x, y, z) \mapsto \{xyz\}$, and bilinear maps $D_{\sigma} \colon \mathfrak{B}^{\sigma} \times \mathfrak{B}^{-\sigma} \to \operatorname{End}(\mathfrak{B}^{\sigma})$ by

$$\{xyz\} = D_{\sigma}(x,y)z = Q_{\sigma}(x,z)y = Q_{\sigma}(x+z)y - Q_{\sigma}(x)y - Q_{\sigma}(z)y$$
.

The pair $\mathfrak{B} = (\mathfrak{B}^+, \mathfrak{B}^-)$ together with the quadratic maps (Q_+, Q_-) is called a *Jordan pair* if the following identities hold in all base ring extensions.

$$(1) D_{\sigma}(x,y)Q_{\sigma}(x) = Q_{\sigma}(x)D_{-\sigma}(y,x),$$

$$(2) D_{\sigma}(Q_{\sigma}(x)y, y) = D_{\sigma}(x, Q_{-\sigma}(y)x),$$

$$Q_{\sigma}(Q_{\sigma}(x)y) = Q_{\sigma}(x)Q_{-\sigma}(y)Q_{\sigma}(x).$$

A homomorphism $h: \mathfrak{B} \to \mathfrak{W}$ of Jordan pairs is a pair $h = (h_+, h_-)$ of k-linear maps, $h_{\sigma}: \mathfrak{B}^{\sigma} \to \mathfrak{W}^{\sigma}$, such that $h_{\sigma}Q_{\sigma}(x) = Q_{\sigma}(h_{\sigma}(x))h_{-\sigma}$. The automorphism group of \mathfrak{B} is denoted by Aut (\mathfrak{B}). The opposite of \mathfrak{B} is $\mathfrak{B}^{\mathrm{op}} = (\mathfrak{B}^{-}, \mathfrak{B}^{+})$ with quadratic maps (Q_{-}, Q_{+}) . A standard example of a Jordan pair is $\mathfrak{B}^{+} = \mathfrak{B}^{-} = M_{p,q}(k)$, $p \times q$ -matrices, with $Q_{\pm}(x)y = x \cdot {}^{t}y \cdot x$. For details see [15].

2.2. The *quasi-inverse* ([15, § 3]). Let \mathfrak{V} be a Jordan pair. Following the convention of [15, 2.0], we omit the index σ in D_{σ} and Q_{σ} and write $Q_x y$ for Q(x)y. For $x \in \mathfrak{V}^+$, $y \in \mathfrak{V}^-$ define $B(x, y) \in \operatorname{End}(\mathfrak{V}^+)$ and $B(y, x) \in \operatorname{End}(\mathfrak{V}^-)$ by

$$B(x, y) = \text{Id} - D(x, y) + Q_x Q_y$$
, $B(y, x) = \text{Id} - D(y, x) + Q_y Q_x$.

The pair $(x, y) \in \mathfrak{D}^+ \times \mathfrak{D}^-$ is called *quasi-invertible* if there exists $z \in \mathfrak{D}^+$ such that

(1)
$$B(x, y)z = x - Q_x y \text{ and } B(x, y)Q_z y = Q_x y.$$

This is the case if and only if B(x, y) is invertible, and thus

$$(2) z = x^y = B(x, y)^{-1}(x - Q_x y),$$

called the *quasi-inverse* of (x, y). We denote by $W \subset \mathfrak{L}_a^+ \times \mathfrak{L}_a^-$ the open dense subscheme of quasi-invertible pairs. In the example above, (x, y) is quasi-invertible if and only if $1 - x \cdot {}^t y$ is invertible, and $x^y = (1 - x \cdot {}^t y)^{-1} \cdot x$. If (x, y) is quasi-invertible then

$$\beta(x, y) = (B(x, y), B(y, x)^{-1})$$

is an automorphism of \mathfrak{B} , called the *inner automorphism* defined by (x, y). The subgroup $\text{Inn}(\mathfrak{B})$ of $\text{Aut}(\mathfrak{B})$ generated by all inner automorphisms is normal and called the *inner automorphism group*.

2.3. The automorphism group functor of V is defined by

$$\mathbf{Aut}\,(\mathfrak{V})(R) = \mathbf{Aut}\,(\mathfrak{V}_R)\;,$$

for all $R \in k$ -alg. We show that $\operatorname{Aut}(\mathfrak{V})$ is an affine finitely presented group scheme. Let $x_1^{\sigma}, \dots, x_n^{\sigma}$ be a set of generators for the k-module \mathfrak{V}^{σ} ($\sigma = \pm$). Then $h = (h_+, h_-) \in \operatorname{GL}(\mathfrak{V}^+) \times \operatorname{GL}(\mathfrak{V}^-)$ belongs to $\operatorname{Aut}(\mathfrak{V})$ if and only if

$$h_{\sigma}Q(x_{i}^{\sigma}) = Q(h_{\sigma}(x_{i}^{\sigma}))h_{-\sigma} ,$$

 $h_{\sigma}D(x_{i}^{\sigma}, x_{i}^{-\sigma}) = D(h_{\sigma}(x_{i}^{\sigma}), h_{-\sigma}(x_{i}^{-\sigma}))h_{\sigma} ,$

for $i, j = 1, \dots, n$, $\sigma = \pm$. Since this remains true in any base ring extension, $\mathbf{Aut}(\mathfrak{V})$ is the closed subscheme of the affine finitely presented k-scheme $\mathbf{GL}(\mathfrak{V}^+) \times \mathbf{GL}(\mathfrak{V}^-)$ defined by finitely many equations, and is therefore itself an affine finitely presented k-scheme ([5, I, § 3]).

The derivation algebra of $\mathfrak V$ is $\operatorname{Der}(\mathfrak V) = \operatorname{Lie}(\operatorname{Aut}(\mathfrak V))$. From 1.8 it follows easily that $\Delta = (\Delta_+, \Delta_-) \in \operatorname{End}(\mathfrak V^+) \times \operatorname{End}(\mathfrak V^-)$ is a derivation of $\mathfrak V$ if and only if

$$\Delta_{\sigma}Q_{x}y = \{\Delta_{\sigma}x, y, x\} + Q_{x} \cdot \Delta_{-\sigma}y,$$

for all $x \in \mathfrak{V}^{\sigma}$, $y \in \mathfrak{V}^{-\sigma}$, $\sigma = \pm$. Finally we note that there is a central homomorphism $\gamma: k_m \to \operatorname{Aut}(\mathfrak{V})$ given by

$$\gamma(t) = (t \cdot \mathrm{Id}, t^{-1} \cdot \mathrm{Id})$$
.

2.4. Let $\operatorname{Inn}(\mathfrak{V})$ be the k-group sheaf associated with the k-group functor $R \mapsto \operatorname{Inn}(\mathfrak{V}_R)$. Then $\operatorname{Inn}(\mathfrak{V})$ is normal in $\operatorname{Aut}(\mathfrak{V})$. If k is a field then $\operatorname{Inn}(\mathfrak{V})$ is a smooth connected algebraic k-group since it is generated by $\beta(W)$ ([SGA3, Exp. VI_B, No. 7], see also [2, p. 106]). For $(x, y) \in \mathfrak{V}^+ \times \mathfrak{V}^-$,

$$\delta(x, y) = (D(x, y), -D(y, x))$$

is a derivation of \mathfrak{V} , called the inner derivation defined by (x, y). The linear span of the $\delta(x, y)$ is an Aut (\mathfrak{V})-invariant ideal of Der (\mathfrak{V}), the inner derivation algebra Inder (\mathfrak{V}). Clearly Inder (\mathfrak{V}) \subset Lie (Inn (\mathfrak{V})). If k is a field of characteristic zero then it can be shown that equality holds.

- 2.5. Let \mathfrak{A} be a unital quadratic Jordan algebra over k which is finitely generated and projective as a k-module. Then \mathfrak{A} defines a Jordan pair $\mathfrak{B} = (\mathfrak{A}, \mathfrak{A})$ by setting $\mathfrak{B}^+ = \mathfrak{B}^- = \mathfrak{A}$ and $Q(x) \cdot y = P(x) \cdot y$ where P denotes the quadratic representation of A. This establishes a one-to-one correspondence between Jordan algebras "up to isotopy" and Jordan pairs containing invertible elements ([15, 1.11]). Let $Str(\mathfrak{A})$ be the structure group of \mathfrak{A} ; i.e., the group of all $g \in GL(\mathfrak{A})$ such that $P(gx) = gP(x)g^*$ for some $g^* \in GL(\mathfrak{A})$ and all $x \in A$. Then $g^* \in Str(\mathfrak{A})$ and the map $g \mapsto g^{*-1}$ is an automorphism of period 2 of $Str(\mathfrak{A})$. The $inner\ structure\ group$ is the subgroup $Instr(\mathfrak{A})$ of $Str(\mathfrak{A})$ generated by all P(x), x invertible. The structure group functor $Str(\mathfrak{A})$ is defined by $Str(\mathfrak{A})(R) = Str(\mathfrak{A}_R)$ and we denote by $Instr(\mathfrak{A})$ the k-group sheaf generated by the k-group functor $R \mapsto Instr(\mathfrak{A}_R)$.
- 2.6. PROPOSITION. The map $f: g \mapsto (g, g^{*-1})$ is an isomorphism of $\mathbf{Str}(\mathfrak{A})$ onto $\mathbf{Aut}(\mathfrak{A}, \mathfrak{A})$ mapping $\mathbf{Instr}(\mathfrak{A})$ onto $\mathbf{Inn}(\mathfrak{A}, \mathfrak{A})$.

Proof. The first statement follows easily from the definitions (cf. [15, 1.8]). Let G be the image sheaf of $\mathbf{Instr}(\mathfrak{A})$ in $\mathbf{Aut}(\mathfrak{A},\mathfrak{A})$. Then $G \subset \mathbf{Inn}(\mathfrak{A},\mathfrak{A})$ since $P(x) = B(x, x^{-1} + e)$ and thus $f(P(x)) = \beta(x, x^{-1} + e)$ (here e is the unit element of \mathfrak{A}). Since everything is compatible with base extension, the converse inclusion will follow if we show: for every quasi-invertible $(x, y) \in \mathfrak{A} \times \mathfrak{A}$ there exists a fppf extension R of k such that $B(x, y) \in \mathbf{Instr}(\mathfrak{A}_R)$. If x is invertible then $B(x, y) = P(x)P(x^{-1} - y) \in \mathbf{Instr}(\mathfrak{A})$ (cf. [15, 1.12]). If not, let $U \subset \mathfrak{A}_a$ be the open subscheme defined by

$$U(R) = \{z \in \mathfrak{A}_R | (x + z, y) \text{ quasi-invertible} \},$$

and let $U' = U \cap I \cap (-x + I)$ where I is the open dense subscheme of invertible elements of \mathfrak{A} . Then U is dense since $0 \in U(k)$, and so are I and the translate -x + I. By 1.5 and 1.6, U' is dense and hence there exists a fppf extension R of k such that $U'(R) \neq \emptyset$. Picking $z \in U'(R)$ we have by [15, p. 25, JP34] that $B(x, y) = B(z, y^x)^{-1}B(x + z, y) \in \text{Instr}(\mathfrak{A}_R)$.

§3. Elementary torus actions

- 3.1. Let G be a separated k-group sheaf, and let ψ be an action of the multiplicative group k_m on G by automorphisms. Thus for every invertible $t \in R$, $R \in k$ -alg we have an automorphism ψ_t of G_R varying functorially with R and satisfying $\psi_s \psi_t = \psi_{st}$. The action ψ is called elementary, and the pair (G, ψ) is called an elementary system if there exist subgroup sheaves H, U^+ , U^- of G with the following properties.
 - (i) H is fixed under ψ .
 - (ii) U^+ and U^- are vector groups on which ψ acts by scalar multiplication (resp. the inverse of scalar multiplication).

More precisely: there exist finitely generated and projective k-modules \mathfrak{M}^{\pm} and isomorphisms $f_{\pm} \colon \mathfrak{M}_{a}^{\pm} \to U^{\pm}$ such that $f_{+}(tx) = \psi_{t} \cdot f_{+}(x)$, $f_{-}(t^{-1}y) = \psi_{t} \cdot f_{-}(y)$, for all $t \in k_{m}$, $x \in \mathfrak{M}_{a}^{+}$, $y \in \mathfrak{M}_{a}^{-}$.

- (iii) $\Omega = U^- \cdot H \cdot U^+$ is open in G.
- (iv) G is generated (as a k-group sheaf) by H, U^+ , U^- .

We will show later that H, U^+ , U^- are uniquely determined by these conditions. Clearly, if (G, ψ) is an elementary system so is any base extension (G_K, ψ_K) . A homomorphism $f: (G, \psi) \to (G', \psi')$ is a group homomorphism $f: G \to G'$ compatible with ψ and ψ' . If ψ is an elementary action so is ψ^{-1} defined by $\psi_t^{-1} = \psi_{t-1}$. This just amounts to interchanging U^+ and U^- and replacing Ω by Ω^{-1} .

3.2. Example. Let $G = \mathbf{GL}_n$ and divide a $n \times n$ -matrix g into 4 blocks:

$$(1) g = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

of size $p \times p$, $p \times q$, $q \times p$, $q \times q$, where p + q = n. Let

$$\psi_t(g) = \begin{pmatrix} a & tb \\ t^{-1}c & d \end{pmatrix}.$$

Then ψ_t is an action which is elementary. Indeed, let H (resp. U^+, U^-) consist of all matrices of the form

$$\begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix}, \quad \left(\text{resp.} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ c & 1 \end{pmatrix}\right),$$

then Ω consists of all matrices (1) where a is invertible, and is therefore open. Since G is a smooth separated finitely presented group scheme with

connected fibres, Ω is dense in G. Let $g \in G(R)$. Then $\Omega_R \cap g \cdot \Omega_R^{-1}$ is open and dense by 1.6, and by 1.5 there exists a fppf extension S of R such that $(\Omega_R \cap g \cdot \Omega_R^{-1})(S) \neq \emptyset$; i.e., $g \in \Omega(S) \cdot \Omega(S)$. This proves (iv).

Remark. By the same argument, (iv) follows from (iii) whenever G is a smooth finitely presented group scheme with connected fibres.

Along the same lines, one has elementary actions on the orthogonal and symplectic groups $\mathbf{O}_{2n} \subset \mathbf{GL}_{2n}$ and $\mathbf{Sp}_n \subset \mathbf{GL}_{2n}$. Again, ψ is defined by (2), and H is isomorphic with \mathbf{GL}_n imbedded into \mathbf{GL}_{2n} via

$$a\mapsto egin{pmatrix} a & 0 \ 0 & t_a-1 \end{pmatrix}$$
 .

The groups U^{\pm} are isomorphic with the additive group of alternating (symmetric) $n \times n$ -matrices.

3.3. Lemma. Let ψ be an elementary action, and let \mathfrak{V}^{\pm} be the Lie algebra of U^{\pm} . Then there exist unique isomorphisms

$$\exp: \mathfrak{V}_{a}^{\pm} \to U^{\pm}$$

such that

(1) Lie (exp) = Id; i.e.,
$$\exp(\varepsilon x) = e^{\varepsilon x}$$
,

$$\psi_t(\exp x) = \exp(t^{\pm 1}x),$$

(3)
$$\operatorname{Lie}(\psi_t) \cdot x = t^{\pm 1} \cdot x,$$

 $for \ all \ t \in k_m, \ x \in \mathfrak{V}_a^{\pm}.$

Proof. Let $f_+: \mathfrak{M}_a^+ \to U^+$ be as in 3.1 (ii). By the convention of 1.8, Lie $(f_+): \mathfrak{M}^+ \to \mathfrak{B}^+$ is an isomorphism of k-modules. Define $\exp(x) = f_+$ (Lie $(f_+)^{-1}x$). One checks easily that (1) and (2) hold, and (3) follows from (1) and (2). To prove unicity, assume that \exp' has the same properties. Then $h = (\exp')^{-1} \circ \exp: \mathfrak{B}_a^+ \to \mathfrak{B}_a^+$ is an isomorphism which is by (2) homogeneous of degree one, and therefore induced from a linear isomorphism of k-modules. By (1), this isomorphism is the identity. For $\exp: \mathfrak{B}_a^- \to U^-$ the proof is analogous.

3.4. Lemma. The map $U^- \times H \times U^+ \to G$ given by multiplication is an open imbedding.

Proof. We only have to show that this map is a monomorphism.

Using the fact that U^+ and U^- are subgroups and everything is compatible with base extension, this reduces to: if

$$(1) \qquad \exp(y) \cdot h \cdot \exp(x) = h'$$

for $x \in \mathfrak{D}^+$, $y \in \mathfrak{D}^-$, $h, h' \in H(k)$ then h = h' and x = y = 0. Applying ψ_t to (1) we get

$$\exp(t^{-1}y) \cdot h \cdot \exp(tx) = h',$$

for all $t \in k_m$. In particular, for $t = 1 + \varepsilon \in k(\varepsilon)$ (dual numbers) (2) implies, in view of 3.3,

$$h' = \exp((1 - \varepsilon)y) \cdot h \cdot \exp((1 + \varepsilon)x)$$

= $\exp(-\varepsilon y) \cdot \exp(y) \cdot h \cdot \exp(x) \cdot \exp(\varepsilon x) = e^{-\varepsilon y} \cdot h' \cdot e^{\varepsilon x}$,

and hence $e^{\epsilon y} = h'e^{\epsilon x}h'^{-1} = e^{\epsilon \operatorname{Ad} h' \cdot x}$; i.e., $y = \operatorname{Ad} h' \cdot x$. Applying Lie (ψ_t) to this we get, by 3.3.3, $t^{-1}y = \operatorname{Ad} h' \cdot tx = t \cdot \operatorname{Ad} h' \cdot x = ty$, for all $t \in k_m$. This implies y = 0. Hence also x = 0 and h = h'.

3.5. Lemma. Let $f: (G, \psi) \to (G', \psi')$ be a homomorphism of elementary systems. Then f maps U^{\pm} into U'^{\pm} , and

$$f(\exp(x)) = \exp'(\operatorname{Lie}(f)(x)),$$

for all $x \in \mathfrak{V}_{\pm}$.

Proof. Define a morphism $\varphi: \mathfrak{V}_a^+ \to G'$ by $\varphi(x) = f(\exp x)$. Then

$$\varphi(tx) = \psi_t' \cdot (\varphi(x)) ,$$

for $t \in k_m$. Let $X = \varphi^{-1}(\Omega') \subset \mathfrak{B}_a^+$. Then X contains the zero section, is open, and (2) implies that it is invariant under k_m acting on \mathfrak{B}_a^+ by scalar multiplication. It follows that $X = \mathfrak{B}_a^+$. By 3.4, we can write

$$\varphi(x) = \exp'(g_{-}(x)) \cdot g_0(x) \cdot \exp'(g_{+}(x))$$

with unique morphisms $g_{\pm} \colon \mathfrak{D}_a^+ \to \mathfrak{D}_a^{\prime \pm}$ and $g_0 \colon \mathfrak{D}_a^+ \to H'$. From (2) and (3) we get the formulas

$$g_{\pm}(tx)=t^{\pm 1}g_{\pm}(x),$$

$$(5) g_0(tx) = g_0(x) ,$$

for all $t \in k_m$. Hence g_0 and g_- are constant equal to 1 resp. 0, and g_+ is linear (cf. [19]). By 3.3.1, $g_+ = \text{Lie}(f) | \mathfrak{B}^+$. The argument for \mathfrak{B}^- is similar.

- 3.6. Proposition. (a) The subgroups U^+ and U^- are uniquely determined.
 - (b) H normalizes U^+ and U^- , and exp is H-equivariant:

$$(1) h \cdot \exp(x)h^{-1} = \exp(\operatorname{Ad} h \cdot x),$$

for all $x \in \mathfrak{V}_a^{\pm}$, $h \in H$.

(c)
$$H \cap U^+ \cdot U^- \cdot U^+ = \{1\}$$
.

- *Proof.* (a) This follows from 3.5, applied to f = Id. (b) Apply 3.5 to the homomorphism Int $(h): (G_R, \psi_R) \to (G_R, \psi_R)$, for any $h \in H(R)$, $R \in k$ -alg. (c) Let $h \in (H \cap U^+U^-U^+)(R)$. Then h = uvw with $u, w \in U^+(S)$, $v \in U^-(S)$ for some fppf extension S of R. Hence $h^{-1}uh \in U^+(S)$ and $u^{-1}h = h(h^{-1}u^{-1}h) = vw$. By 3.4, h = 1.
- 3.7. Lemma. Let $u, w \in U^-(k)$ and $v \in U^+(k)$. Then there exists an fppf extension R of k and $x \in U^+(R)$ such that xu^{-1} and xvw belong to $\Omega(R)$.
- *Proof.* Let $X = U^+ \cap (\Omega \cdot u)$ and $Y = U^+ \cap (\Omega w^{-1}v^{-1})$. Then X and Y are open in U^+ , and they are dense since $1 \in X(k)$ and $v^{-1} \in Y(k)$. Therefore $X \cap Y$ is dense, and there exists an fppf extension R of k such that $X(R) \cap Y(R) \neq \emptyset$ (cf. 1.5, 1.6). The lemma follows.
 - 3.8. Proposition. $G = H \cdot U^+ \cdot U^- \cdot U^+ = U^+ \cdot \Omega$, and Ω is dense in G.
- *Proof.* Let $G' = U^+ \cdot \Omega = H \cdot U^+ \cdot U^- \cdot U^+$. Then G' is a subgroup sheaf of G. Indeed, in view of 3.6(b), this amounts to showing that $U^- \cdot U^+ \cdot U^- \subset G'$. After a base extension, it suffices to show that, for all $u, w \in U^-(k)$, $v \in U^+(k)$, there exists a fppf extension R of k such that $uvw \in G'(R)$. Picking x as in 3.7, we have $uvw = (ux^{-1})(xvw) \in \Omega^{-1}(R)\Omega(R) = U^+(R)\Omega(R) \subset G'(R)$. Since G is generated by H, U^+ , and U^- , we have G = G'. Let $Y \subset U^+ \times U^-$ be the inverse image of Ω under the multiplication map $U^+ \times U^- \to G$. Then Y is open and dense, and the inverse image of Ω under the epimorphism of sheaves $U^+ \times U^- \times H \times U^+ \to G$ is $Y \times H \times U^+$. By 1.6(f) and 1.7, Ω is dense in G.
- 3.9. Let G_{in} be the subgroup sheaf of G generated by U^+ and U^- . Then by 3.6(b), G_{in} is normal in G, and clearly stable under ψ . Since $\Omega \cap G_{in} = U^- \cdot (H \cap G_{in}) \cdot U^+$ is open in G_{in} we see that ψ induces an elementary action on G_{in} . By 3.8 we have $G = H \cdot G_{in}$. If k is a field and G is an algebraic k-group then by SGA3, Exp VI_B, No. 7, G_{in} is a smooth

connected algebraic k-group. Finally, we give the following criterion for a k_m -action to be elementary.

- 3.10. Proposition. Let G be an affine finitely presented group scheme with connected fibres, and assume that either G is reductive or k is a field of characteristic 0. Then an action ψ of k_m on G by automorphisms is elementary if (and only if) ψ has at most the weights 0, ± 1 on g = Lie(G).
- *Proof.* The "only if" is immediate from 3.4. Let $\hat{G} = G \rtimes k_m$ be the semidirect product with k_m acting on G via ψ , and let $S = \{1\} \times k_m \subset \hat{G}$. Identify the character group of S with Z, and let H be the centralizer of S in G. We have the decomposition $g = g_{-1} \oplus g_0 \oplus g_1$ into weight spaces of ψ , and $[g_i, g_j] \subset g_{i+j}$. Also $g_0 = \text{Lie}(H)$, and $\hat{g} = \text{Lie}(\hat{G}) = g \oplus k \cdot e$ (where e is the canonical generator of $\text{Lie}(S) \cong k$) with [e, x] = ix for $x \in g_i$.
- (a) Suppose G is reductive and splits over k. Then the same holds for \hat{G} . Choose a maximal torus T of \hat{G} containing S, let Φ be the root system of T and $\hat{\mathfrak{g}} = \sum_{\alpha \in \Phi_i} \mathfrak{g}^{\alpha}$ the root space decomposition. Then $\mathfrak{g}_i = \sum_{\alpha \in \Phi_i} \mathfrak{g}^{\alpha}$ $(i = \pm 1)$ where Φ_i is the set of all $\alpha \in \Phi$ such that $\alpha | S = i$. Also $[\mathfrak{g}^{\alpha}, \mathfrak{g}^{\beta}] = 0$ for $\alpha, \beta \in \Phi_i$ since $(\alpha + \beta) | S = 2i$ is not a weight of S in \mathfrak{g} . It follows that the root subgroups U^{α} , U^{β} corresponding to \mathfrak{g}^{α} , \mathfrak{g}^{β} commute, and $U^{\pm} = \prod_{\alpha \in \Phi_{\pm 1}} U^{\alpha}$ is a vector group, isomorphic with the additive group of $\mathfrak{g}_{\pm 1}$. The exponential maps $\exp_{\alpha}: \mathfrak{g}^{\alpha} \to U^{\alpha}$ satisfy $\psi_t \cdot \exp_{\alpha}(x) = \operatorname{Int}(s) \cdot \exp_{\alpha}(x) = \exp_{\alpha}(\operatorname{Ad} s \cdot x) = \exp_{\alpha}(tx)$ for all $t \in k_m$, where we set $s = (1, t) \in S$. Now $\hat{\Omega} = U^{-} \cdot H \cdot S \cdot U^{+}$ contains the big cell of \hat{G} defined by an ordering of Φ with the property that Φ_1 consists of positive roots. Hence $\hat{\Omega}$ is open and dense in \hat{G} , and therefore $U^{-} \cdot H \cdot U^{+} = \hat{\Omega} \cap G$ is open and dense in G. By the remark in 3.2, ψ is an elementary action.
- (b) If G is reductive but not split over k it splits over an fppf extension K of k. Thus we have subgroups \tilde{U}^{\pm} of G_K such that H_K , \tilde{U}^{\pm} satisfy the conditions of 3.1, and we have to show that \tilde{U}^{\pm} is defined over k. By faithfully flat descent, it suffices to show that

(1)
$$\tilde{U}^{\pm} \otimes_{i_1} (K \otimes_{k} K) = \tilde{U}^{\pm} \otimes_{i_2} (K \otimes_{k} K)$$

where $i_1, i_2: K \to K \otimes_k K$ are the maps $a \mapsto a \otimes 1$ and $a \mapsto 1 \otimes a$. Since ψ is defined over k the two base extensions of ψ_K induced by i_1 and i_2 are the same, and thus (1) follows from 3.6(a).

(c) Let k be a field of characteristic 0. Then $\mathfrak{g}_{\pm 1}$ is an algebraic Lie algebra since it is the derived algebra of $k \cdot e \oplus \mathfrak{g}_{\pm 1}$ ([5, p. 262, 2.6]). For

 $x \in \mathfrak{g}_{\pm 1}$ we have $(\mathrm{ad}_{\hat{\mathfrak{g}}}(x))^3 = 0$ and $\mathrm{ad}\ x \cdot e = -[e, x] = \mp x$.

Hence x is nilpotent. Therefore $\mathfrak{g}_{\pm 1}$ is the Lie algebra of a unique subgroup U^{\pm} of G which is isomorphic with the additive group of $\mathfrak{g}_{\pm 1}$ under exp. Now it follows easily that H, U^{\pm} satisfy the conditions of 3.1.

§4. The Jordan pair associated with an elementary action

The notations of §§ 2, 3 will be used throughout.

4.1. THEOREM. Let ψ be an elementary action. There exists a unique Jordan pair structure on the pair $\mathfrak{B}=(\mathfrak{B}^+,\mathfrak{B}^-)$ of k-modules, and a unique morphism $b\colon W\to H$ with the following property: For all $(x,y)\in\mathfrak{B}_R^+\times\mathfrak{B}_R^ (R\in k\text{-alg})$ we have $\exp(x)\exp(y)\in\Omega(R) \Leftrightarrow (x,y)$ quasi-invertible and in this case,

$$(*) \qquad \exp(x) \exp(y) = \exp(y^x)b(x, y) \exp(x^y).$$

- (b) H acts on $\mathfrak B$ by automorphisms via the adjoint representation (cf. 3.6(b)).
 - (c) The morphism b satisfies

(1) Ad
$$b(x, y) \cdot z = B(x, y)z$$
, Ad $b(x, y) \cdot w = B(y, x)^{-1}w$,

$$(2) hb(x, y)h^{-1} = b(\operatorname{Ad} h \cdot x, \operatorname{Ad} h \cdot y),$$

(3)
$$b(tx, t^{-1}y) = b(x, y),$$

(4)
$$b(x, y)b(x^y, w) = b(x, y + w)$$
,

(5)
$$b(z, y^x)b(x, y) = b(x + z, y),$$

for all $t \in k_m$, $(x, y) \in W$, $h \in H$, $(z, w) \in \mathfrak{D}_a^+ \times \mathfrak{D}_a^-$ such that (x, y + w) and (x + z, y) are quasi-invertible.

In the examples of 3.2 one checks easily that the associated Jordan pair is isomorphic with the Jordan pair of rectangular (alternating, symmetric) matrices with quadratic maps $Q(x)y = x \cdot {}^{t}y \cdot x$.

4.2. Let $X \subset \mathfrak{D}_a^+ \times \mathfrak{D}_a^-$ be the inverse image of Ω under the map $(x, y) \mapsto \exp(x) \exp(y)$. Then X is open and dense. By 3.4, we can write

(1)
$$\exp(x) \exp(y) = \exp(f_{-}(x, y))b(x, y) \exp(f_{+}(x, y))$$

for all $(x, y) \in X$, with unique morphisms $f_{\pm}: X \to \mathfrak{B}_a^{\pm}$ and $b: X \to H$. By applying ψ_t to (1) and comparing terms in U^- , H, U^+ we get that $(x, y) \in X$ if and only if $(tx, t^{-1}y) \in X$ and then

(2)
$$b(tx, t^{-1}y) = b(x, y),$$

(3)
$$t^{-1}f_{-}(x, y) = f_{-}(tx, t^{-1}y), \qquad tf_{+}(x, y) = f_{+}(tx, t^{-1}y).$$

Consider now the elementary action $\psi' = \psi^{-1}$ (cf. 3.1). Then the formula analogous to (1) is

(4)
$$\exp(y) \exp(x) = \exp(f'_{-}(y, x))b'(y, x) \exp(f'_{+}(y, x)).$$

By taking inverses in (1) and using (2) and (3) for t = -1 we get

(5)
$$\exp(y) \exp(x) = \exp(f_+(x, y))b(x, y)^{-1} \exp(f_-(x, y))$$
.

Comparison with (4) yields $f'_{\pm}(y, x) = f_{\pm}(x, y)$ and

$$(6) b'(y, x) = b(x, y)^{-1}.$$

To shorten notation, write

(7)
$$f_+(x, y) = f'_-(y, x) = x^y$$
, $f_-(x, y) = f'_+(y, x) = y^x$.

Now (1) and (3) read

(8)
$$\exp(x) \exp(y) = \exp(y^x)b(x, y) \exp(x^y),$$

(9)
$$t(x^{y}) = (tx)^{t-1y}, t^{-1}(y^{x}) = (t^{-1}y)^{tx}.$$

If we apply Int(h) to (8), use 3.6(b) and compare terms we get 4.1.2 and

(10)
$$\operatorname{Ad} h \cdot (x^{y}) = (\operatorname{Ad} h \cdot x)^{\operatorname{Ad} h \cdot y}.$$

4.3. Lemma. Let $(x, y) \in X$, $(z, w) \in \mathfrak{D}_a^+ \times \mathfrak{D}_a^-$. Then $(x + z, y) \in X$ if and only if $(z, y^x) \in X$, and then

(1)
$$(x+z)^y = x^y + \operatorname{Ad} b(x,y)^{-1} \cdot z^{(y^x)},$$

$$(2) y^{x+z} = (y^x)^z,$$

(3)
$$b(z, y^x)b(x, y) = b(x + z, y)$$
.

Similarly, $(x, y + w) \in X$ if and only if $(x^y, w) \in X$, and then

(4)
$$(y + w)^{x} = y^{x} + \text{Ad } b(x, y) \cdot w^{(x^{y})},$$

$$x^{y+w} = (x^y)^w,$$

(6)
$$b(x, y + w) = b(x, y)b(x^{y}, w).$$

Proof. We have $\exp(x+z) = \exp(z) \exp(y^x) b(x,y) \exp(x^y)$. This shows that $(x+z,y) \in X$ if and only if $(z,y^x) \in X$. Assuming this to be the case,

we get, by 3.6,

$$\begin{split} \exp{(x+z)} \exp{(y)} \\ &= \exp{(y^{x+z})} b(x+z,y) \exp{((x+z)^y)} \\ &= \exp{((y^x)^z)} b(z,y^x) \exp{(z^{(y^x)})} b(x,y) \exp{(x^y)} \\ &= \exp{((y^x)^z)} b(z,y^x) b(x,y) \exp{(\text{Ad } b(x,y)^{-1} \cdot z^{(y^x)} + x^y)} \;, \end{split}$$

and comparing terms in U^- , H, U^+ yields (1)–(3). Now (4)–(6) follow from this by passing to (G, ψ^{-1}) , in view of 4.2.

4.4. LEMMA. Let $(x, y) \in \mathfrak{D}_R^+ \times \mathfrak{D}_R^-$, $t \in R$, $R \in k$ -alg. Then $(tx, y) \in X(R)$ if and only if $(x, ty) \in X(R)$, and in this case,

$$(1) b(tx, y) = b(x, ty),$$

$$(2) (tx)^y = t(x^{ty}), (ty)^x = t(y^{tx}).$$

Proof. We may assume R=k after a base extension. Let Y (resp. Y') be the inverse image of X under the morphism $t\mapsto (tx,y)$ (resp. $t\mapsto (x,ty)$) from k_a to $\mathfrak{B}_a^+\times\mathfrak{B}_a^-$. Then Y and Y' are open subschemes of k_a . To show that they are equal it suffices to show that Y(K)=Y'(K) for all fields $K\in k$ -alg. Thus we have to show that $(tx,y)\in X(K)$ if and only if $(x,ty)\in X(K)$, for all $t\in K$. If t=0 this is trivial. If $t\neq 0$ then $(x,ty)\in X(K)$ if and only if $(tx,t^{-1}ty)=(tx,y)\in X(K)$ by 4.2. Now define morphisms $\varphi_1,\varphi_2\colon Y\to\mathfrak{B}_a^+$ by $\varphi_1(t)=(tx)^y, \varphi_2(t)=t(x^{ty})$. By 4.2, φ_1 and φ_2 coincide on $Y\cap k_m$. Since k_m is dense in k_a and \mathfrak{B}_a^+ is separated we have $\varphi_1=\varphi_2$. The proof of the other two formulas is similar.

4.5. Definition of the quadratic maps Q_+ , Q_- . Let $(x, y) \in \mathfrak{V}_R^+ \times \mathfrak{V}_R^-$, $R \in k$ -alg. Since X is open and contains $\{0\} \times \mathfrak{V}_a^-$ and $\mathfrak{V}_a^+ \times \{0\}$, it follows that $(\varepsilon x, y)$ and $(x, \varepsilon y)$ are in $X(R(\varepsilon))$ (where $R(\varepsilon)$ is the ring of dual numbers). Thus we can write

$$x^{\epsilon y} = f(x, y) + \epsilon g(x, y)$$

with well-defined morphisms $f, g: \mathfrak{D}_a^+ \times \mathfrak{D}_a^- \to \mathfrak{D}_a^+$. Since $x^0 = x$ it follows for $\varepsilon \to 0$ that f(x, y) = x. We claim that g(x, y) is linear in y and quadratic in x. The first statement is clear since g(x, y) is the derivative of the map $x \mapsto x^w$ at w = 0 in direction y. By 4.4, we have

$$(tx)^{\epsilon y} = tx + \epsilon g(tx, y) = t(x^{\epsilon y})$$

= $t(x + \epsilon g(x, ty)) = tx + \epsilon t^2 g(x, y)$

for all $t \in R$, and hence g(x, y) is homogeneous of degree 2 in x. By [19], it is quadratic in x. Thus there is a unique quadratic map $Q_+: \mathfrak{D}^+ \to \text{Hom}(\mathfrak{D}^-, \mathfrak{D}^+)$ such that $g(x, y) = Q_+(x) \cdot y$; i.e.,

$$(1) x^{\varepsilon y} = x + \varepsilon Q_+(x) \cdot y.$$

Similarly, we define $Q_{-}: \mathfrak{V}^{-} \to \operatorname{Hom}(\mathfrak{V}^{+}, \mathfrak{V}^{-})$ by

$$y^{\varepsilon x} = y + \varepsilon Q_{-}(y) \cdot x.$$

Note that

$$(3) (\varepsilon x)^y = \varepsilon (x^{\varepsilon y}) = \varepsilon x$$

by 4.4. Also, from 4.2.10 it is clear that H acts via Ad by automorphisms of (Q_+, Q_-) on $(\mathfrak{B}^+, \mathfrak{B}^-)$. As in 2.1, 2.2, we drop the subscripts \pm on Q_\pm and define $\{xyz\}$ and B(x, y).

4.6. LEMMA. For (x, y), $(z, w) \in \mathfrak{D}^+ \times \mathfrak{D}^-$, $h \in \text{Lie}(H)$ the following formulae hold (here $[a, b] = aba^{-1}b^{-1}$).

(1) Int
$$(\exp x) \cdot \exp(\varepsilon y) = \exp(\varepsilon y)b(x, \varepsilon y) \exp(\varepsilon Q_x y)$$
.

(2)
$$[\exp(x), \exp(\varepsilon y)] = b(x, \varepsilon y) \exp(\varepsilon Q_x y),$$

(3)
$$[\exp(y), \exp(\varepsilon z)] = \exp(\varepsilon Q_y z)b(\varepsilon z, -y),$$

$$(4) \qquad [\exp(\varepsilon x), \exp(\varepsilon y)] = [h, \exp(\varepsilon x)] = [h, \exp(\varepsilon y)] = 1,$$

$$(5) \qquad [\exp(z), b(x, \varepsilon y)] \\ = [\exp(z), [\exp(-\varepsilon y), \exp(x)]] = \exp(\varepsilon \{xyz\}),$$

(7) Ad
$$b(x, y) \cdot z = B(x, y)z$$
, Ad $b(x, y) \cdot w = B(y, x)^{-1}w$.

Proof. (1)–(3) are immediate from 4.2.8 and 4.5. Replacing x by εx in (2) we get the first formula of (4) since $b(\varepsilon x, \varepsilon y) = b(\varepsilon^2 x, y) = b(0, y) = 1$ 4.4. By 3.6, $[h, \exp(\varepsilon x)] = \exp(\varepsilon \operatorname{Ad} h \cdot x - \varepsilon x)$. Since $h \in \operatorname{Lie}(H)$, Ad $h \cdot x$ is of the form $x + \varepsilon x'$ and hence $\varepsilon \operatorname{Ad} h \cdot x = \varepsilon x + \varepsilon^2 x' = \varepsilon x$. Similarly, one proves the third formula. To prove (5), we use (1), (4), 4.5, and 4.3.3:

Int
$$(\exp(z)) \cdot b(x, \varepsilon y)$$

= Int $(\exp(z)) \cdot (\exp(-\varepsilon y) \exp(x) \cdot \exp(\varepsilon y) \exp(-x^{\varepsilon y}))$

$$= \exp(z) \exp(-\varepsilon y) \exp(x) \exp(\varepsilon y) \exp(-x^{\varepsilon y} - z)$$

$$= \exp(-\varepsilon y)b(z, -\varepsilon y) \exp(x + z - \varepsilon Q_z y) \exp(\varepsilon y) \exp(-x - z - \varepsilon Q_x y)$$

$$= \exp(-\varepsilon y)b(z, -\varepsilon y) \operatorname{Int} (\exp(x + z)) \cdot (\exp(\varepsilon y) \exp(-\varepsilon Q_x y - \varepsilon Q_z y))$$

$$= \exp(-\varepsilon y)b(z, -\varepsilon y) \exp(\varepsilon y)b(x + z, \varepsilon y) \exp(\varepsilon (Q_{x+z} y - Q_x y - Q_z y))$$

$$= b(-z, \varepsilon y)b(x + z, \varepsilon y) \exp(\varepsilon (xyz)) = b(x, \varepsilon y) \cdot \exp(\varepsilon (xyz)).$$

Now (5) follows from (1), (2) and (4). For (6) we use the commutator formula $[ab, c] = (\text{Int}(a) \cdot [b, c])[a, c]$, for $a = \exp(x)$, $b = \exp(y)$, $c = \exp(\varepsilon z)$. Then [a, c] = 1 and hence

$$[ab, c] = \operatorname{Int}(a) \cdot [b, c] = \operatorname{Int}(a) \cdot (\exp(\varepsilon Q_y z)b(\varepsilon z, -y))$$

$$= \exp(\varepsilon Q_y z)b(x, \varepsilon Q_y z) \exp(\varepsilon Q_x Q_y z) \exp(-\varepsilon \{xyz\})b(\varepsilon z, -y)$$

$$= \exp(\varepsilon Q_y z)b(x, \varepsilon Q_y z)b(\varepsilon z, -y) \exp(-\varepsilon \{xyz\} + \varepsilon Q_x Q_y z) .$$

Multiplying by $\exp(\varepsilon z)$ on the right we get (6). Finally, if $(x, y) \in X$ then

Int
$$(\exp(x) \exp(y)) \cdot \exp(\varepsilon z)$$

= Int $(\exp(y^x)b(x, y) \exp(x^y)) \cdot \exp(\varepsilon z)$
= Int $(\exp(y^x))$ Int $(b(x, y)) \cdot \exp(\varepsilon z)$
= $\exp(y^x) \exp(\varepsilon \operatorname{Ad} b(x, y) \cdot z) \exp(-y^x)$
= $\exp(u) \cdot h \cdot \exp(\varepsilon \operatorname{Ad} b(x, y) \cdot z)$

where the exact form of $u \in \mathfrak{V}^-$ and $h \in H$ is not important. Comparing terms in U^+ with (6) we get the first formula of (7), and the second one follows by passing to ψ^{-1} .

4.7. LEMMA. If
$$(x, y) \in X$$
 then $B(x, y)$ and $B(x, y)$ are invertible, and $x^y = B(x, y)^{-1}(x - Q_x y)$, $y^x = B(y, x)^{-1}(y - Q_y x)$.

Proof. By 4.6.7,
$$B(x, y)$$
 is invertible. By 4.5.3, 4.3.1, 4.6.7,
$$((1 + \varepsilon)x)^y = (x + \varepsilon x)^y = x^y + \varepsilon B(x, y)^{-1}x.$$

On the other hand, by 4.4, 4.3,

$$((1+\varepsilon)x)^y = (1+\varepsilon)(x^{(1+\varepsilon)y}) = (1+\varepsilon)((x^{\varepsilon y})^y)$$

= $(1+\varepsilon)(x+\varepsilon Q_x y)^y = (1+\varepsilon)(x^y+\varepsilon B(x,y)^{-1}Q_x y)$.

Comparing coefficients at ε we get the first formula, and the second one follows by passing to ψ^{-1} .

4.8. Lemma. The quadratic maps Q_+ , Q_- satisfy the Jordan identities.

Proof. From 4.5.4 and 4.6.7, $B(x, y)Q_z = Q(B(x, y)z)B(y, x)^{-1}$ for all $(x, y) \in X$, $z \in \mathfrak{D}_a^+$, and since X is dense this implies

$$(1) B(x, y)Q_zB(y, x) = Q(B(x, y)z)$$

for all $x, z \in \mathfrak{D}_a^+$, $y \in \mathfrak{D}_a^-$. By expanding and comparing terms of equal degree we get (among other identities)

(2)
$$D(x, y)Q_z + Q_zD(y, x) = Q(z, \{xyz\}).$$

Now compute $x^{y+\epsilon w}$ for $(x, y) \in X$ in two ways, using 4.3:

$$x^{x+\varepsilon w} = (x^y)^{\varepsilon w} = x^y + \varepsilon Q(x^y) \cdot w$$

= $(x^{\varepsilon w})^y = (x + \varepsilon Q_x w)^y = x^y + \varepsilon B(x, y)^{-1} \cdot Q_x w$.

By (1) and 4.7, this implies $Q_x = B(x, y)Q(x^y) = Q(x - Q_x y)B(y, x)^{-1}$, and therefore

$$Q(x - Q_x y) = Q_x B(y, x).$$

Again by density of X, this holds for all $(x, y) \in \mathfrak{D}_a^+ \times \mathfrak{D}_a^-$. By expanding and comparing terms of equal degree we get

$$Q(x, Q_x y) = Q_x D(y, x),$$

$$Q(Q_x y) = Q_x Q_y Q_x.$$

Setting z = x in (2) and comparing with (4) we have, since $\{xyx\} = 2Q_xy$,

$$(6) D(x, y)Q_x = Q_x D(y, x).$$

Let $(x, y) \in X$. Then by 4.3 and 4.6.7, $B(x, -\varepsilon y)B(x^{-\varepsilon y}, y) = B(x, (1 - \varepsilon)y)$ = $B((1 - \varepsilon)x, y) = B(x, y^{-\varepsilon y})B(-\varepsilon x, y)$. By density, this holds for all (x, y) $\in \mathfrak{D}_a^+ \times \mathfrak{D}_a^-$. If we expand and compare terms of equal degree at ε we get

$$D(Q_x y, y) = D(x, Q_y x).$$

Passing to ψ^{-1} it follows that (5)–(7) hold with x and y interchanged. This proves 4.8.

4.9. Lemma. H is closed in G; it is the fixed point set of ψ .

Proof. By definition, H is contained in the fixed point set, say H', of ψ . Conversely let $g \in H'(k)$. After an fppf extension we may assume that $g = \exp(x) \exp(y)h \cdot \exp(z)$ with $x, z \in \mathbb{S}^+$, $y, \in \mathbb{S}^-$, $h \in H(k)$ (cf. 3.8). Applying ψ_t we get $g = \exp(tx) \exp(t^{-1}y)h \cdot \exp(tz)$ for all $t \in k_m$. Hence

$$\exp((1-t)x)\exp(y) = \exp(t^{-1}y)h \cdot \exp(tz-z) \cdot h^{-1} \in \Omega,$$

and therefore

$$\exp((1-t)x)\exp(y) = \exp(y^{(1-t)x})b((1-t)x, y)\exp([1-t)x]^{y}.$$

Comparing terms in H, U^+ , U^- we have b((1-t)x, y) = 1 and by 4.6.7 and 4.7, $t^{-1}y = y^{(1-t)x} = y - Q_v(x-tx)$, for all $t \in k_m$. By comparing terms at powers of t we see that y = 0. Hence $\exp((1-t)x) = h \cdot \exp((t-1)z) \cdot h^{-1}$, and this implies $\exp(x) = h \cdot \exp(-z) \cdot h^{-1}$ and therefore $g = h \in H(k)$. Now by [5, p. 165, 3.6(d)], H is closed in G.

4.10. To complete the proof of 4.1, all that remains to be shown is that X = W, the subscheme of quasi-invertible pairs. By 4.7, $X \subset W$, and x^y and y^x are just the quasi-inverse of the Jordan pair \mathfrak{D} . Define a morphism $\tilde{b} \colon W \to G$ by

$$\tilde{b}(x, y) = \exp(-y^x) \exp(x) \exp(y) \exp(-x^y).$$

Then \tilde{b} extends b and $X \subset \tilde{b}^{-1}(H) \subset W$. Also, $\tilde{b}^{-1}(H)$ is closed in W since H is closed in G by 4.9. By density of X, $W = \tilde{b}^{-1}(H)$. Therefore

$$\exp(x) \exp(y) = \exp(y^x)\tilde{b}(x, y) \exp(x^y)$$

belongs to Ω for all $(x, y) \in W$. This proves X = W.

4.11. COROLLARY. Assume that G is a scheme, and let g (resp. \mathfrak{h}) denote the Lie algebra of G (resp. H). Then

$$\mathfrak{g}=\mathfrak{V}^-\oplus\mathfrak{h}\oplus\mathfrak{V}^+$$

(direct sum of k-modules), and the following multiplication rules hold:

$$(2) \qquad [\mathfrak{h}, \mathfrak{h}] \subset \mathfrak{h} \;, \quad [\mathfrak{A}^+, \mathfrak{A}^-] \subset \mathfrak{h} \;, \quad [\mathfrak{h}, \mathfrak{A}^\sigma] \subset \mathfrak{A}^\sigma \;, \quad [\mathfrak{A}^\sigma, \mathfrak{A}^\sigma] = 0 \;.$$

For $x, z \in \mathfrak{V}^{\sigma}$, $y \in \mathfrak{V}^{-\sigma}$, $h \in \mathfrak{h}$, we have the formulas

(3)
$$\operatorname{Ad} \exp (x) \cdot z = z,$$

(4)
$$\operatorname{Ad} \exp (x) \cdot h = h + [x, h],$$

(5)
$$\operatorname{Ad} \exp (x) \cdot y = y + [x, y] + Q_x y$$

$$(6) e^{\epsilon[x,y]} = b(x,\epsilon y),$$

$$-[z, [y, x]] = \{xyz\}.$$

Proof. Since Ω is open in G and contains the unit section, (1)

follows from 3.4. Let $R = k(\varepsilon, \varepsilon')$. If we replace x by $\varepsilon'x$ in 4.6.2 we get $e^{\varepsilon \varepsilon'[x,y]} = [e^{\varepsilon'x}, e^{\varepsilon y}] = [\exp(\varepsilon'x), \exp(\varepsilon y)] = b(\varepsilon'x, \varepsilon y) = b(x, \varepsilon \varepsilon'y)$ which implies (6) in view of [5, p. 210], and also shows that $[\mathfrak{B}^+, \mathfrak{B}^-] \subset \mathfrak{h}$. Now (5) and (7) follow easily from 4.6, and (4) follows from 3.6, as well as $[\mathfrak{h}, \mathfrak{B}^{\sigma}] \subset \mathfrak{B}^{\sigma}$. By commutativity of U^{σ} we have $[\mathfrak{B}^{\sigma}, \mathfrak{B}^{\sigma}] = 0$.

- 4.12. COROLLARY. Let $G_{in} \subset G$ be as in 3.9, and let H_{in} be the subgroup sheaf of H generated by b(W); i.e., H_{in} is the sheaf associated with the k-group functor $R \mapsto subgroup$ of H(R) generated by all b(x, y), $(x, y) \in W(R)$.
 - (a) The Jordan pairs associated with (G, ψ) and (G_{in}, ψ) are the same.
- (b) We have $H_{in} = H \cap G_{in}$. If k is a field and H is an algebraic k-group then H_{in} is a smooth connected algebraic k-group.

Proof. From (*) of 4.1 it is clear that (G, ψ) and (G_{in}, ψ) define the same Jordan pair, and that $H_{in} \subset H \cap G_{in}$. Let now $F = H_{in} \cdot U^+ \cdot U^- \cdot U^+ \subset G_{in}$. We claim that $F = G_{in}$. Let $g \in G_{in}(R)$. Then there exists a fppf extension S of R such that $g = u_1 \cdots u_n$ where the u_i are alternatingly in $U^+(S)$ and $U^-(S)$. After a base extension, it therefore suffices to show the following: if $u, w \in U^-(k), v \in U^+(k)$ then there exists a fppf extension R of k such that $uvw \in F(R)$. Choosing x as in 3.7, we have by 4.1,

$$uvw = (ux^{-1})(xvw) \in U^+(R)H_{in}(R)U^-(R)U^-(R)H_{in}(R)U^+(R) \subset F(R)$$
.

Now

$$H\cap G_{in}=H\cap (H_{in}\cdot U^+\cdot U^-\cdot U^+)=H_{in}\cdot (H\cap U^+U^-U^+)=H_{in}$$
 ,

by 3.6. The last assertion follows from SGA3, Exp. VI_B , no. 7.

4.13. LEMMA. Let $X = \mathfrak{D}_a^+ \times \mathfrak{D}_a^- \times H \times \mathfrak{D}_a^+$ and $\pi: X \to G$ the epimorphism of sheaves given by $\pi(x, y, h, z) = \exp(x) \exp(y) h \cdot \exp(z)$. Then $\pi(x, y, h, z) = \pi(x', y', h', z')$ if and only if (x - x', y) is quasi-invertible, and

$$y' = y^{x-x'}$$
, $h' = b(x - x', y)h$, $z' = z + Ad h^{-1} \cdot (x - x')^y$.

This follows easily from 4.1 and 3.6.

4.14. THEOREM (Generators and Relations). Let (G, ψ) be an elementary system. Let G' be a k-group sheaf, and let $f_0: H \to G'$, $f_\sigma: U^\sigma \to G'$ ($\sigma = +, -$) be homomorphisms. Then there exist a homomorphism $f: G \to G'$ extending f_0 and f_+, f_- if and only if

$$(1) f_0(h)f_0(u)f_0(h)^{-1} = f_0(huh^{-1}),$$

$$(2) f_{+}(\exp(x))f_{-}(\exp(y)) = f_{-}(\exp(y^{x}))f_{0}(b(x, y))f_{+}(\exp(x^{y})),$$

for all $h \in H$, $u \in U^{\sigma}$, $(x, y) \in W$. (Since G is generated by H, U^{+} , and U^{-} , such an f is necessarily unique).

Proof. By 3.6 and 4.1, the conditions (1) and (2) are clearly necessary for the existence of f. Conversely, assume that they hold. Let $\pi\colon X\to G$ be as in 4.13. Let $\varphi_\sigma\colon \mathfrak{B}_a^\sigma\to G'$ be given by $\varphi_\sigma=f_\sigma\circ \exp$ and $\varphi\colon X\to G'$ by $\varphi(x,y,h,z)=\varphi_+(x)\varphi_-(y)f_0(h)\varphi_+(z)$. If f exists then we have $f\circ\pi=\varphi$. To prove existence, we use the fact that the diagram

$$X \times {}_{G}X \xrightarrow{\mathrm{pr}_{1}} X \xrightarrow{\pi} G$$

of k-sheaves is exact (cf. [5, p. 292]). Therefore it suffices to show that $\pi(w) = \pi(w')$ implies $\varphi(w) = \varphi(w')$, for all $w, w' \in X$. Thus let w = (x, y, h, z) and w' = (x', y', h', z') and assume that $\pi(w) = \pi(w')$. By (1) and (2) and 4.13 we then get

$$\varphi_{+}(x - x')\varphi_{-}(y) = \varphi_{-}(y^{x-x'})f_{0}(b(x - x', y))\varphi_{+}((x - x')^{y})$$

$$= \varphi_{-}(y')f_{0}(h'h^{-1})\varphi_{+}(Ad h \cdot (z' - z))$$

$$= \varphi_{-}(y')f_{0}(h')\varphi_{+}(z' - z)f_{0}(h)^{-1},$$

which implies $\varphi(w) = \varphi(w')$. This proves the existence of $f: G \to G'$ satisfying $f \circ \pi = \varphi$. We still have to show that f is multiplicative. If $v \in U^+$, $g \in G$ then

(3)
$$f(gv) = f(g)f(v), \quad f(vg) = f(v)f(g).$$

Indeed, we may assume, by passing if necessary to a fppf base extension, that $g = \exp(x) \exp(y)h \cdot \exp(z)$, $v = \exp(z')$, and then

$$f(gv) = f(\exp(x) \exp(y)h \cdot \exp(z + z'))$$

$$= \varphi_{+}(x)\varphi_{-}(y)f_{0}(h)\varphi_{+}(z + z')$$

$$= \varphi_{+}(x)\varphi_{-}(y)f_{0}(h)\varphi_{+}(z)\varphi_{+}(z') = f(g)f(v).$$

Similarly, one proves the second formula, and also

(4)
$$f(hg) = f(h)f(g), \quad f(gh) = f(g)f(h),$$

for $g \in G$, $h \in H$. Finally, we show that

$$f(uvw) = f(u)f(v)f(w),$$

for $u, w \in U^-$, $v \in U^+$. Possibly after passing to an fppf base extension, there exists an element $x \in U^+$ such that $ux^{-1} \in \Omega^{-1}$ and $xvw \in \Omega$ (see 3.7). Let $ux^{-1} = zhy$, xvw = y'h'z' where $z, z' \in U^+$, $h, h' \in H$, $y, y' \in U^-$. Then we have by (3) and (4) that

$$f(uvw) = f(ux^{-1} \cdot xvw) = f(zhy \cdot y'h'z')$$

$$= f(z)f(h)f(y)f(y')f(h')f(z') = f(zhy)f(y'h'z')$$

$$= f(ux^{-1})f(xvw) = f(u)f(x)^{-1}f(x)f(v)f(w)$$

$$= f(u)f(v)f(w) .$$

Now the multiplicativity of f is an easy consequence of (3)–(5), in view of the fact that G is generated (as a k-group sheaf) by H, U^+ , and U^- .

4.15. Corollary. Let (G, ψ) and (G', ψ') be elementary systems with associated Jordan pairs \mathfrak{B} and \mathfrak{B}' .

(a) Let
$$f: (G, \psi) \to (G', \psi')$$
 be a homomorphism, let

$$(1) f_0 = f|H: H \to H',$$

and define $\varphi_{\sigma} \colon \mathfrak{V}_{a}^{\sigma} \to \mathfrak{V}_{a}^{\prime \sigma}$ by

$$f \circ \exp = \exp' \circ \varphi_{\sigma} \quad \text{(cf. 3.5)}.$$

Then $(\varphi_+, \varphi_-) \colon \mathfrak{V} \to \mathfrak{V}'$ is a homomorphism of Jordan pairs, and we have

(3)
$$\operatorname{Ad} f_0(h) \cdot \varphi_{\sigma}(z) = \varphi_{\sigma}(\operatorname{Ad} h \cdot z),$$

(4)
$$f_0(b(x, y)) = b'(\varphi_+(x), \varphi_-(y)),$$

for all $z \in \mathfrak{V}_a^{\sigma}$, $(x, y) \in W$, $\sigma = \pm$.

- (b) Conversely, let $f_0: H \to H'$ be a homomorphism, let $(\varphi_+, \varphi_-): \mathfrak{V} \to \mathfrak{V}'$ be a homomorphism of Jordan pairs, and assume that (3) and (4) hold. Then there exists a unique homomorphism $f: (G, \psi) \to (G', \psi')$ such that (1) and (2) hold.
- *Proof.* (a) By 4.9, f maps H into H'. Thus (3) follows from 3.6. If we apply f to (*) of 4.1 we see that (4) holds and that (φ_+, φ_-) preserves quasi-inverses. By 4.5, it follows that (φ_+, φ_-) is a homomorphism of Jordan pairs.
- (b) Define $f_{\sigma} \colon U^{\sigma} \to G'$ by (2). Then one checks that f_{0}, f_{\pm} satisfy the conditions of 4.14 and hence extend to a homomorphism $f \colon G \to G'$ which is easily seen to be compatible with ψ and ψ' .

§5. The Existence theorem and applications

5.1. We consider the question of how to reconstruct G, given H and the Jordan pair \mathfrak{B} , and introduce the following concept. Let \mathfrak{B} be a Jordan pair over k, let H be a separated k-group sheaf, and let $\rho: H \to \operatorname{Aut}(\mathfrak{B})$ be a homomorphism. Also let $b: W \to H$ be a morphism from the subscheme of quasi-invertible pairs of $\mathfrak{B}_a^+ \times \mathfrak{B}_a^-$ into H. Then the quadruple $\mathscr{J} = (\mathfrak{B}, H, \rho, b)$ is called a *Jordan system* if the following identities hold for $(x, y) \in W$, $(z, w) \in \mathfrak{B}_a^+ \times \mathfrak{B}_a^-$, $h \in H$, $t \in k_m$.

$$\rho(b(x, y)) = \beta(x, y) ,$$

$$hb(x, y)h^{-1} = b(h_{+}(x), h_{-}(y)),$$

(3)
$$b(tx, t^{-1}y) = b(x, y),$$

(4)
$$b(x, y)b(x^y, w) = b(x, y + w),$$

(5)
$$b(z, y^{z})b(x, y) = b(x + z, y)$$
.

Here β is as in 2.2 and $\rho(h) = (h_+, h_-)$.

A homomorphism of Jordan systems, $\Phi: \mathcal{J} \to \mathcal{J}'$, is a pair $\Phi = (f_0, \varphi)$ where $f_0: H \to H'$ is a group homomorphism, and $\varphi = (\varphi_+, \varphi_-): \mathfrak{B} \to \mathfrak{B}'$ is a Jordan pair homomorphism, such that

(6)
$$\rho'(f_0(h)) \circ \varphi = \varphi \circ \rho(h) ,$$

(7)
$$f_0(b(x, y)) = b'(\varphi_+(x), \varphi_-(y)),$$

for all $h \in H$, $(x, y) \in W$. From 4.1 it is clear that every elementary system (G, ψ) defines a Jordan system $J(G, \psi) = (\mathfrak{B}, H, \rho, b)$ where ρ is given by the adjoint representation of H on \mathfrak{B}^+ and \mathfrak{B}^- . Now 4.15 shows that J is a covariant functor from the category of elementary systems to the category of Jordan systems which is fully faithful. In fact, J is an equivalence of categories since we have

5.2. Theorem. For every Jordan system $\mathscr J$ there exists an elementary system (G, ψ) whose associated Jordan system is $\mathscr J$.

The idea of the proof is simple: let $\mathscr{J}=(\mathfrak{V},H,\rho,b)$ and let $X=\mathfrak{V}_a^+\times\mathfrak{V}_a^-\times H\times\mathfrak{V}_a^+$. If G exists then it is the quotient of X by the equivalence relation given in 4.13. Thus we take this as the definition of G and show, rather laboriously, that it has the required properties.

Define then a subfunctor $E \subset X \times X$ as follows. For $R \in k$ -alg, E(R)

is the set of all ((x, y, h, z), (x', y', h', z')) in $X(R) \times X(R)$ for which (x - x', y) is quasi-invertible, and

$$(**) y' = y^{x-x'}, h' = b(x-x',y)h, h_{+}(z'-z) = (x-x')^{y}.$$

By 2.2, E may also be described by the equations

$$B(y, x - x')y' = y - Q_{\nu}(x - x'),$$

 $B(y, x - x')Q_{\nu}(x - x') = Q_{\nu}(x - x'),$
 $h' = b(x - x', y)h,$
 $B(x - x', y)h_{+}(z' - z) = x - x' - Q_{x-x'}y,$

with values in separated k-functors, and is therefore closed in $X \times X$.

In the following lemmas, we will use standard properties of the quasiinverse in a Jordan pair without comment; in particular the formulas $x^{y+w} = (x^y)^w$, $(x+z)^y = x^y + B(x,y)^{-1} \cdot z^{(y^x)}$, $B(x,y)B(x^y,w) = B(x,y+w)$, $B(z,y^x)B(x,y) = B(x+z,y)$. See [15, §3].

5.3. Lemma. E is an equivalence relation on X.

Proof. We have to show that E(R) is (the graph of) an equivalence relation on X(R), for all $R \in k$ -alg. Since $y^0 = y$, $0^y = 0$, b(0, y) = 1 (which follows from 5.1.1 for z = x = 0) we have reflexivity. Now assume that (**) holds. Then (x' - x, y) is quasi-invertible and $y = (y')^{x'-x}$,

$$h = b(x - x', y)^{-1}h' = b(-(x - x'), y^{x-x'})h' = b(x' - x, y')h'$$

by 5.1.5, and by 5.1.1,

$$h'_{+}(z-z') = B(x-x',y)h_{+}(z-z') = -B(x-x',y)(x-x')^{y}$$

$$= -(x-x'-Q(x-x')y) = (x'-x) + Q(x'-x)y$$

$$= x'-x + Q(x'-x)(y')^{x'-x} = (x'-x)^{y'}.$$

This shows that E is symmetric. To prove transitivity, assume (**) and also that (x' - x'', y') is quasi-invertible and

$$y'' = (y')^{x'-x''}$$
, $h'' = b(x'-x'', y')$, $h'_+(z''-z') = (x'-x'')^{y'}$.

Then (x - x'', y) is quasi-invertible, and

$$y'' = (y')^{x'-x''} = (y^{x-x'})^{x'-x''} = y^{x-x'+x'-x''} = y^{x-x''}$$

Also,

$$h'' = b(x' - x'', y')b(x - x', y)h = b(x' - x'', y^{x-x'})b(x - x', y)h$$

= $b(x' - x'' + x - x', y)h = b(x - x'', y)h$,

by 5.1.5 and finally,

$$\begin{split} h_{+}(z''-z) &= h_{+}(z''-z') + h_{+}(z'-z) \\ &= h_{+}h'_{+}^{-1}h'_{+}(z''-z') + (x-x')^{y} \\ &= B_{+}(x-x',y)^{-1} \cdot (x'-x'')^{y'} + (x-x')^{y} \\ &= (x-x')^{y} + B_{+}(x-x',y)^{-1} \cdot ((x'-x'')^{(y^{x-x'})}) \\ &= (x-x'+x'-x'')^{y} \\ &= (x-x'')^{y} , \end{split}$$

by 5.1.1.

5.4. We now define G = X/E to be the quotient sheaf of X by E, and denote by $\pi: X \to E$ the canonical map. For $(x, y, h, z) \in X(R)$, the notation

$$\pi(x, y, h, z) = [x, y, h, z]$$

will be used. By general properties of sheaves (cf. [5, chap. III]), we have the exact sequence of sheaves

$$E \xrightarrow{\operatorname{pr}_1} X \xrightarrow{\pi} G$$
.

Since E is closed, 1.3 shows that G is separated.

5.5. Lemma. There is a well defined function χ on G such that $\chi([x,y,h,z]) = \det(B(x,y) \cdot h_+)$. The open subfunctor $\Omega = \chi^{-1}(k_m)$ of G is dense and isomorphic with $\mathfrak{B}_a^- \times H \times \mathfrak{B}_a^+$ under the map $i:(y,h,z) \to [0,y,h,z]$.

Proof. χ is well-defined: Suppose [x, y, h, z] = [x', y', h', z']. Then $y' = y^{x-x'}$ and $h'_+ = B(x-x',y)h_+$ whence $B(x',y')h'_+ = B(x',y^{x-x'})B(x-x',y)h_+$ $= B(x,y)h_+$. Clearly $\pi^{-1}(\Omega) = W \times H \times \mathfrak{A}_a^+$ which is dense in X. By 1.11, Ω is dense in G. From (**) it follows easily that i is a monomorphism into Ω . Conversely, if $g = [x, y, h, z] \in \Omega$ then (x, y) is quasi-invertible and hence $g = [0, y^x, b(x, y)h, z + h_+^{-1} \cdot x^y]$ belongs to the image of i.

5.6. Let \mathfrak{V}_a^+ act on X on the left by addition on the first factor:

$$u \cdot (x, y, h, z) = (u + x, y, h, z)$$
,

and let H act on X via

$$f \cdot (x, y, h, z) = (f_{+}(x), f_{-}(y), fh, z)$$
.

Then these actions are compatible in the sense that

$$f \cdot (u \cdot (x, y, h, z)) = f_+(u) \cdot (f \cdot (x, y, h, z))$$

and it is easily checked that they are compatible with E. Therefore we have actions of \mathfrak{B}_a^+ and H on G, compatible in the sense that $f \cdot (u \cdot g) = f_+(u) \cdot (f \cdot g)$ for $f \in H$, $u \in \mathfrak{B}_a^+$, $g \in G$.

5.7. Lemma. There exist a unique action of \mathfrak{V}_a^- on G on the left such that

$$(1) v \cdot [x, y, h, z] = [x^v, B(v, x)(v^x + y), b(x, v)^{-1}h, z]$$

whenever (x, y) is quasi-invertible. This action is compatible with the actions of H and \mathfrak{D}_a^+ in the sense that

$$(2) f \cdot (v \cdot g) = f_{-}(v) \cdot (f \cdot g),$$

$$(3) u \cdot (v \cdot g) = v^u \cdot b(u, v) \cdot (u^v \cdot g).$$

for all $f \in H$ and $(u, v) \in W$.

Proof. Let $v \in \mathfrak{V}^-$ and $g \in G(k)$. After passing to an fppf extension of k we may assume that g = [x, y, h, z]. We claim that, again after an fppf extension, we may even assume that (x, v) is quasi-invertible. Indeed, let $Y_i \subset \mathfrak{B}_a^+$ be defined by

$$Y_1(R) = \{x' \in \mathfrak{B}_R^+ | (x - x', y) \text{ quasi-invertible} \},$$

 $Y_2(R) = \{x' \in \mathfrak{B}_R^+ | (x', v) \text{ quasi-invertible} \}.$

Then Y_1 and Y_2 are open and dense since $x \in Y_1(k)$ and $0 \in Y_2(k)$. Hence $Y_1 \cap Y_2$ is dense, and there exists a fppf extension R of k such that $(Y_1 \cap Y_2)(R)$ is not empty. Choosing $x' \in Y_1(R) \cap Y_2(R)$, define y', h', z' by (**). Then g = [x', y', h', z'] and (x', v) is quasi-invertible.

Now we show that (1) is well defined. Thus let [x, y, h, z] = [x', y', h', z'] and assume, as we may, that both (x, v) and (x', v) are quasi-invertible. By (**), we also have, setting u = x - x', that (u, y) is quasi-invertible, and that

$$y'=y^u$$
, $h'=b(u,y)h$, $h_{\downarrow}(z'-z)=u^y$.

To shorten notation, let

$$f = b(x, v)^{-1}, \quad w = v^x, \quad s = f_{-}(w + y) = B_{-}(v, x)(v^x + y),$$

and define f', w', s' analogously. We have to show: $(x^v - x'^v, s)$ is quasi-invertible, and

$$(4) s' = s^{(x^v - x'^v)},$$

$$(5) f'h' = b(x^v - x'^v, s) \cdot f \cdot h,$$

(6)
$$f_+h_+(z'-z)=(x^v-x'^v)^s.$$

Using the formula for $(x + z)^y$, we have

$$x^{v} - x'^{v} = B_{+}(x, v)^{-1}((x - x')^{-v^{x}}) = f_{+}(u^{-w}),$$

in particular, (u, -w) is quasi-invertible. Now

$$(x^{v}-x'^{v},s)=(f_{+}(u^{-w}),f_{-}(y+w))$$

is quasi-invertible if and only if (since (f_+, f_-) is an automorphism of \mathfrak{V}) $(u^{-w}, y + w)$ is quasi-invertible, and this is the case since both (u, -w) and (u, y) are quasi-invertible. Also,

$$(x^{v} - x'^{v})^{s} = f_{+}((u^{-w})^{y+w}) = f_{+}(u^{y}) = f_{+}(h_{+}(z'-z))$$

which proves (6). For (5), we have, by (2)-(5) of 5.1, that

$$f' = f \cdot b(u, -w)^{-1},$$

and hence

$$b(x^{v} - x'^{v}, s) \cdot f \cdot h = b(f_{+}(u^{-w}), f_{-}(y + w)) \cdot f \cdot h$$

= $f \cdot b(u^{-w}, y + w)f^{-1} \cdot f \cdot h = f \cdot b(u^{-w}, y + w) \cdot h$
= $f \cdot b(u, -w)^{-1}b(u, y) \cdot h = f' \cdot h'$.

Finally,

$$s' = f'_{-}(w' + y') = f'_{-}(w' + y^{u}) = f'_{-}(w^{-u} + y^{u})$$

= $f'_{-}(y^{u} - (-w)^{u}) = f'_{-}(B_{-}(-w, u)^{-1} \cdot ((y + w)^{(u-w)})$

and

$$s^{(x^v-x'^v)}=(f_-(w+y)^{f_+(u^-w)})=f_-((w+y)^{(u^-w)}).$$

Now (4) follows from (7).

Next we show that (1) defines an action of \mathfrak{V}_a^- on G. Since Ω is dense in G and G is separated, it suffices to verify the condition $v_1(v_2 \cdot g)$

= $(v_1 + v_2) \cdot g$ for g = [0, y, h, z] in Ω . But then $v \cdot g = [0, v + y, h, z]$ and the assertion follows. Finally, (2) is easily verified from the definitions, and (3) needs to be checked only for g = [0, y, h, z] in Ω . Then we have

$$u \cdot (v \cdot g) = u \cdot [0, v + y, h, z] = [u, v + y, h, z].$$

Let $d = u - Q_u v$. Then (d, v^u) is quasi-invertible, and we have the formulas

$$(8) b(d, v^u) = b(u, v),$$

$$d^{(v^u)}=u.$$

Indeed, by (4) and (5) of 5.1 and the "symmetry principle" ([15, 3.3]),

$$b(u, v) = (b(u, v)^{-1})^{-1} = b(-u, v^{u})^{-1} = b((-u)^{(v^{u})}, -v^{u})$$

= $b(-u + Q_{v} \cdot (v^{u})^{-u}, -v^{u}) = b(d, v^{u})$,

and

$$u^{(-v^u)} = u + Q_u \cdot (-v^u)^u = u + Q_u \cdot ((-v)^{-u})^u = d$$

which implies (9). Now we get

$$v^{u} \cdot (b(u, v) \cdot (u^{v} \cdot g)) = v^{u} \cdot (b(u, v) \cdot [u^{v}, y, h, z])$$

$$= v^{u} \cdot [B(u, v) \cdot u^{v}, B(v, u)^{-1} \cdot y, b(u, v) \cdot h, z]$$

$$= v^{u} \cdot [d, B(v, u)^{-1}y, b(u, v)h, z]$$

$$= [d^{(v^{u})}, B(v, u)(v^{u})^{d} + y, h, z]$$

$$= [u, v + y, h, z],$$

since $B(v, u)(v^{u+d}) = (B(v, u) \cdot v^u)^{B(u,v)^{-1}} \cdot d = (v - Q_v u)^{(u^v)} = v$, by (9) applied with u and v interchanged. This completes the proof.

5.8. Lemma. There exists a unique structure of a k-group sheaf on G such that

$$[x, y, h, z] \cdot g = x \cdot (y \cdot (h \cdot (z \cdot g))),$$

for all $(x, y, h, z) \in X$, $g \in G$.

Proof. By 5.6 and 5.7, the right hand side of (1) defines a map $X \times G \to G$. We claim that it depends only on the equivalence class [x, y, h, z]. Indeed, let [x, y, h, z] = [x', y', h', z']. Then by (**), 5.6.1 and 5.7.3 we have, setting u = x - x',

$$u \cdot (y \cdot (h \cdot (z \cdot g))) = y^{u} \cdot (b(u, y) \cdot (u^{y} \cdot (h \cdot (z \cdot g))))$$

$$= y' \cdot (h'h^{-1} \cdot (h_{+}(z' - z) \cdot (h \cdot (z \cdot g))))$$

$$= y' \cdot (h'h^{-1} \cdot (h \cdot ((z' - z) \cdot (z \cdot g))))$$

$$= y' \cdot (h' \cdot (z' \cdot g))$$

and hence $x' \cdot (y' \cdot (h' \cdot (z' \cdot g))) = x \cdot (y \cdot (h \cdot (z \cdot g)))$. Thus there exists a unique morphism $G \times G \to G$ satisfying (1). Clearly, [0, 0, 1, 0] is the neutral element of this multiplication. Now we prove associativity. Let $U \subset \Omega \times \Omega$ be the set of all pairs (g, g') = ([0, y, h, z], [0, y', h', z']) for which (z, y') is quasi-invertible. Then U is open and dense in $\Omega \times \Omega$ and hence $U \times G$ is open and dense in $G \times G \times G$. Hence we only have to prove (gg')g'' = g(g'g'') for $(g, g') \in U$. In that case,

$$gg' = y \cdot (h \cdot (z \cdot [0, y', h', z'])) = y \cdot (h \cdot [z, y', h', z'])$$

$$= y \cdot (h \cdot [0, y'^z, b(z, y')h', h'_{+}^{-1}(z^{y'}) + z'])$$

$$= [0, y + h_{-}(y'^z), hb(z, y')h', h'_{-}^{-1}(z^{y'}) + z'] = [0, v, f, w],$$

and therefore

$$(gg')g'' = v \cdot (f \cdot (w \cdot g''))$$
.

On the other hand, by 5.6 and 5.7.,

$$\begin{split} g(g'g'') &= y \cdot (h \cdot (z \cdot (y' \cdot (h' \cdot (z' \cdot g''))))) \\ &= y \cdot (h \cdot (y'^z \cdot (b(z, y') \cdot (z^{y'} \cdot (h' \cdot (z' \cdot g'')))))) \\ &= y \cdot (h_{-}(y'^z) \cdot (hb(z, y')h' \cdot (h'_{+}^{-1}(z^{y'}) \cdot (z' \cdot g'')))) \\ &= (y + h_{-}(y'^z)) \cdot (hb(z, y')h' \cdot ((h'_{+}^{-1}(z^{y'}) + z') \cdot g'')) \\ &= v \cdot (f \cdot (w \cdot g'')) = (gg')g'' \;. \end{split}$$

Finally, it is easily checked that the inverse is given by

$$[x, y, h, z]^{-1} = [-z, -h_{-}^{-1}(y), h_{-}^{-1}, -x].$$

This completes our proof.

5.9. Lemma. The action ψ of k_m on G defined by $\psi_t \cdot [x, y, h, z] = [tx, t^{-1}y, h, tz]$ is elementary and the associated Jordan system is isomorphic with $\mathscr{J} = (\mathfrak{B}, H, \rho, b)$.

Proof. One shows easily that ψ is a well defined action by group automorphisms. Identify H with a subgroup of G via $h \mapsto [0, 0, h, 0]$ and define homomorphisms $f_{\pm} : \mathfrak{B}_a^{\pm} \to G$ by

$$f_{+}(x) = [x, 0, 1, 0] = [0, 0, 1, x], \qquad f_{-}(y) = [0, y, 1, 0].$$

Let U^{\pm} be the image of \mathfrak{B}_{a}^{\pm} . Then H, U^{+}, U^{-} satisfy (i)-(iv) of 3.1 and therefore ψ is elementary. From 5.6-5.8 it follows that H normalizes U^{\pm} ; in fact, $hf_{\sigma}(x)h^{-1}=f_{\sigma}(h_{\sigma}\cdot x)$. Finally by (**), $f_{+}(x)f_{-}(y)=[x,y,1,0]=[0,y',h',z']\in\Omega$ if and only if (x,y) is quasi-invertible, and then $y'=y^{x}$, h'=b(x,y), $z'=x^{y}$. In view of 4.1, this shows that the Jordan system of (G,ψ) is \mathscr{J} and completes the proof of 5.2.

5.10. COROLLARY. Let (G, ψ) be an elementary system. Then there exists a unique function χ on G such that $\chi(g) = \det B(x, y) \cdot \operatorname{Ad} h \mid \mathfrak{B}^+)$ for $g = \exp(x) \exp(y) h \cdot \exp(z)$, $(x, z \in \mathfrak{B}_a^+, y \in \mathfrak{B}_a^-, h \in H)$, and Ω is the open subfunctor of G defined by χ .

This is immediate from 5.5. Next, we discuss representability of G.

- 5.11. Proposition. Let (G, ψ) be an elementary system, and assume that G is a scheme. Then H is a scheme, and the morphism $\pi: X \to G$ (cf. 4.13) is a finitely presented, smooth, affine, and surjective morphism of k-schemes. The following properties hold for G if and only if they hold for H:
 - (i) finitely presented;
 - (ii) locally finitely presented;
 - (iii) flat and locally finitely presented;
 - (iv) smooth.

Proof. H is a scheme since it is closed in G ([5, p. 50, 4.1]). We can factor π as follows:

$$X \xrightarrow{\cong} U^+ \times Q \xrightarrow{\operatorname{Id} \times \iota} U^+ \times G \xrightarrow{\mu} G$$
.

where the first map is the isomorphism $(x, y, h, z) \to (\exp(x), \exp(y) \cdot h \cdot \exp(z))$, $\iota \colon \Omega \to G$ is the inclusion, and μ is multiplication. Since ι is an open imbedding it is smooth and locally finitely presented. Let $U \subset G$ be open and affine, and let χ be as in 5.10. Then $\iota^{-1}(U) = U \cap \Omega$ is the open subscheme of U defined by a single function, and is therefore itself affine. This proves that ι is affine and quasicompact (cf. [5, p. 48, 3.8, and p. 41, 2.1]) and therefore also finitely presented. It follows that $\mathrm{Id} \times \iota$ has the same properties. The morphism $\mu \colon U^+ \times G \to G$ is isomorphic with the projection $\mathrm{pr}_2 \colon U^+ \times G \to G$ (cf. [5, p. 161, 3.2]). Since U^+ is finitely presented, smooth, and affine over k, pr_2 and hence μ are finitely presented, smooth and affine.

Thus we have shown that π is finitely presented, smooth, and affine, and it is surjective since it is an epimorphism of sheaves.

If one of the properties (i)–(iv) holds for H then it holds for X since \mathfrak{B}_a^\pm is smooth and finitely presented. By EGA IV, 11.3.11, 17.7.5, 17.7.7, it holds for G. Conversely, if G has one of these properties then so does $\Omega \cong H \times U^+ \times U^-$ and therefore H, by faithfully flat descent ($U^+ \times U^-$ being faithfully flat and finitely presented over k).

5.12. LEMMA Let (G, ψ) be an elementary system, and assume that H is a scheme. Let $E = X \times_G X$ be the equivalence relation defined by $\pi \colon X \to G$. Then $\operatorname{pr}_1 \colon E \to X$ is flat and finitely presented.

Proof. From 4.13 it is clear that E is isomorphic with the open subscheme Y of $X \times \mathfrak{B}^+_a$ defined by

$$Y(R) = \{(x, y, h, z; x') \in X(R) \times \mathfrak{D}_R^+ | (x - x', y) \text{ quasi-invertible} \}$$

and that $\operatorname{pr}_1\colon E\to X$ is isomorphic with $Y = X \times \mathfrak{B}_a^+ \stackrel{p}{\longrightarrow} X$ where p(x,y,h,z;x')=(x,y,h,z). Since \mathfrak{B}_a^+ is flat and finitely presented over k,p is flat and finitely presented. Also, Y is the open subscheme of $X\times \mathfrak{B}_a^+$ defined by the function $f(x,y,h,z;x')=\det B(x-x',y)$. Hence the inclusion $Y=X\times \mathfrak{B}_a^+$ is finitely presented. This finishes the proof. We remark that, in fact, $\operatorname{pr}_1\colon E\to X$ is even smooth and affine, as follows from the proof.

- 5.13. Proposition. Let (G, ψ) be an elementary system over k, and assume that k is noetherian and H is a finitely presented k-scheme.
 - (a) G is a finitely presented algebraic space (in the sense of M. Artin).
 - (b) If k has Krull dimension ≤ 1 then G is a scheme.
 - (c) If k is a Dedekind ring then G is flat and affine if and only if H is.

Proof. (a) and (b) follow from 5.12 and [1, Th. 3.1.1 and Th. 4B]. If G is affine so is H since it is closed in G. For the converse, we may, by [1, 2.3.1], assume that k is a field. Let $\hat{G} = G \times k_m$ (semidirect) and $S = 1 \times k_m \subset \hat{G}$. Then S is contained in \hat{G}^0 and the centralizer of S in \hat{G} is $H \cdot S$. Hence the centre of \hat{G}^0 is contained in $H \cdot S \cong H \times k_m$ and is therefore affine. By [5, p. 359, 8.4], \hat{G} is affine, and hence G is affine.

I don't know whether G is a scheme whenever H is.

5.14. For any Jordan pair \mathfrak{V} we can define a canonical Jordan system $\mathscr{J}(\mathfrak{V})$ by setting $H = \operatorname{Aut}(\mathfrak{V})$, $\rho = \operatorname{Id}$, and $b = \beta$. This follows from the

properties of the inner automorphisms $\beta(x, y)$ ([15, § 3]). The associated group is called the *projective group* of \mathfrak{B} and is denoted by $\mathbf{PG}(\mathfrak{B})$. In the examples of 3.2, $\mathbf{PG}(\mathfrak{B})$ is isomorphic with the projective group \mathbf{PGL}_n \mathbf{PO}_{2n} , \mathbf{PSp}_n respectively (except in the first case when p = q = n/2 > 1 where \mathbf{PGL}_n is an open subgroup of index 2 in $\mathbf{PG}(\mathfrak{B})$). As a further example, let k be a field, and \mathfrak{B} the Jordan pair of 1×2 -matrices over a Cayley division algebra C over k (cf. [15, 8.15]). Then one can show that $\mathbf{PG}(\mathfrak{B})$ is an adjoint group of type $E_{\mathfrak{b}}$ whose k-rational points may be identified with the projective group of the Cayley plane defined by C (cf. ([6]).

- 5.15. PROPOSITION. Let (G, ψ) be an elementary system with associated Jordan pair \mathfrak{B} , and let $\overline{G} = \mathbf{PG}(\mathfrak{B})$. Let $\overline{\psi}$ be the elementary action on \overline{G} and $\overline{H} = \mathbf{Aut}(\mathfrak{B})$, \overline{U}^{\pm} the corresponding subgroups.
- (a) There exists a canonical homomorphism $\kappa: (G, \psi) \to (\overline{G}, \overline{\psi})$ given by $\kappa(h) = (\operatorname{Ad} h \mid \mathfrak{B}^+, \operatorname{Ad} h \mid \mathfrak{B}^-)$ $(h \in H)$ and $\kappa(\exp(x)) = \overline{\exp}(x)$ $(x \in \mathfrak{B}^\pm)$. The kernel of κ is the largest normal subgroup of G contained in H; in particular, $\kappa: U^{\pm} \to \overline{U}^{\pm}$ is an isomorphism.
- (b) Let $\gamma: k_m \to \overline{H}$ be as in 2.3, and \overline{S} the image of γ . Then $\overline{\psi}$ is given by $\overline{\psi}_t(g) = \gamma(t)g\gamma(t)^{-1}$, and hence \overline{H} is the centralizer of \overline{S} in \overline{G} .
- (c) \overline{H} contains no non-trivial normal subgroup of \overline{G} . The centre of \overline{G} is trivial.

Proof. Define $f_0 \colon H \to \overline{H}$ by $h \mapsto (\operatorname{Ad} h \mid \mathfrak{B}^+, \operatorname{Ad} h \mid \mathfrak{B}^-)$. Since the Jordan pairs of G and \overline{G} are the same, 4.15 (b) shows the existence of κ , and clearly $\kappa \colon U^{\pm} \to \overline{U}^{\pm}$ is an isomorphism. Let $\kappa(g) = 1$. After an fppf extension, we may by 3.8 assume that $g = h \cdot \exp(x) \exp(y) \exp(z)$ with x, $z \in \mathfrak{B}_a^+$, $y \in \mathfrak{B}_a^-$, $h \in H$. Then $\kappa(h)^{-1} = \overline{\exp}(x) \overline{\exp}(y) \overline{\exp}(z) = 1$ by 3.6 (c). Hence $\overline{\exp}(x) \overline{\exp}(y) = \overline{\exp}(-z) \in \overline{\Omega}$ and by 4.1, $\overline{\exp}(-z) = \overline{\exp}(y^x) \overline{b}(x, y) \overline{\exp}(x^y)$, which implies $y^x = 0$, and $-z = x^y$. It follows that y = 0 and z = -x, and therefore $g = h \in H$. Thus the kernel of κ is contained in H. If N is a normal subgroup of G contained in H then N centralizes U^+ and U^- since it normalizes U^+ and U^- and $H \cap U^\pm = \{1\}$. By 3.6, it follows that $\operatorname{Ad} h \cdot x = x$ for all $h \in N$, $x \in \mathfrak{B}_a^+$, and therefore N is contained in the kernel of κ . This proves (a). Now (b) is immediate from the definitions, and (c) follows from (a) (applied for $G = \overline{G}$) and (b).

Next we give an application of the existence theorem to the existence of quotients.

- 5.16. Proposition. Let (G, ψ) be an elementary system, and let N be a normal subgroup sheaf of G which is stable under ψ . Let $N^{\pm} = N \cap U^{\pm}$ and $N_0 = N \cap H$.
- (a) If $g = uvhw \in U^+(R)U^-(R)H(R)U^+(R)$ then $g \in N(R)$ if and only if $wu \in N^+(R)$, $v \in N^-(R)$, $h \in N_0(R)$. In particular.

$$(1) N \cap \Omega = N^- \cdot N_0 \cdot N^+.$$

- (b) Let $\mathfrak{n}^{\pm} = \text{Lie}(N^{\pm}) \subset \mathfrak{D}^{\pm}$. Then $(\mathfrak{n}^{+}, \mathfrak{n}^{-})$ is an outer ideal (cf. [15, 1.3]) of the Jordan pair $\mathfrak{V} = (\mathfrak{V}^{+}, \mathfrak{V}^{-})$ associated with (G, ψ) , stable under Ad H.
- *Proof.* (a) By passing to a base extension we may assume that R = k. Consider first the case w = 1 and let $u = \exp(x)$, $v = \exp(y)$. Applying ψ_t it follows that

$$\psi_t(g) = \exp(tx) \exp(t^{-1}y)h \in N(R),$$

for all invertible $t \in R$, $R \in k$ -alg. Since N is normal, we have $\exp(-x) \cdot \psi_t(g) \cdot g^{-1} \cdot \exp(x) = \exp((t-1)x) \exp((t^{-1}-1)y) \in N(R)$. If t-1 is invertible then by (2), $\psi_{t-1}(g) \in N(R)$, and hence

$$egin{aligned} (\psi_{t-1}(g))^{-1} \cdot \exp\left((t-1)x\right) & \exp\left((t^{-1}-1)y\right) \ & = h^{-1} \cdot \exp\left((t^{-1}-1-(t-1)^{-1})y\right) \ & = h^{-1} \cdot \exp\left(\left(\frac{t^2-t+1}{t(1-t)}\right)y\right) \in N(R) \;. \end{aligned}$$

Choose now $R = k[T]/(T^2 - T + 1)$ and let t be the image of the indeterminate T in R. Then R is fppf over k, and $t^{-1} = 1 - t$. It follows that $h^{-1} \in N(R)$, and since N is a sheaf, $h \in N(k)$. Similarly, there exists a fppf extension R' of k and an element $t \in R'^*$ such that 1 - t and $s = (t^2 - t + 1)/t(1 - t)$ are invertible. Then $\exp(sy) \in N(R)$ and hence $\psi_{s-1}(\exp(sy)) = \exp(y) \in N(R')$ which implies $v = \exp(y) \in N(k)$ as before. It follows that $u = \exp(x) = gh^{-1} \exp(y) \in N(k)$.

In the general case, $g = uvhw \in N(k)$ if and only if $wgw^{-1} = (wu)vh \in N(k)$, and by what we just proved, $wu \in N^+(k)$, $v \in N^-(k)$, $h \in N_0(k)$.

(b) Since N^{\pm} is a subgroup functor of U^{\pm} , \mathfrak{n}^{\pm} is a k-submodule of $\mathfrak{B}^{\pm}=\operatorname{Lie}(U^{\pm})$. From 3.6 it follows that $(\mathfrak{n}^{+},\mathfrak{n}^{-})$ is stable under Ad H. Let $y\in\mathfrak{n}^{-}$ and $x\in\mathfrak{B}^{+}$. Then $\exp(\varepsilon y)\in N(k(\varepsilon))$, and by 4.6.2 we have $b(x,\varepsilon y)\exp(\varepsilon Q_{x}y)\in N(k(\varepsilon))$ which implies $Q_{x}y\in\mathfrak{n}^{+}$ by (a). For $z\in\mathfrak{n}^{+}$ and $x\in\mathfrak{B}^{+}$, $y\in\mathfrak{B}^{-}$, a similar argument using 4.6.6 shows that $Q_{y}z\in\mathfrak{n}^{-}$ and

 $B(x, y)z = z - D(x, y)z + Q_xQ_yz \in \mathfrak{n}^+$. Hence $D(x, y)z \in \mathfrak{n}^+$, and $D(\mathfrak{V}^-, \mathfrak{V}^+)\mathfrak{n}^ \subset \mathfrak{n}^-$ is shown similarly.

5.17. COROLLARY. Assume that N is a smooth k-scheme. Then N_0 , N^+ , and N^- are smooth.

Proof. $N \cap \Omega$ is open in N and therefore smooth. By 5.16 and 3.4, $N \cap \Omega \cong N^- \times N^0 \times N^+$. Since $N^\pm = N \cap U^\pm$ is a fibred product of locally finitely presented k-schemes it is itself locally finitely presented. Hence to show that N^\pm is smooth, we only have to show that, for every $R \in k$ -alg, and every ideal I of R of square zero, the canonical map $N^\pm(R) \to N^\pm(R/I)$ is surjective (cf. [5, p. 111, 4.6]). Let $n_\pm \in N^\pm(R/I)$. Then $n_- \cdot n_+ \in (N \cap \Omega)(R/I)$, and by smoothness of $N \cap \Omega$, there exists $g = uhv \in N^-(R)N_0(R)N^+(R)$ such that $g_{R/I} = u_{R/I}h_{R/I}v_{R/I} = n_- \cdot n_+$. Hence $u_{R/I} = n_-$, $v_{R/I} = n_+$, and there assertion follows. In particular, $N^+ \times N^-$ is faithfully flat and locally finitely presented. By EGA IV, 17.7.5 and 17.7.7, N_0 is also smooth.

5.18. Lemma. Let \mathfrak{V} and \mathfrak{V}' be finite-dimensional Jordan pairs over a field, and let $f: \mathfrak{V} \to \mathfrak{V}'$ be a surjective homomorphism. Then f induces a surjection of the set of quasi-invertible pairs of \mathfrak{V} onto that of \mathfrak{V}' .

Proof. Let (\bar{x}, \bar{y}) be quasi-invertible in \mathfrak{B}' and let $(x, y) \in \mathfrak{B}^+ \times \mathfrak{B}^-$ be such that $f_+(x) = \bar{x}$ and $f_-(y) = \bar{y}$. Replacing \mathfrak{B} and \mathfrak{B}' by the subpairs generated by (x, y) and (\bar{x}, \bar{y}) , respectively, we may assume that \mathfrak{B} and \mathfrak{B}' are associative (see [15, 15.3]). By [15, 15.8], $\mathfrak{B} \cong \mathfrak{B}_0 \times \mathfrak{B}_1 \times \cdots \times \mathfrak{B}_n$ where \mathfrak{B}_0 is nilpotent and the $\mathfrak{B}_1, \dots, \mathfrak{B}_n$ are local. Let \mathfrak{A} be the kernel of f. Then $\mathfrak{A} \cong \mathfrak{A}_0 \times \mathfrak{A}_1 \times \cdots \times \mathfrak{A}_n$ where either $\mathfrak{A}_i = \mathfrak{B}_i$ or $\mathfrak{A}_i \subset \operatorname{Rad} \mathfrak{B}_i$, for $i = 1, \dots, n$, since $\mathfrak{B}_i/\operatorname{Rad} \mathfrak{B}_i$ is a division pair and hence the radical is the unique proper maximal ideal of \mathfrak{B}_i . Thus $\mathfrak{B} \cong \mathfrak{B}^{(1)} \times \mathfrak{B}^{(2)}$ and $\mathfrak{A} \cong \mathfrak{A}^{(1)} \times \mathfrak{B}^{(2)}$ where $\mathfrak{A}^{(1)} \subset \operatorname{Rad} \mathfrak{B}^{(1)}$. Let $x^{(i)}, y^{(i)}$ be the components of $(x, y) \in \mathfrak{B}^+ \times \mathfrak{B}^-$ in $\mathfrak{B}^{(i)}$. Then $(\bar{x}, \bar{y}) = f_+(x^{(1)}), f_-(y^{(1)})$ and $(x^{(1)}, y^{(1)})$ is quasi-invertible by [15, 4.3].

- 5.19. Theorem. With the notations of 5.16, assume that N is closed in G and that N^+ and N^- are smooth.
- (a) \mathfrak{n}^{\pm} is a direct summand of \mathfrak{D}^{\pm} , the restriction $\exp: \mathfrak{n}_a^{\pm} \to N^{\pm}$ is an isomorphism, and $(\mathfrak{n}^+, \mathfrak{n}^-)$ is an ideal of \mathfrak{D} , stable under Ad H.
 - (b) Let G' = G/N (quotient sheaf), and let ψ' be the action of k_m on

G' induced by ψ . Then (G', ψ') is an elementary system, the canonical map $f: (G, \psi) \to (G', \psi')$ is a homomorphism, and the Jordan pair associated with (G', ψ') is $\mathfrak{B}' = (\mathfrak{B}^+/\mathfrak{n}^+, \mathfrak{B}^-/\mathfrak{n}^-)$.

- Proof. (a) Since N is closed in $G, N^+ = N \cap U^+$ is closed in U^+ and hence is an affine scheme. Let $\omega_{N^+/k}$ be the pullback of the module of differentials $\Omega^1_{N^+/k}$ to k via the unit section. Smoothness of N^+ implies that $\omega_{N^+/k}$ is a finitely generated and projective k-module, and so is $\pi^+ = \text{Lie}\,(N^+) = \text{Hom}_k\,(\omega_{N^+/k}, k)$ (cf. [7. p. 208, and p. 215]). From SGA3, Exp. II, 4.11, it follows that π^+ is a direct summand of \mathfrak{B}^+ . Let $\exp(x) \in N^+(R)$. Then $\psi_{1+k}(\exp(x)) = \exp((1+\varepsilon)x) = \exp(x)\exp(\varepsilon x) \in N^+(R(\varepsilon))$ and hence $\exp(\varepsilon x) \in N^+(R(\varepsilon))$; i.e., $x \in \text{Lie}\,(N^+_R) = \pi^+_R$. This shows that N^+ is contained in the vector group $U = \exp(\pi^+_a) \cong \pi^+_a$. Since U and N^+ are smooth and have the same Lie algebra (namely π^+) the fibres of U and V^+ have the same dimension. By EGA IV, 17.11.5, V^+ is open in V^- . Arguing fibrewise, it follows easily that $V^+ = U$. The proof for V^- is the same. Let $v \in \pi^+$ and $v \in \mathfrak{B}^-$. Then $\exp(x) \in V^+(k)$, and by 4.6.2, V^- is similarly, one shows that V^- is an ideal of V^+ .
- (b) We will construct a Jordan system $\mathscr{J}' = (\mathfrak{D}', H', \rho', b')$ whose associated elementary system is (G', ψ') . Let $\mathfrak{B}' = (\mathfrak{D}^+/\mathfrak{n}^+, \mathfrak{D}^-/\mathfrak{n}^-)$. Then \mathfrak{D}' is a Jordan pair over k which is finitely generated and projective as a k-module since \mathfrak{n}^{\pm} is a direct summand of \mathfrak{D}^{\pm} . Let $H' = H/N_0$ (quotient sheaf). Since $N_0 = N \cap H$ is closed in H, the equivalence relation on H defined by N_0 is closed in $H \times H$, and by 1.3, H' is a separated k-group sheaf. It is easily checked that there is a unique homomorphism $\rho' \colon H' \to \mathbf{Aut}(\mathfrak{D}')$ satisfying

$$\rho'_+(h') \cdot x' = (\operatorname{Ad} h \cdot x)'$$
,

where the 'denotes the canonical maps $H \to H'$ and $\mathfrak{B} \to \mathfrak{B}'$. The canonical map $\mathfrak{B} \to \mathfrak{B}'$ is surjective and linear. Hence the induced morphism on the quasi-invertible pairs $W \to W'$ is smooth, and by 5.18, it is surjective. In particular, it is faithfully flat and locally finitely presented and therefore an epimorphism of sheaves ([5, p. 295, 2.10]). This allows us to define a morphism $b' \colon W' \to H'$ by

$$b'(x', y') = b(x, y)',$$

provided we can show that the right hand side depends only on the

equivalence class of $(x, y) \mod (\mathfrak{n}^+, \mathfrak{n}^-)$. Thus let $(x, y) \in W(R)$, and assume that $x \equiv u(\mathfrak{n}_R^+)$ and $y^x \equiv v(\mathfrak{n}_R^-)$. Since $(\mathfrak{n}_R^+, \mathfrak{n}_R^-)$ is an ideal of \mathfrak{V}_R we have $x^y \equiv u^v(\mathfrak{n}_R^+)$ and $y^x \equiv v^u(\mathfrak{n}_R^-)$, and since $\exp \mathfrak{n}_a^+ = N^+$, it follows from (*) of 4.1 that

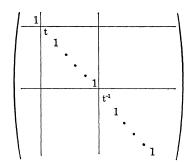
$$b(x, y) = \exp(-y^x) \exp(x) \exp(y) \exp(-x^y)$$

$$\equiv \exp(-v^u) \exp(u) \exp(v) \exp(-u^v)$$

$$= b(u, v) \text{ modulo } N(R).$$

Now it is easily verified that $\mathscr{J}'=(\mathfrak{B}',H',\rho',b')$ is a Jordan system, and that the canonical maps $\mathfrak{B}\to\mathfrak{B}'$ and $H\to H'$ define a homomorphism $\Phi\colon\mathscr{J}\to\mathscr{J}'$ where \mathscr{J} is the Jordan system associated with (G,ψ) . Let (G',ψ') be the elementary system defined by \mathscr{J}' , and let $f\colon (G,\psi)\to (G',\psi')$ be the homomorphism induced by Φ (see 4.15 and 5.1). Then $f\colon G\to G'$ is an epimorphism of group sheaves, and we only have to check that $\ker(f)=N$. By 5.16 (a), it suffices to show that $\Omega\cap \ker(f)=\Omega\cap N$, and this is clear from the definitions.

5.20. Example. If N^+ and N^- are not smooth then the induced action ψ' on G/N may not be elementary. For example, let k be a field, let $G = \mathbf{SO}_{2n+1}$ be the special orthogonal group of the quadratic form $q(x_0, \dots, x_{2n}) = x_0^2 + \sum x_i x_{n+i}$, and let ψ_t be conjugation by the matrix



Then ψ is an elementary action whose associated Jordan pair is the simple Jordan pair defined by the standard quadratic form on k^{2n-1} (cf. [18, p. 196]). Now let char (k) = 2, and let $f: G \to \mathbf{Sp}_{n,k}$ be the exceptional isogeny

$$\begin{pmatrix} 1 & a & b \\ 0 & A & B \\ 0 & C & D \end{pmatrix} \longmapsto \begin{pmatrix} A & B \\ C & D \end{pmatrix},$$

where $a, b \in k^n$ and A, B, C, D are $n \times n$ matrices. Then N = Ker(f) is an infinitesimal group of height one, and (n^+, n^-) is the unique proper one-dimensional outer ideal of \mathfrak{B} . The induced action ψ' on $G' = \mathbf{Sp}_{n,k}$ is not elementary since it has weights $0, \pm 1, \pm 2$ on Lie(G').

§6. The radical

6.1. In this section, k denotes a field and \overline{k} an algebraic closure of k. A k-group is an affine finitely presented group scheme over k. If (G, ψ) is an elementary system we will always assume that G is a k-group. By 5.13, so is H, and conversely, if $(\mathfrak{D}, H, \rho, b)$ is a Jordan system with H a k-group then the associated group G is a k-group. In particular, the projective group of \mathfrak{D} is a k-group.

Radical and unipotent radical of a smooth connected \bar{k} -group are denoted by R(G) and $R_u(G)$. If G is not connected define $R(G) = R(G^0)$ and $R_u(G) = R_u(G^0)$. By definition, a k-group is semisimple (reductive) if it is smooth and $R(G_{\bar{k}}) = \{1\}$ ($R_u(G_{\bar{k}}) = \{1\}$). Let S be a torus acting on a k-group G by automorphisms. If G is connected (smooth, reductive) so is the fixed point set G^S ; more generally, $R_u(G^S) = R_u(G)^S$ (SGA3, Exp. XIX).

- 6.2. Let \mathfrak{V} be a Jordan pair over k. An element $x \in \mathfrak{V}^+$ is called properly quasi-invertible if (x, y) is quasi-invertible for all $y \in \mathfrak{V}^-$. Similarly one defines properly quasi-invertible for elements of \mathfrak{V}^- . The Jacobson radical of \mathfrak{V} is Rad $\mathfrak{V} = (\operatorname{Rad} \mathfrak{V}^+, \operatorname{Rad} \mathfrak{V}^-)$ where Rad \mathfrak{V}^σ is the set of properly quasi-invertible elements of \mathfrak{V}^σ (cf. [15, § 4]). We say \mathfrak{V} is semisimple if Rad $\mathfrak{V} = 0$ and \mathfrak{V} is separable if \mathfrak{V}_K is semisimple, for all extension fields K of k. An ideal $\mathfrak{V} = (\mathfrak{V}^+, \mathfrak{V}^-)$ of \mathfrak{V} is called trivial if $Q(\mathfrak{V}^\pm) \cdot \mathfrak{V}^\mp = 0$. Clearly a trivial ideal is contained in Rad \mathfrak{V} .
- 6.3. Lemma. Let (G, ψ) be an elementary system over k, and let N be a smooth connected abelian normal subgroup of G, invariant under ψ . Then (with the notation of 5.16) $N = N^- \cdot N_0 \cdot N^+ \subset \Omega$, and $(\mathfrak{n}^+, \mathfrak{n}^-)$ is a trivial ideal of the associated Jordan pair \mathfrak{B} .
- *Proof.* Since N is commutative, $N \cap \Omega = N^- \cdot N_0 \cdot N^+$ is an open subgroup of N. Hence $N = N \cap \Omega$. By 5.17 and 5.19, $N^{\pm} = \exp(\mathfrak{n}_a^{\pm})$ and $(\mathfrak{n}^+, \mathfrak{n}^-)$ is an ideal of \mathfrak{B} . If $x \in \mathfrak{n}^+$, $y \in \mathfrak{n}^-$ then $\exp(x) \exp(y) = \exp(y) \exp(x) = \exp(y^x)b(x,y) \exp(x^y)$ implies $y = y^x, b(x,y) = 1$, $x = x^y$. Hence $x = x^y = B(x,y)^{-1} \cdot (x Q_x y) = x Q_x y$ and thus $Q_x y = 0$. Similarly $Q_y x = 0$.

- 6.4. THEOREM. The projective group $G = \mathbf{PG}(\mathfrak{B})$ of a separable Jordan pair \mathfrak{B} is semisimple and its identity component is generated by U^+ and U^- (i.e., $G_{in} = G^0$; cf. 3.9).
- Proof. We may assume k algebraically closed. Let S be as in 5.15, and $G' = S \cdot G_{in}$. Then G' is a smooth connected k-group which is normal in G. We claim that G' is semisimple. If this were not so, let N be the last non-trivial term in the derived series of R(G'). By 6.3. $(\mathfrak{n}^+,\mathfrak{n}^-)$ is then a trivial ideal of \mathfrak{B} and hence contained in Rad $(\mathfrak{B}) = 0$. Hence $N^{\pm} = \{1\}$ and $N = N_0 \subset H$. But H contains no nontrivial normal subgroups of G by 5.15. Hence $N = \{1\}$, a contradiction. Now G_{in} is normal in G' and hence is semisimple as well. Since G'/G_{in} is at most one-dimensional we have $G_{in} = G'$; i.e., $S \subset G_{in}$. Now consider the homomorphism $f: G \to \operatorname{Aut}(G_{in}) = A$ given by $g \mapsto \operatorname{Int}(g)$. Then f is a monomorphism. Indeed, since $S \subset G_{in}$, the kernel of f is contained in $G^S = H$ and is therefore trivial (5.15). By SGA3, Exp. XXIV, A is a semisimple k-group, and $A^0 = f(G_{in}) \subset f(G)$. Hence $f(G) \cong G$ is an open subgroup of A, in particular, it is semisimple. Also, $G^0 \cong f(G^0) = A^0 = f(G_{in})$ and therefore $G^0 = G_{in}$.
- 6.5. COROLLARY. Let \mathfrak{B} be a separable Jordan pair over k. Then $\operatorname{Aut}(\mathfrak{B})$ is a reductive k-group whose identity component is $\operatorname{Inn}(\mathfrak{B})$.
- *Proof.* Since $\operatorname{Aut}(\mathfrak{V}) = H = G^{S}$ and $\operatorname{Inn}(\mathfrak{V}) = H_{in}$ where G is the projective group of \mathfrak{V} , this follows from 6.4 and 4.12. From 2.6 we get
- 6.6. COROLLARY. Let $\mathfrak A$ be a finite-dimensional separable unital quadratic Jordan algebra over k. Then the structure group $\mathbf{Str}(\mathfrak A)$ is a reductive k-group whose identity component is $\mathbf{Instr}(\mathfrak A)$.

This was proved by Springer in [20] by a case-by-case verification.

6.7. Proposition. Let (G, ψ) be an elementary system over k, and assume that the associated Jordan pair $\mathfrak B$ is separable. Then the automorphisms ψ_t are inner in the following sense: There exists a k-split torus $S \subset H_{in}$ and a nontrivial character $\eta\colon S\to k_m$ such that

(1)
$$\operatorname{Int}(s) = \psi_{r(s)},$$

for all $s \in S$.

Proof. Let $\kappa: G \to \overline{G} = \mathbf{PG}(\mathfrak{V})$ be the canonical homomorphism, and let $\overline{S} = \gamma(k_m) \subset \overline{G}^0$ as in 5.15. By 6.4, $\overline{G}^0 = \overline{G}_{in}$, and hence the restriction

 $\kappa_0 \colon G_{in} \to \overline{G}^0$ is an epimorphism. Let $Z = \kappa_0^{-1}(\overline{S}) \subset H_{in}$, and define $\eta \colon Z \to k_m$ by $\kappa_0(s) = \gamma(\eta(s))$. For $x \in \mathfrak{D}_a^{\pm}$ we then have

(2)
$$\operatorname{Int}(s) \cdot \exp(x) = \exp(\operatorname{Ad} s \cdot x) = \exp(\eta(s)^{\pm 1} \cdot x),$$

since κ induces isomorphisms $U^{\pm} \to \overline{U}^{\pm}$ (cf. 5.15). It follows that $sb(x,y)s^{-1} = b(\operatorname{Ad} s \cdot x, \operatorname{Ad} s \cdot y) = b(x,y)$, and hence Z is central in H_{in} . Now $\kappa(H^0) = \kappa(H_{in}) = \overline{H}^0$ implies that $H^0 \subset \operatorname{Ker}(\kappa) \cdot H_{in}$. But $\operatorname{Ker}(\kappa)$ centralizes G_{in} , and hence Z is central in H^0 . Let S be the maximal k-split torus of the centralizer of H in Z. Then S is central in H, and $\kappa: S \to \overline{S}$ is an epimorphism. Hence $\eta: S \to k_m$ is nontrivial. Now (1) follows from (2) and the fact that S is central in H.

6.8. Lemma. Let (G, ψ) be an elementary system over k and assume that G is reductive and connected. Then $P^+ = H \cdot U^+$ and $P^- = H \cdot U^-$ are opposed parabolic subgroups of G.

Proof. Let $\hat{G} = G \rtimes k_m$ (semidirect product) and let $S = \{1\} \times k_m \subset \hat{G}$. Then \hat{G} is reductive, and S is a one-dimensional split torus of \hat{G} with root system $\Phi = A_1$. Hence $\hat{G}_{\phi^+} = S \cdot P^+$ and $G_{\phi^-} = S \cdot P^-$ are opposed parabolic subgroups of \hat{G} ([3, 4.15]), and hence $P^+ = G \cap (S \cdot P^+)$ and $P^- = G \cap (S \cdot P^-)$ are opposed parabolic subgroups of G.

6.9. Theorem. Let (G, ψ) be an elementary system over an algebraically closed field k, and assume that G is smooth and connected. Let $\operatorname{Rad}(\mathfrak{B}) = (\mathfrak{n}^+, \mathfrak{n}^-)$ be the radical of the associated Jordan pair \mathfrak{B} , and let $N^{\pm} = \exp(\mathfrak{n}_a^{\pm}) \subset U^{\pm}$. Then $R_u(G) = N^- \cdot R_u(H) \cdot N^+$.

Proof. Let N_0 be the *k*-subgroup of H generated by $b(\mathfrak{B}_a^+, \mathfrak{n}_a^-)$ and $b(\mathfrak{n}_a^+, \mathfrak{B}_a^-)$. This is a smooth connected *k*-group. We claim that

$$N=N^-\cdot N_0\cdot N^+$$

is a smooth connected unipotent normal subgroup of G; in particular, $N \subset R_u(G)$. Clearly, N is smooth and connected. To show that it is a normal subgroup of G it suffices to show that N(k) is normal in G(k), since k is algebraically closed, and all groups involved are smooth. From 4.1 and the definition of Rad(\mathfrak{B}) it follows that N(k) is a subgroup of G(k). The invariance of Rad(\mathfrak{B}) under Aut(\mathfrak{B}) implies that N(k) is stable under conjugation by H(k). If $x \in \mathfrak{B}^+$ and $y \in \mathfrak{n}^-$ then

$$\operatorname{Int} (\exp (x)) \cdot \exp (y) = \exp (y^{x}) \cdot b(x, y) \cdot \exp (x^{y} - x)$$

with $y^x = y + Q_v \cdot x^y \in \mathfrak{n}^-$ and $x^y - x = Q_x \cdot y^x \in \mathfrak{n}^+$, since Rad (\mathfrak{V}) is an ideal of \mathfrak{V} . Also $b(x,y) \in N_0(k)$. If $u \in \mathfrak{V}^+$, $v \in \mathfrak{n}^-$, or $u \in \mathfrak{n}^+$, $v \in \mathfrak{V}$ then by 3.6 and 4.1,

Int
$$(\exp(x)) \cdot b(u, v) = \exp(x - B(u, v) \cdot x) \cdot b(u, v)$$
,

and $x - B(u, x) \cdot x = -\{uvx\} + Q_uQ_vx \in \mathfrak{n}^+$, again since Rad (\mathfrak{V}) is an ideal. Thus N(k) is stable under conjugation by $U^+(k)$, and similarly one shows that it is stable under conjugation by $U^-(k)$. This proves that N is normal in G. Now we show that N is unipotent. Replacing G by $G/R_u(G)$ (which is permissible by 5.19), we may assume that G is reductive, and then have to show that $N = \{1\}$. By 6.8, P^+ and P^- are parabolic subgroups of G, and hence $N \cap P^+ = N_0 \cdot N^+$ and $N \cap P^- = N_0 \cdot N^-$ are parabolic subgroups of G. Then $N/N_0 \cdot N^{\pm} \cong N^{\pm}$ is both affine and projective which implies $N^{\pm} = \{1\}$ and therefore also $N_0 = \{1\}$.

Let now $N' = N^- \cdot R_u(H) \cdot N^+$. By 6.2, $N_0 = N \cap H \subset R_u(G) \cap H = R_u(H)$ and hence $N \subset N'$. Since $N^+ \cdot N^- \subset N \subset N'$ it follows that N' is a subgroup of G. Also, N' is unipotent since N and $N'/N = R_u(H)/N_0$ are unipotent. We claim that N' is normal in G. In view of what we proved before, it suffices to show that conjugation by elements of $U^{\pm}(k)$ maps $R_u(H)$ into N'. Let $x \in \mathfrak{B}^{\pm}$ and $h \in R_u(H)(k)$. Then

(1)
$$\operatorname{Int} (\exp (x)) \cdot h = \exp (x - \operatorname{Ad} h \cdot x) \cdot h.$$

and we have to show that $x - \operatorname{Ad} h \cdot x \in \mathfrak{n}^{\pm}$. Consider the homomorphism $\varphi \colon G \to G' = \operatorname{PG}(\mathfrak{B}/\operatorname{Rad}(\mathfrak{B}))^0$ induced by the canonical homomorphisms $\mathfrak{B} \to \mathfrak{B}/\operatorname{Rad}(\mathfrak{B})$ and $H \to \operatorname{Aut}(\mathfrak{B}) \to \operatorname{Aut}(\mathfrak{B}/\operatorname{Rad}(\mathfrak{B}))$ (cf. 4.15). By 6.4, G' is semisimple, and $G' = G'_{in}$. Hence φ is an epimorphism, and we have $R_u(H) \subset R_u(G) \subset \operatorname{Ker}(\varphi)$. Applying φ to (1) it follows that $\operatorname{Lie}(\varphi)$ ($x - \operatorname{Ad} h \cdot x$) = 0, and hence $x - \operatorname{Ad} h \cdot x \in \mathfrak{n}^{\pm}$. This proves that N' is normal in G and therefore contained in $R_u(G)$. To prove equality, we show that G/N' is reductive. Replacing G by G/N' (which we can do in view of 5.19), we may assume that H is reductive and \mathfrak{B} is separable, and then have to show that G is reductive. Consider the canonical homomorphism $\kappa \colon G \to \operatorname{PG}(\mathfrak{B})^0$. Then by 6.4 and 5.15, $R_u(G) \subset \operatorname{Ker}(\kappa) \subset H$ which shows $R_u(G) = \{1\}$. This completes the proof.

- 6.10. COROLLARY. (a) \mathfrak{V} is separable if and only if the projective group G of \mathfrak{V} is semisimple.
 - (b) $\mathfrak{V} = \operatorname{Rad} \mathfrak{V}$ if and only if the "inner projective group" G_{in} is uni-

potent.

- 6.11. COROLLARY. Let $\mathfrak B$ be a Jordan pair over an algebraically closed field with non-zero radical. Then $\mathfrak B$ contains a nonzero trivial ideal, invariant under all automorphisms and antiautomorphisms of $\mathfrak B$.
- *Proof.* Let $G = \mathbf{PG}(\mathfrak{V})$. By 6.9, G_{in} is not semisimple. Let N be the last non-trivial term in the derived series of $R(G_{in})$, and let $N = N^- \cdot N_0 \cdot N^+$ as in 6.3. Then N^+ and N^- are not both equal to $\{1\}$. Otherwise, $N = N_0$ would be a normal subgroup of G contained in H and therefore $N_0 = \{1\}$. Then $(\mathfrak{n}^+,\mathfrak{n}^-)$ has the desired properties.

Remark. This results was used in [14] to prove the nilpotence of the radical of a Jordan triple system. A direct proof can now be found in [15].

6.12. Theorem. Let (G, ψ) be an elementary system over k and let K be an extension field of k. Then

$$G(K) = U^{+}(k) \cdot \Omega(K) = \Omega(K) \cdot U^{-}(k)$$
.

- Proof. (a) k infinite. Let \overline{K} be the algebraic closure of K, and let $\Omega^* = U^-(k) \cdot H(K) \cdot U^+(K)$. Then Ω^* is Zariski-dense in $G(\overline{K})$. Indeed, let $\pi \colon X \to G$ be as in 4.13. Then $\pi \colon X(\overline{K}) \to G(\overline{K})$ is surjective ([5, p. 291, 1.15]), and $\pi^{-1}(\Omega^*)$ contains $W(k) \times H(\overline{K}) \times \mathfrak{B}_{\overline{K}}^+$ (where $W \subset \mathfrak{B}_a^+ \times \mathfrak{B}_a^-$ is the subscheme of quasi-invertible pairs). Since k is infinite, W(k) is Zariski-dense in $\mathfrak{B}_R^+ \times \mathfrak{B}_{\overline{K}}^-$ and hence $\pi^{-1}(\Omega^*)$ is Zariski-dense in $X(\overline{K})$. It follows that Ω^* is Zariski-dense in $G(\overline{K})$. Now let $g \in G(K)$. Then $(g \cdot \Omega^*) \cap \Omega(\overline{K})$ is not empty since $\Omega(\overline{K})$ is Zariski-open in $G(\overline{K})$. Hence there exist $u \in U^-(k)$, $h \in H(\overline{K})$, $v \in U^+(\overline{K})$, $\omega \in \Omega(\overline{K})$ such that $guhv = \omega$. This implies $gu = \omega v^{-1}h^{-1} \in \Omega(\overline{K}) \cap G(K) = \Omega(K)$, and hence $g = (\omega v^{-1}h^1)u^{-1} \in \Omega(K) \cdot U^-(k)$. By passing to (G, ψ^{-1}) , we get the other equation.
- (b) k finite. Let us first assume that G is reductive and connected. Then by 6.8, P^+ and P^- are opposed parabolic subgroups of G, and by 6.9, \mathfrak{B} is separable. Choose a split torus S as in 6.7, and let S' be a maximal k-split torus of G containing S. Let P'^+ and P'^- be the opposed minimal parabolic subgroups of G defined by S'. Then $P'^{\sigma} \subset P'^{\sigma}$, and by [3, 6.25], $G(K) = P'^+(k) \cdot P'^-(K) \cdot P'^+(K) = P^+(k) \cdot P^-(K) \cdot P^+(K) = U^+(k) \cdot \Omega(K)$.

Now let G be arbitrary. We have $G = H \cdot U^+ \cdot U^- \cdot U^+ = H \cdot G_{in} = G_{in} \cdot H$, and the kernel of the homomorphism $G_{in} \times H \to G$ given by multiplication

is isomorphic with $H \cap G_{in} = H_{in}$ (4.12), in particular, it is connected. Hence if K is finite, $G(K) = G_{in}(K) \cdot H(K)$ by [5, p. 426, 7.6], and if K is infinite, this is still true by (a). Replacing G by G_{in} , we may therefore assume that G is smooth and connected. Let $G' = G/R_u(G)$ and let ψ' be the action induced by ψ on G'. Then G' is reductive, (G', ψ') is an elementary system, and the canonical map $\varphi:(G,\psi)\to(G',\psi')$ is a homomorphism (5.19). By 6.9, $R_u(G) = N^- \cdot R_u(H) \cdot N^+$, and $U'^{\sigma} = U^{\sigma}/N$ and H' $=H/R_u(H)$. Since $U^{\sigma} \to U'^{\sigma}$ is induced by the surjective linear maps \mathfrak{V}^{σ} $\to \mathfrak{B}^{\sigma}/\mathrm{Rad}\,(\mathfrak{V}^{\sigma})$, the maps $U^{\sigma}(k) \to U'^{\sigma}(k)$ and $U^{\sigma}(K) \to U'^{\sigma}(K)$ are surjective. Let now $g \in G(K)$. Then $\varphi(g) \in G'(K) = U'^+(k) \cdot \Omega'(K)$, by what we proved before. Hence there exist $u \in U^+(k)$, $v \in U^-(K)$, $w \in U(K)$ such that $\varphi(g)$ $\equiv \varphi(uvw) \text{ modulo } H'(K), \text{ in other words, } w^{-1}v^{-1}u^{-1}g \in \varphi^{-1}(H')(K). \text{ We have }$ $\varphi^{-1}(H') = N^- \cdot H \cdot N^+$. Indeed, since: $\varphi \colon H \to H'$ is an epimorphism, $\varphi^{-1}(H')$ $H \cdot R_u(G) = N^- \cdot H \cdot N^+$. It follows that $w^{-1}v^{-1}u^{-1}g = xyh$ where $x \in N^-(K)$, $h \in H(K)$, $y \in N^+(K)$, or g = uvwxhy. Since $N^-(K) = \exp(\operatorname{Rad}(\mathfrak{V}_K^-))$ it follows from 4.1 and 6.2 that $wx \in \Omega(K)$. Hence $g \in U^+(k) \cdot U^-(K) \cdot \Omega(K)$. $H(K) \cdot N^+(K) = U^+(k) \cdot \Omega(K)$. The second formula follows by passing to $(G, \psi^{-1}).$

6.13. COROLLARY. (Generators and relations for G(k)). Let k be infinite. Let Γ be an abstract group, and let $\varphi_0 \colon H(k) \to \Gamma$, $\varphi_{\pm} \colon U^{\pm}(k) \to \Gamma$ be homomorphisms. Then there exists a homomorphism $\varphi \colon G(k) \to \Gamma$ extending φ_0 and φ_+, φ_- if and only if

$$\varphi_0(h)\varphi_\sigma(u)\varphi_0(h)^{-1}=\varphi_\sigma(huh^{-1}),$$

$$(2) \qquad \varphi_{+}(\exp(x))\varphi_{-}(\exp(y)) = \varphi_{-}(\exp(y^{x}))\varphi_{0}(b(x,y))\varphi_{+}(\exp(x^{y})),$$

for all $h \in H(k)$, $u \in U^r(k)$, $(x, y) \in \mathfrak{B}^+ \times \mathfrak{B}^-$ quasi-invertible. Indeed, $G(k) = U^+(k) \cdot \Omega(k)$ by 6.12, and hence G(k) is the quotient of $\mathfrak{B}^+ \times \mathfrak{B}^- \times H(k) \times \mathfrak{B}^+$ by the equivalence relation given in 4.13. We can now copy the proof of 4.14, provided we show: for all $u, w \in U^-(k)$, $v \in U^+(k)$ there exists $x \in U^+(k)$ such that xu^{-1} and xvw are in $\Omega(k)$. In view of 4.1, this amounts to showing that for all $a, c \in \mathfrak{B}^-$, $b \in \mathfrak{B}^+$ there exists $z \in \mathfrak{B}^+$ such that (z, -a) and (z + b, c) are quasi-invertible. Since k is infinite, this is always possible.

6.14. As an application, we determine the relation with the group \mathcal{E} introduced by Koecher in [11]. Similar remarks apply to the groups studied in [12, 13]. Let \mathfrak{A} be a finite-dimensional quadratic Jordan algebra

with unit element e over an arbitrary field k, and let $\mathcal{E}(\mathfrak{A})$ be the group of birational transformations of \mathfrak{A} generated by the structure group $\operatorname{Str}(\mathfrak{A})$ and the maps $x\mapsto t_y(x)=x+y$ ($y\in\mathfrak{A}$) and $x\mapsto j(x)=-x^{-1}$. Let $\mathfrak{B}=(\mathfrak{A},\mathfrak{A})$ be the Jordan pair defined by \mathfrak{A} and $G=\operatorname{PG}(\mathfrak{A})$ the projective group of \mathfrak{B} . Thus $H=\operatorname{Aut}(\mathfrak{A})$. Then $\mathcal{E}(\mathfrak{A})$ is isomorphic with G(k). Indeed, let K be an infinite extension field of k, let $\varphi_0\colon H(K)=\operatorname{Aut}(\mathfrak{B}_K)\to \operatorname{Str}(\mathfrak{A}_K)$ be the isomorphism $(g,g^{\sharp-1})\mapsto g$ (cf. 2.6), and define $\varphi_{\sharp}\colon U^{\sharp}(K)\to \mathcal{E}(\mathfrak{A}_K)$ by $\varphi_+(\exp x)=t_x$ and $\varphi_-(\exp y)=j\circ t_y\circ j=\tilde{t}_y$. For $g\in\operatorname{Str}(\mathfrak{A}_K)$ we have $g\circ t_x\circ g^{-1}=t_{gx}$ and $j\circ g\circ j=g^{\sharp-1}$. This implies (1) of 6.13. For (2), we have to show that $t_x\circ \tilde{t}_y=\tilde{t}_{yx}\circ B(x,y)\circ t_{xy}$. Taking inverses, this is equivalent with $\tilde{t}_y\circ t_x=t_{xy}\circ B(x,y)^{-1}\circ \tilde{t}_{yx}$. Now $\tilde{t}_y(z)=(z^{-1}-y)^{-1}=z^y$ ([15, 3.13]), and hence

$$(\tilde{t}_y \circ t_x)(z) = (x+z)^y = x^y + B(x,y)^{-1} \cdot z^{(y^x)} = (t_{x^y} \circ B(x,y)^{-1} \circ \tilde{t}_{y^x})(z)$$
.

By 6.13, we have a homomorphism $\varphi \colon G(K) \to \mathcal{Z}(\mathfrak{A}_K)$ extending, φ_0 , φ_\pm which is surjective since $j = t_e \circ \tilde{t}_e \circ t_e$. Assume that $\varphi(\exp(x) \exp(y)h \cdot \exp(z)) = t_x \circ \tilde{t}_y \circ g \circ t_z = \operatorname{Id}$ (where $h = (g, g^{\sharp -1})$). Then $\tilde{t}_y \circ g = t_{-x-z}$, therefore $0 = \tilde{t}_y(0) = t_{-x-z} \circ g^{-1}(0) = -x - z$, hence $g^{-1} = \tilde{t}_y = j \circ t_y \circ j$, and $t_y = j \circ g^{-1} \circ j = g^{\sharp}$ which implies $0 = g^{\sharp}(0) = t_y(0) = y$. Thus $g = \operatorname{Id}_y(0) = 1$, and

$$\exp(x) \exp(y)h \cdot \exp(z) = \exp(x + z) = 1$$
.

This shows that φ is an isomorphism. By 6.12, $G(k) = U^+(k)U^-(k)H(k)U^+(k)$. It follows that φ maps G(k) isomorphically onto $\mathcal{E}(\mathfrak{A})$. Also we see that every element of $\mathcal{E}(\mathfrak{A})$ is of the form $g \circ t_x \circ j \circ t_y \circ j \circ t_z$ with $g \in \operatorname{Str}(\mathfrak{A})$, x, y, $z \in \mathfrak{A}$. This was proved by Koecher in case k is infinite and of charcteristic $\neq 2$.

Added in proof. In the paper O. Loos, Homogeneous algebraic varieties defined by Jordan pairs. Mh. Math. 86 (1978), 107-127, some of the results of § 6 are extended to the case of an arbitrary base ring.

BIBLIOGRAPHY

- [1] S. Anantharaman, Schémas en groupes, espaces homogènes, et espaces algébriques sur une base de dimension 1. Bull. Soc. Math. France, Meroire 33 (1973), 5-79.
- [2] A. Borel, Linear algebraic groups. W.A. Benjamin, New York-Amsterdam 1969.
- [3] A. Borel and J. Tits, Groupes réductifs. Publ. Math. IHES No. 27 (1965), 55-150.
- [4] —, Homomorphismes "abstraits" de groupes algébriques simples. Ann. of Math. 97 (1973), 499-571.
- [5] M. Demazure and P. Gabriel, Groupes algébriques. Masson, Paris 1970.

- [6] J. Faulkner, Octonion planes defined by quadratic Jordan algebras. Memoirs Amer. Math. Soc. No. 104, 1970.
- [7] A. Grothendieck and M. Demazure, Schémas en groupes. Springer Lecture notes 151-153, 1970. (Referred to as SGA3)
- [8] A. Grothendieck and J. Dieudonné, Eléments de géometrie algébrique. Publ. Math. IHES 1960-.... (Referred to as EGA)
- [9] S. Helgason, Differential Geometry and Symmetric Spaces. Academic Press, 1962.
- [10] M. Koecher, Imbedding of Jordan algebras into Lie algebras I, II. Amer. J. Math. 89 (1967), 787-816, and 90 (1968), 476-510.
- [11] —, Über eine Gruppe von rationalen Abbildungen. Inv. Math. 3 (1967), 136-171.
- [12] —, Gruppen und Lie-Algebren von rationalen Funktionen. Math. Z. 109 (1969), 349-392.
- [13] —, An elementary approach to bounded symmetric domains. Lecture notes, Rice University, Houston 1969.
- [14] O. Loos, Representations of Jordan triples. Trans. Amer. Math. Soc. 185 (1973), 199-211.
- [15] —, Jordan pairs. Springer Lecture notes No. 460, 1975.
- [16] —, Jordan pairs and bounded symmetric domains. Lecture notes, University of California, Irvine 1977.
- [17] K. Meyberg, Jordan-Tripelsysteme und die Koecher-Konstruktion von Lie-Algebren. Math. Z. 115 (1970), 58-78.
- [18] H. P. Petersson, Zur Arithmetik der Jordan-Paare. Math. Z. 147 (1976), 139-161.
- [19] N. Roby, Lois polynomes et lois formelles en theorie des modules. Ann. Scient. Ecole Norm. Sup. 3° serie, t. 80 (1963), 213-348.
- [20] T. A. Springer, Jordan algebras and algebraic groups. Springer Verlag 1973.
- [21] J. Tits, Une classe d'algèbres de Lie en relation avec les algèbres de Jordan. Proc. Kon. Akad. Wet. Amst. 65 (1962), 530-535.

Department of Mathematics University of British Columbia

Current address: Institut für Mathematik Universität Innsbruck Innsbruck, Austria