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i. CONVOLUTION—MIXED DISTRIBUTIONS

Consider a risk process which is characterised by three stochastic
variables

(1) the number of accidents, N,
(2) the number of claims per accident, C, and
(3) the amount of a claim, X.

Let y be a random variable denoting the total loss in a given period.
Suppose that

pn = Prob (N = n) n = 0, 1, 2. . . .

and

vc = Prob (C = c I an accident has occurred) c = 1, 2, 3. . . .

If Pr represents the probability that exactly r claims occur in the
period, then Kupper [4] has shown on certain simplifying assump-
tions that

Pr = ^ Pn KH (I)

where v*n, the probabilit)' of exactly r claims in n accidents, is given
by

r - 1

iorr ^ n, n = i, 2, 3. . . .

and v*n

Further

and v;°

r - 1

= S
t - n - 1

= 0

= vr

= I

= 0

C

for

" ^ 'V-c

r < n

for r = 0

for r f̂e 0
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60 CONVOLUTION-MIXED DISTRIBUTIONS

Suppose that

F(x) = Prob (Y < x)
and S(x) = Prob {X < x)

The total loss can be expressed on certain simplifying assumptions
by the well known formula

F(x) = i Pr S*r(x) (2)
r - 0

where S*'(*), the r111 convolution of the distribution function S(x),
is given by

S*r{x) = J Sm<r'l){x — z)dS(z) for r = 1,2,3

S*x{x) = °S(x)
S*°{x) = i for x > o
S*°{x) = o for x < o

Combining equations (i) and (2) together we obtain

r - 0 1 1 - 0

« no

= 2 X ft, T£" 5*r(A;)

if we interchange the order of summation

Auxiliary Functions Associated with Probability Distributions
There are several useful auxiliary functions associated with a

distribution function F(x) of the random variable Y (see [3])
(1) Probability generating function

GY(z) = EY(zx) = J zx dF(x) (z real, positive)

(2) Moment generating function

My{u) = EY(eux ) = J eux dF(x) (u real)

(3) Characteristic function

4Y(t) = EY(eitx) = J eitx dF(x) (t real)

(4) Cumulant generating function

KY(U) = lOg My {ft)
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Provided the various integrals exist we can change from one auxi-
iary function to another by the transformations

u — it = log z

For instance GY(eu) = MY{u)

and KY(il) = log MY(it)

= log 4>r(t)

The Application of Generating Functions to Convolution—Mixed-
Distributions

We depend heavily on the following well-known (see [3])

Lemma

If Xi, A'2. . . . Xn are independent and identically distributed
random variables

and Z = A'i + X2 + + X,,

then Gz(u) = [Gx(tt)}»

Now from equation (3) we have

Gy(z) = S I pn v'r
n S'r{x) z*pn v'n S'r{

n - 0 r - 0

n - 0 r-0

= £ s
n - 0 r - 0

Thyrion [5] has introduced a very wide class of distributions, the
distributions in a bunch (m — 2), and in a bunch of bunches {m > 2),
defined by generating functions in the following general form

Gy(z) = G^Gs, . . . . Gm.x{Gm{z)) ....)) m > 2

where Ĝ fc) are probability generating functions of integer valued
variables,;' = 1 to (m — 1), andG^z) is any probability generating
function.
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A special case where the Gj, j = i to m are all identical, occurs
in the theory of branching processes, where Y is the size of the wth

generation. The principal result of this paper is contained in the
following theorem, which is a generalisation of a known result in
the theory of branching processes (see [2]).

Theorem

If

then

Proof

Let u
then MY(u)

so that /^y(«)

Gr(z) = GN(Gc(Gx(z)))

KY(n) = A^(/^C(/^(M)))

= log z
= GY[Z)
= Gw(Gc(G^(z)))

= GN(GC(*« "*<«>))
= Gw(Afc(/^(«)))
= G ( e ' o g M t ^A-(«))\

= MN(Kc{Kx{u)))
= KN(Kc(Kx(u))) as required

(4)

This theorem can obviously be extended to include the distribu-
tions, a bunch of bunches. By differentiating the cumulant genera-
ting function and setting u = 0 we can obtain the cumulants of a
distribution. Using an obvious notation we can derive the following
relationships between the cumulants of a low order from equation

(4)-
: xi,

+

+
• +

+

IV X > C
2

JV X 1 C

3
W X 1 C

4
IV X 1 C

4X2N
4X2jV

X1JV ^

3XIJV

X1A'
2 .

3 i

, X 3

4 _|_

x3c xlc
2

X 1C X 3J
4

X 2 C X 2J

X1JV

3X2J
+ 3;

6x3A

4

+ 6:

x 2 C >

t xie
K 1 J V X

, x 2 C

• + 3
: + 3
K1N X

x1 A, y

2

X 2 C

2 C x

X 1 C
X2W

3 C x

i X1A' x i c
3 _|_ _

2AT X1AT +

4x + 6X

x2 ' x4 4
X 1 C X2A'

2 _|_

•4Y

, x 2 X

'2.^ X 1 C X 2 X X 1 X
x l i V X 1 C X3AT

«3 v. v.2

3jv x i c X2A: X IA '- iox2A7 x 2 c x l c x2

4xijv X2c X3x X I J

(5)
(6)

(7)

A' X1A'

(8)
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These formulae, given in equations (5)-(8) can be used in the normal
power expansion [1]

F(x) = <b{y)

where <D(y) is the cumulative Normal distribution and

)

x2

(9)

In particular if the number of accidents, N, has a Poisson distribu-
tion with expected value W, where X is a constant, then the cumu-
lants

It follows that

v.jY = o(Z) for all ; > 0

which is all that is required to establish the validity of the asymp-
totic expansion (9) for large values of t.
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