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1. CONVOLUTION—MIXED DISTRIBUTIONS

Consider a risk process which is characterised by three stochastic
variables

(1) the number of accidents, N,
(z) the number of claims per accident, C, and
(3) the amount of a claim, X.

Let Y be a random variable denoting the total loss in a given period.
Suppose that

pn = Prob(N =n) n=o0,1I,2...
and
ve = Prob (C =c¢| anaccidenthasoccurred) ¢ =1, 2, 3....

If P, represents the probability that exactly r claims occur in the
period, then Kupper [4] has shown on certain simplifying assump-
tions that

P= X p,u" (x)

r r
=9

where ;" the probability of exactly r claims in n accidents, is given
by

r=1
-, *(n-1)
nt= X v, U _

; forr zmn, n=1,2,3....

[4
cwn-1

andy;®» =0 forr<mn

Further

[ 34 —_

uyt = v,

3’ =1 for r =0
and 9;° = o for » #0
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60 CONVOLUTION-MIXED DISTRIBUTIONS

Suppose that
F(x) = Prob (Y < x)
and S(x) = Prob (X < x)
The total loss can be éxpressed on certain simplifying assumptions
by the well known formula

Fix) = £ P, S(x) (2)

where S* (x), the "% convolution of the distribution function S(x),
is given by
S'(x) = f S*r-D(x — 2)dS(z) forr=1,2,3...
S"(x) = S(v)
Sy =1 forx>0
S = o0 forx<o
Combining equations (1) and (2) together we obtain

"=0

Fr) = £ £ p, 4" S"(x)

= X X p,9"S"W

N ) r=0

if we interchange the order of summation

Auxiliary Functions Associated with Probability Distributions

There are several useful auxiliary functions associated with a
distribution function F(x} of the random variable Y (see [3])

(1) Probability generating function

Gylz) = Ey(27) = f 2% dF (x) (z real, positive)

(2) Moment generating function
My() = Ey(c" ) = [ €% dF(x) (u real)

(3) Characteristic function

by(t) = Ey(e) = | &= dF(x) (¢ real)

(4) Cumulant generating function
Ky() = log My(u)
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Provided the various integrals exist we can change from one auxi-
iary function to another by the transformations

u =il = log z

For instance  Gy(e*) = My{n)
and Ky(ut) = log My(u)
= log ¢y (1)
The Application of Gemerating Functions to Convolution—>Mixed
Distributions

We depend heavily on the following well-known (sec {3])
Lemma

If X1, Xz2....X, are independent and identically distributed
random variables

and Z=X1+X2+ ..... +X"
then G, (u) =[Gy ()]

Now from equation (3) we have

GY(Z) = i i f)n v;n s‘r(x) Z®

—_ he )
=X z f)n Uy GX.+X,+....X£"

n=0 re0

= I p, o (Gl

o

=X Dy GC,+C;+....+C,. (GX(Z))

n=0

=3 $, [GolGx())]

= Gy(Ge(Cx(2)

Thyrion (5] has introduced a very wide class of distributions, the
distributions in a bunch (m = 2), and in a bunch of bunches (m > 2),
defined by generating functions in the following general form

Gy(2) = Gy(Ga(Gs, - . - . Gy 1 (G(2) - - - 1)) m >z
where G,(z) are probability generating functions of integer valued
variables, / = 1 to (m — 1), and G,,(2) is any probability generating
function.

https://doi.org/10.1017/50515036100011387 Published online by Cambridge University Press


https://doi.org/10.1017/S0515036100011387

62 CONVOLUTION-MIXED DISTRIBUTIONS

A special case where the Gy, j = 1 to m are all identical, occurs
in the theory of branching processes, where Y is the size of the mth
generation. The principal result of this paper is contained in the
following theorem, which is a generalisation of a known result in
the theory of branching processes (see [2]).

Theorem
If Gy(z) = Gp(Ge(Gx(2)
then Ky(n) = Ky(Ko(K (1) (4)
Proof
Let u=log z
then My(u) = Gy(2)

= GN( C(G

= Gyn(Go(M ( )))

= Gy(Gless ste)

= Gy(Mc(Kx(u)))

— GN(elog M, (K,\-(u)))

= My(Kq(Kx(u))

so that Ky(u) = Ky(Ko(Kx(u))) as required

This theorem can obviously be extended to include the distribu-
tions, a bunch of bunches. By differentiating the cumulant genera-
ting function and setting u = o we can obtain the cumulants of a
distribution. Using an obvious notation we can derive the following
relationships between the cumulants of a low order from equation

(4)-
X1y = Xy ¥ic ¥ix (5)
. 2 2 2 6
%oy = gy %1¢ ¥ix Tt Xy %ac Mix + %N g Xex (6)
3 .3 3
A3y = Xgy Xi10 ¥1x T 3%an X1 X2¢ ¥ix T 3%y %10 X2x *ax
3
+ %1y X3¢ ¥1x T 3%y %20 Xex Xix T Ky o Xax (7)

_ 4 4 2 4 3 2
)'.4Y = X4N X]_C XIX + 6K3N ch ch M;X 'i' 6K3N ch X2X XIA' .
4
+ 4xay Aao Mo Xax + Ixey Yoo Xix T I8ay Xap Xyg Hay Xax
2 2 2
T ey e ¥ax Yax T Py X Xex
4
S T xu; + 6%y ®ag Xex X1 x + 4% N *a¢ Yax ¥ax
+ 3%y %ec ¥2x T Yuy ¥ic Kay (8)
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These formulae, given in equations (5)-(8) can be used in the normal
power expansion [1]

F(z) = ©(y)
where @(y) is the cumulative Normal distribution and
X — KIY an 2
——— e + ————— — 1
(sz)”z Y 6("2)')312 v )
2
X, X3Y
+ - - (2y® — 4 ...
ety T g (2 —5) (9)

In particular if the number of accidents, N, has a Poisson distribu-
tion with expected value M, where 2 is a constant, then the cumu-
lants

wyy =M for all j> o

It follows that
%y = off) for all j> o

which is all that is required to establish the validity of the asymp-
totic expansion (9) for large values of ¢.
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