SIMPLE ALGEBRAS OVER RATIONAL FUNCTION FIELDS

T. NYMAN AND G. WHAPLES

The well-known Hasse-Brauer-Noether theorem states that a simple algebra with center a number field k splits over k (i.e., is a full matrix algebra) if and only if it splits over the completion of k at every rank one valuation of k. It is natural to ask whether this principle can be extended to a broader class of fields. In particular, we prove here the following extension.

Theorem. Let k be any field, $K=k(t)$ a rational function field in one variable over k, and A a central simple algebra over K. A necessary and sufficient condition for A to split over K is that it split locally, at the completion of K, for every valuation of K which is trivial on k.

Using the language of [2], we call a K-prime ($=$ an equivalence class of valuations of K) a K / k-prime if the valuations are trivial on k. If p is a K-prime, we denote the completion of K at \mathfrak{p} by $K_{\mathfrak{p}}$ and say that a simple algebra A with center K splits locally at \mathfrak{p} if $A \otimes_{K} K_{\mathfrak{p}} \sim 1$. Thus we wish to prove $A \sim 1$ if and only if $A \otimes_{K} K_{\mathfrak{p}} \sim 1$ for all K / k-primes \mathfrak{p}.

The necessity of the local splitting is obvious. When K has characteristic 0 , the sufficiency follows at once from results of [4] and when char $k=p$ and k has no inseparable extension, it follows from Proposition 4.1 of [3]. The remaining case seems new and its proof follows. (Case 1 of our proof also gives a short proof for the cases handled in [3] and [4].)

Let k be any field of characteristic $p \neq 0$ having inseparable extensions and let A be a counterexample to the theorem: namely, a central simple algebra over $K=k(t)$ which is not a full matrix algebra but $A \otimes_{K} K_{\mathfrak{p}} \sim 1$ for every K / k-prime \mathfrak{p}. From [7] it follows that there exist finite degree constant field extensions of K (extensions $L_{0}(t)$ with L_{0} / k finite algebraic) which split A.

Case 1. A is split by a separable constant field extension. By a standard argument using Sylow groups (see Theorem 4.30 of [1]) it follows that there exists a counter-example $B=(C / F, \sigma, b)$ which is a cyclic algebra of prime degree with $C=\mathrm{C}_{0}(t), F=F_{0}(t), b \in F$ and C_{0} / F_{0} cyclic, such that B splits at all F / F_{0}-primes but is not ~ 1. Then b is a local norm at every C / C_{0}-prime, so the principal F-divisor (b) is the norm of some degree zero C-divisor. Since C has genus 0 over C_{0}, every degree zero C-divisor is principal, hence there is a $\Gamma \in C$ with $\left|b N_{C / F}(\Gamma)\right|_{\mathfrak{p}}=1$ for every F / F_{0}-prime \mathfrak{p}. Thus $b^{\prime}=b N_{C / F}(\Gamma)$ is in the field of constants F_{0} of F, and $B=\left(C / F, \sigma, b^{\prime}\right)$ since b and b^{\prime} differ by a norm. We can now write $B=B_{0} \otimes_{F_{0}} F_{0}(t)$ where $B_{0}=\left(C_{0} / F_{0}, \sigma, b^{\prime}\right)$ is a

[^0]cyclic algebra of prime index over F_{0}. If B_{0} is a division algebra then B cannot split locally at any degree one F / F_{0}-prime. Indeed, suppose p is such a prime and π is a prime element at \mathfrak{p}. Then since $F_{\mathfrak{p}}=F_{0}\langle\pi\rangle$, the field of formal power series in π over F_{0}, we have $B \otimes_{F} F_{\mathfrak{p}}=\left(B_{0} \otimes_{F_{0}} F\right) \otimes_{F} F_{\mathfrak{p}}=B_{0} \otimes_{F_{0}} F_{0}\langle\pi\rangle$. But if B_{0} is a division algebra, $B_{0} \otimes_{F_{0}} F_{0}\langle\pi\rangle$ is just the field of formal power series in π with coefficients in B_{0} and is also a division algebra. This contradicts the local splitting of B at all F / F_{0}-primes. So this case is impossible.

Case 2. A is not split by any separable constant field extension. If $k^{s . a}$. is a separable algebraic closure of k, then it is easily seen that $A \otimes_{K} k^{s . a .}(t)$ is still a counterexample. So we can and shall assume k has no separable algebraic extension. Then A has a splitting field $L=L_{0}(t)$ with L_{0} / k pure inseparable. Since we can get from k to L_{0} by a chain of pure inseparable extensions of degree p it follows that we have a counterexample $A \otimes_{K} L^{\prime}$ which is split by an inseparable constant field extension $L^{\prime \prime}$ of degree p over L^{\prime} where $L^{\prime}=L_{0}{ }^{\prime}(t)$.

Now change notation: let D be the division algebra in the Brauer class over L^{\prime} containing $A \otimes_{K} L^{\prime}$ and write k, K and $K\left(s^{1 / p}\right)$ in place of $L_{0}{ }^{\prime}, L^{\prime}$ and $L^{\prime \prime}$ respectively. Then D is a counterexample of index p with center $K=k(t)$ and a splitting field $K\left(s^{1 / p}\right)$ with $s \in k$. By [1, Lemma 7.10 and Theorem 4.17] D is a cyclic algebra $(s, \lambda]$ for some $\lambda \in K$ where we use the following notation: if K is any field of characteristic $p \neq 0$ and $s, \lambda \in K$ with $s \neq 0$, then $(s, \lambda]$ denotes the algebra generated over K by the linearly independent elements $u^{i} v^{j}, 0 \leqq i, j<p$, with relations

$$
\begin{equation*}
u^{p}-u=\lambda, v u=(u+1) v, v^{p}=s \tag{1}
\end{equation*}
$$

It is well-known [8] that the algebra $(s, \lambda]$ as constructed is a central simple algebra over K and that it is ~ 1 if and only if either the equation $x^{p}-x-$ $\lambda=0$ has a solution in K or if s is a norm from $K(u)$ to K. This describes for fixed λ the values of s making $(s, \lambda] \sim 1$. The following lemma describes for fixed s the values of λ making $(s, \lambda] \sim 1$. This lemma is due to N. Jacobson (see [5] and Remark 1) but we include here an elementary proof.

Lemma. Let K be any field of characteristic $p \neq 0$ and $s, \lambda \in K$ with $s \neq 0$. Then $(s, \lambda] \sim 1$ if and only if there are elements $a_{0}, a_{1}, \ldots, a_{p-1} \in K$ with

$$
\begin{equation*}
\lambda=\left(a_{0}^{p}-a_{0}\right)+a_{1}^{p} s+a_{2}^{p} s^{2}+\ldots+a_{p-1}^{p} s^{p-1} \tag{2}
\end{equation*}
$$

Proof. Suppose $(s, \lambda] \sim\left(s, \lambda^{\prime}\right] \sim 1$. Then the $p \times p$ total matrix algebra (s, λ] generated over K by u, v satisfying (1) contains elements u^{\prime} and v^{\prime} satisfying the relations got by substituting $u^{\prime}, v^{\prime}, \lambda^{\prime}$ for u, v, λ in (1). The elements v and v^{\prime} are $p \times p$ matrices with minimum polynomial $=$ characteristic polynomial $=x^{p}-s$, i.e., v and v^{\prime} are non-derogatory matrices. Thus an inner automorphism of the matrix algebra transforms v^{\prime} into v, so we can assume $v=v^{\prime}$. Then the relations $v u=u v+v$ and $v u^{\prime}=u^{\prime} v+v$ imply that $u^{\prime}-u$
commutes with v. Since v is non-derogatory this implies that $u^{\prime}-u$ can be written as a polynomial in v :
(3) $u^{\prime}=u+a_{0}+a_{1} v+a_{2} v^{2}+\ldots+a_{p-1} v^{p-1}$
for $a_{i} \in K$.
We wish to compute the minimum polynomial of u^{\prime}. To do so consider the matrices
(4) $\quad U=\left[\begin{array}{lllllll}\Lambda & & & & & \\ & \Lambda-1 & & & & \\ & & \Lambda-2 & & & \\ & & & \cdot & & \\ & & & & \cdot & \\ & & & & & \Lambda-p+1\end{array}\right]$,

$$
V=\left[\begin{array}{ccccccc}
0 & 0 & . & . & . & 0 & s \\
1 & 0 & . & . & . & 0 & 0 \\
0 & 1 & . & . & . & 0 & 0 \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
. & . & . & . & . & . & . \\
0 & 0 & . & . & . & 1 & 0
\end{array}\right],
$$

where Λ is an element of an algebraic extension of K with $\Lambda^{p}-\Lambda=\lambda$. One easily checks that U and V satisfy (1). Expanding by minors along the top row we find the determinant of $U+a V-x I$ is

$$
\begin{aligned}
& (\Lambda-x)(\Lambda-x-1) \ldots(\Lambda-x-p+1)+(-1)^{p-1} a^{p} S \\
& =(\Lambda-x)^{p}-(\Lambda-x)+a^{p} S=\lambda+a^{p} S-\left(x^{p}-x\right)
\end{aligned}
$$

Using the Artin-Schreier symbol $\wp(Y)=Y^{p}-Y$, we have with $x=u^{\prime}=$ $u+a v$:
(5) If u, v satisfy (1), then $\wp(u+u v)=\lambda+a^{p} s$.

Let i, j be integers with $0<i<p$ and $i \cdot j \equiv 1(\bmod p)$. If u, v satisfy (1), then $u^{\prime}=j u$ and $v^{\prime}=v^{i}$ satisfy the relations got from (1) by substituting $\lambda^{\prime}=j \lambda$ for λ and $s^{\prime}=s^{i}$ for s. So u^{\prime}, v^{\prime} generate $\left(s^{i}, j \lambda\right] \sim(s, \lambda]$ (for the rules used here see $[8])$. As in the preceding paragraph we have $\wp\left(j u+b v^{i}\right)=$ $j \lambda+b^{p} s^{i}$. So multiplying by i and setting $a=i b$ we get for $x=u+a v^{i}$:
(6) If u, v satisfy (1) and $0<i<p$, then $\wp\left(u+a v^{i}\right)=\wp(u)+a^{p} s^{i}$.

By repeatedly using (6) we can add the terms $a_{i} v^{i}$ to u one at a time to get

$$
\wp\left(u^{\prime}\right)=\lambda+\wp\left(a_{0}\right)+a_{1}^{p} s+a_{2}{ }^{p} s^{2}+\ldots+a_{p-1}{ }^{p} S^{p-1}
$$

as the characteristic polynomial for the u^{\prime} of (3). It is clear that this polynomial
of degree p has p distinct roots in the algebraic closure of K. This means the $p \times p$ matrix u^{\prime} has p distinct eigenvalues implying its characteristic polynomial coincides with its minimum polynomial. So we have found the minimum polynomial of u^{\prime} as desired.

Now suppose u and v satisfy (1) with $\wp(u)=\lambda=0$. Then we have

$$
\lambda^{\prime}=\wp\left(u^{\prime}\right)=\wp\left(u+a_{0}+a_{1} v+\ldots+a_{p-1} v^{p-1}\right)
$$

and this is given by (2). Thus ($\left.s, \lambda^{\prime}\right] \sim 1$ implies λ^{\prime} is given by (2).
For the reverse implication we note that $\left(s, a^{p} s^{i}\right] \sim 1$ and $(s, \wp(a)] \sim 1$ for all $a \in K$. Then for all $s, \lambda, a_{i} \in K, s \neq 0$,

$$
\begin{equation*}
(s, \lambda] \sim\left(s, \lambda+\mathscr{P}\left(a_{0}\right)+a_{1}^{p} s+\ldots+a_{p-1}{ }^{p} s^{p-1}\right] \tag{7}
\end{equation*}
$$

So if λ is given as in (2), $(s, \lambda] \sim(s, 0] \sim 1$ completing the proof of the lemma. Note that if $s \in K^{p}$, then the first two terms of (2) already represent all elements of K.

Returning to the proof of the theorem, suppose we have a counterexample (s, λ] with center $K=k(t)$ where k has no separable extensions. Represent λ as a sum of partial fractions in the usual way. Namely, λ is a sum of a term $\lambda_{p(\infty)} \in k[t]$ and finitely many terms $\lambda_{\mathfrak{p}}$ whose denominator is a power of the monic irreducible polynomial corresponding to the K / k-prime p and whose numerator is an element of $k[t]$ of degree less than the degree of the denominator. Thus $\left|\lambda_{\mathfrak{p}}\right|_{\mathfrak{q}} \leqq 1$ whenever $\mathfrak{p} \neq \mathfrak{q}$. Then $(s, \lambda]$ is similar to the product of the algebras $\left(s, \lambda_{\mathfrak{p}}\right]$ for the finitely many primes with $\lambda_{\mathfrak{p}} \neq 0$. Let $\mathfrak{p} \neq \mathfrak{q}$. Then λ_{q} is integral at \mathfrak{p} and the residue class field at \mathfrak{p} has no separable extension because it is finite algebraic over k. Hence $\lambda_{q}=\wp(a)+b$ with $|b|_{\mathfrak{p}}<1$; since $b \in \wp\left(K_{\mathfrak{p}}\right)$ whenever $|b|_{\mathfrak{p}}<1$, it follows that $\left(s, \lambda_{q}\right] \sim 1$ at \mathfrak{p}. Therefore $\left(s, \lambda_{p}\right] \sim(s, \lambda] \sim 1$ at \mathfrak{p}. So if $(s, \lambda]$ is a counterexample, then $\left(s, \lambda_{p}\right]$ is a counterexample for at least one \mathfrak{p}.

Choose one such \mathfrak{p}. By the lemma,

$$
\lambda_{p}=\wp\left(a_{0}\right)+a_{1}^{p} S+\ldots+a_{p-1}{ }^{p} S^{p-1}
$$

for some set of $a_{i} \in K_{\mathfrak{p}}$. Since K is a rational function field we can use partial fractions again to find elements $b_{i} \in K$ with $\left|b_{i}-a_{i}\right|_{\mathfrak{p}} \leqq 1$ and $\left|b_{i}\right|_{\mathfrak{q}} \leqq 1$ for all $\mathfrak{q} \neq \mathfrak{p}$. By $(7),\left(s, \lambda_{\mathfrak{p}}\right] \sim\left(s, \lambda^{\prime}\right]$ where

$$
\lambda^{\prime}=\lambda_{p}-\wp\left(b_{0}\right)-b_{1}{ }^{p}{ }_{s}-\ldots-b_{p-1}{ }^{p} \mathcal{S}^{p-1} .
$$

By construction $\left|\lambda^{\prime}\right| \leqq 1$ for every K / k-prime \mathfrak{q}, so $\lambda^{\prime} \in k$. But, since k has no separable extension, $\wp(k)=k$ and thus $\lambda^{\prime} \in \wp(k)$. But then $\left(s, \lambda^{\prime}\right] \sim 1$ which is a contradiction and completes the proof of the theorem.

We have, of course, the following immediate corollary.
Corollary. If C is a cyclic extension of $k(t)$ then an element of $k(t)$ is a norm from C if and only if it is a local norm at all primes of $k(t)$ which are trivial on k.

Remark 1. The lemma was proved by N. Jacobson in 1937 modulo a minor change in notation. Let $\{c, d\}$ denote the algebra generated over K by w, z, with relations $w^{p}=c, z^{p}=d$, and $z w-w z=1$. If u, v generate $(s, \lambda]$ as in (1), then $v^{-1}, u v$ generate $\left\{s^{-1}, \lambda s\right\}:$ i.e., $(s, \lambda] \sim\left\{s^{-1}, \lambda s\right\}$. In ([5], p. 670), Nathan Jacobson proved our lemma for the algebras $\{c, d\}$ as a special case of more general results.

Remark 2. From our proof we see that when k has inseparable extensions it is easy to construct algebras $(s, \lambda]$ which are locally ~ 1 at all K / k-primes except one.

Remark 3. In general a field $K=k(t)$ will have many valuations which are not trivial on k, since any valuation of k has at least one extension to a valuation of K. See [6].

References

1. A. A. Albert, Structure of algebras (A.M.S. Colloquium Publication XXIV, New York, 1939).
2. E. Artin, Algebraic numbers and algebraic functions (New York University and Princeton University, 1951; Gordon and Breach, 1967).
3. M. Auslander and A. Brumer, Brauer groups of discrete valuation rings, Indag. Math. 30 (1968), 286-296.
4. D. K. Faddeev, Simple algebras over a field of algebraic functions of one variable, Trudy Mat. Inst. Steklov 38 (1951), 321-344, A.M.S. Translat. Ser. II 3 (1956), 15-38.
5. Nathan Jacobson, p-Algebras of exponent p, Bull. A.M.S. 43 (1937), 667-670.
6. T. Nyman and G. Whaples, Hasse's principle for simple algebras over function fields of curves. I. Algebras of index 2 and 3; curves of genus 0 and 1, J. reine angew. Math. 299/300 (1978), 396-405.
7. C. C. Tsen, Divisionalgebren uber Funktionenkorpern, Gott. Nachr. (1933), 335-339.
8. E. Witt, Der Existenzsatz fur abelsche Funktionenkorper, J. reine angew. Math. 173 (1935), 43-51.

University of Wisconsin Center-Fox Valley, Menasha, Wisconsin;
University of Massachusetts,
Amherst, Massachusetts

[^0]: Received January 20, 1978 and in revised form October 10, 1978.

