
Can. J. Math., Vol. XXIX, No. 3, 1977, pp. 615-625 

HOMOMORPHISMS FROM S(X) INTO S(Y) 

K E N N E T H D. MAGILL, JR. 

1. Introduction. S(X) is the semigroup under composition of all continuous 
selfmaps of the topological space X. For certain spaces X and Y we classify 
completely the homomorphisms from S(X) into S(Y). An application of the 
main result to S(I) the semigroup of all continuous selfmaps of the closed unit 
interval I results in the solution of a problem which was suggested in the 
closing paragraph of [6]. We noted there the existence of at least two different 
types of endomorphisms of S (I). To get one of the first type, simply send every 
element of S (I) into a single idempotent. To get one of the second, choose any 
nonconstant idempotent v of S (I) and any homeomorphism h from / onto the 
range of v and define <p(f) = h of o h~1 o v for each / in S (I). We concluded 
the paper [6] by remarking that we didn't know if these exhausted the possibili­
ties for the endomorphisms of S (I). We now know and they do. That is, given 
any endomorphism ç of S (I), either <p sends every element of S (I) into a single 
idempotent or it is injective and there exists a unique idempotent v of S (I) and 
a unique homeomorphism h from / onto the range of v such that <p(f) = 
h of o h~l o v for each/ in S{X). In addition to this, we describe a moderately 
extensive class of spaces containing all Euclidean iV-cells with the property 
that if X is any space from this class, the existence of a nonconstant homo-
morphism from S(X) into S (I) forces X to be an arc. The main results are in 
Section 3. Section 2 is devoted to some topological preliminaries and in 
Section 4, we discuss some facets of the endomorphism semigroup of S(X) in 
general and S (I) in particular. Some concluding remarks, further problems 
and specific conjectures are discussed in Section 5. 

2. Topological preliminaries. By a retract of a topological space X, we 
mean simply the range of an idempotent continuous selfmap of the space, and 
the range of any function/will be denoted by Ran/ . 

Definition (2.1). A topological space X is said to be concordant if it satisfies 
the following condition: Let Ĵ ~ be any infinite family of distinct continuous 
selfmaps of X and suppose that some retract V is properly contained in Ran / 
for each / in Ĵ ~. Then the ranges of at least two distinct functions in JF~ also 
intersect outside of V. 

Each finite space is trivially a concordant space and as the next result shows, 
these are the only possibilities for disconnected concordant spaces. Its proof 
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and the proof of the proposition which follows it are both straightforward and 
will be omitted. 

PROPOSITION (2.2). An infinite concordant space is connected. 

PROPOSITION (2.3). If X is concordant and Y is a retract of X, then Y is 
concordant. 

Recall that a Peano continuum is any compact connected locally connected 
metric space or equivalently, any Hausdorff space which is the continuous 
image of an arc. We characterize those Peano continua which are concordant 
but before wre state the result, it is convenient to have the following. 

Definition (2.4). A collection {Aa : a £ A J of arcs in a topological space X is 
said to be retractably contiguous if there exists a retract V of the space such 
that V C\ Aa is an endpoint of Aa for each a £ A and for any two distinct 
arcs Aa and A$ of the collection, Aa C\ A$ is either empty or consists of one 
point and in the latter case that point also belongs to V. 

PROPOSITION (2.5). A Peano continuum is concordant if and only if each 
retractably contiguous collections of arcs is finite. 

Proof. Let X be any Peano continuum which is not concordant. Then there 
exists an infinite family jF" of distinct continuous self maps of X and a retract 
V of X such that V is properly contained in R a n / for each/ in£F and R a n / C\ 
Ran g C V for each pair of functions / and g from J r . Now take any / £ &~. 
Since Ran / is arcwise connected and V is properly contained in Ran / , there 
exists an arc Af C R a n / such that AfC\ F is one of the endpoints of the arc. 
Since Ran / C\ Ran g C V for dist inct/ and g, it readily follows that if Af P\ 
Aç ^ 0 then it consists of a point which lies in V. Consequently, {Af : f £ Ĵ ~} 
is a retractably contiguous collection of arcs which is infinite. 

Suppose, conversely, that X contains an infinite retractably contiguous 
family {Aa : a £ A} of arcs and denote the associated retract by V. It follows 
easily that V \J Aa is a Peano continuum and hence is the continuous image of 
X under some map/ a . Then V C Ran/ a for each a £ A. However the ranges of 
no two of the functions intersect outside of V so that X is not concordant. 

Now let us recall that a Peano continuum is a dendrite [9, p. 88] if it contains 
no simple closed curves. By the component number of a subcontinuum V of X 
we mean the number (perhaps infinite) of components of X — V. 

COROLLARY (2.6). A dendrite is concordant if and only if the component 
number of every subcontinuum is finite. 

Proof. Suppose X is a concordant dendrite and let V be any subcontinuum 
of X. Then V itself is a dendrite and hence is a retract of X (of course it is 
really much more, it is an absolute retract). Let {Ba : a £ A} denote the 
components of X — V. One easily verifies the existence of an arc Aa Q BaVJ V 
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such that Aa C\ V is an endpoint of Aa. Consequently, {Aa : a £ A} is a 
retractably contiguous collection of arcs which, by Theorem (2.3) must be 
finite. Thus X — V has only finitely many components. 

Conversely, suppose that the component number of each subcontinuum of X 
is finite and let {Aa : a £ A} be a retractably contiguous family of arcs with 
associated retract V. Let Ba be the component of X — V which contains 
Aa — V. Of course there are only finitely many Ba but what we really need 
to show is that there are only finitely many Aa. To do this, we need only show 
that if Aa and Ap are distinct, then so are Ba and Bp. Indeed, suppose that 
Ba and Bp coincide while Aa and Ap do not. Then, in fact, Aa and Ap have at 
most one point in common. Choose a point a Ç Aa — (Ap VJ V) and a point 
b Ç Ap — (Aa VJ V). Since Ba = Bp is arcwise connected and contains both 
a and b, there is an arc Hi C Ba with a and b as endpoints. On the other hand, 
Aa\J V VJ Ap is also arcwise connected so that there is an arc H2 C Aa U 
F W i , 3 which also has endpoints a and b. Now # 1 H F = 0 while if2 H F ^ 0. 
That is there are two different arcs joining a to b and this is a contradiction 
[9, p. 89]. Thus, Ba ^ Bp whenever Aa ^ Ap and the proof is complete. 

Now we recall the definition of a spray which was introduced in [5, p. 150]. 

Definition (2.7). A topological space X is a spray if it is Hausdorff, connected, 
first countable and, in addition, satisfies the following three conditions: 

(2.7.1) A discrete subspace can be at most countable. 

(2.7.2) Each nondegenerate connected subset has nonempty interior. 

(2.7.3) Let {A5 : ô £ A} be any uncountable collection of retracts of X such 
that each has more than one point. Then there is at least one whose 
boundary intersects the interior (with respect to X) of another. 

When we prove, in the next section, our main result about homomorphisms 
from S(X) into 5 ( F ) , the space F will be a concordant spray so it is appropriate 
to discuss these spaces somewhat further. For any positive integer TV, let IN 

denote the space formed by taking N copies of the closed unit interval and 
identifying all the left endpoints. Let JN denote the space formed by taking N 
copies of the half-open interval and identifying the endpoints and finally, 
form CN by joining N copies of the unit circle together at a single point. It was 
shown in Proposition (3.3) of [5, p. 152] that all of these spaces are sprays. 
Since both 7^ and CN are Peano continua, it follows from Proposition (2.5) 
that they are concordant. Since IN is, in fact a dendrite, it also follows from 
Corollary (2.6) that IN is concordant. One shows directly from the definition 
that JN is concordant. Thus, IN, JN and CN are all examples of concordant 
sprays. 

Just one more definition and we will be able to proceed to the next section 
and prove our main result. 
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Definition (2.8). A topological space X is said to be clonable if it is a first 
countable compact Hausdorff space and, in addition, satisfies the following 
two conditions: 

(2.8.1) Each continuous map from a closed subset of X into X can be 
extended to a continuous function which maps X into X. 

(2.8.2) Every nonempty open subset of X contains a copy of X. 

One easily verifies that all Euclidean iV-cells are clonable and that the 
Cantor discontinuum is also clonable. 

3. The homomorphism theorem. We are now in a position to prove the 
main result of the paper. In it, we completely determine the homomorphisms 
from S{X) the semi-group of all continuous self maps of X into the semigroup 
S{Y) whenever X is clonable and F is a concordant spray. 

THEOREM (3.1). Let X be any clonable space, let Y be any concordant spray 
and let <p be a homomorphism from S(X) into S(Y). Then either <p maps every­
thing into one single idempotent of S(Y) or <p is infective. If <p is infective and, in 
addition, X is not totally disconnected then there exists a unique idempotent v of 
S(Y) and a unique homeomorphism h from X onto the range V of v such that 
<?(/) = h of oh~l ovfor eachfinS{X). 

Proof. Suppose <p does not map everything into one single element of 5 ( F ) . 
We prove that <p is injective by assuming the contrary and deriving a contra­
diction. Let p be any point of X and let (p) denote the constant function which 
maps everything into the point p. Then <p((p)) is some idempotent element v 
of 5 ( F ) . We shall verify that 

(3.1.1) <p((x)) = v for each x £ X. 

Since <p is not injective, there exist distinct elements/ and g of S(X) such that 
<£>(/) = <p(g)- Now f 7* g implies f(a) ^ g{a) for some a £ X. By condition 
(2.8.1), there exists a continuous self map h of X such that h(f(a)) = x and 
h(g(ci)) = p. Thus h of o (a) = (x) and h o g o (a) = (p) and we get 

*>«*» = <p(h of o (a)) = <p(h) o <p(f) o <p((a)) 

= tp(h) o <p(g) o <p((a)) = <p(hogo (a)) = <p((p)) = v. 

This verifies (3.1.1). Now suppose/ is any element of S(X). We use (3.1.1) 
and get 

V O <p(f) = <p((p)) O <p(f) = <p((p) O / ) = <p((p)) = V 

and 

<p(f)ov = <p(f)o<p((p)) = <p(fo(p)) = <p((f(p))) =v. 

That is, 

(3.1.2) v is a two-sided zero for <p[S(X)]. 
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Hereafter, we will denote Ran v by V and we next show that 

(3.1.3) V C Ran g for each g G <p[S(X)], and 

V = Ran g if and only if v = g. 

Since g o v = v> it follows that F C Ran g. Now suppose that V — Ran g. 
Since y is idempotent, it is the identity on its range. We use this fact and 
(3.1.2) to get 

g(y) = v(g(y)) = vog(y) = v(y) 

for any y £ F. This verifies (3.1.3). 
Next we construct two families of functions in S(X). Since (p is nonconstant 

and X is a clonable space, it cannot be finite. In addition, X is Hausdorff, so 
it contains a countably infinite family {Gn}n=i of mutually disjoint nonempty 
open subsets. Since each nonempty open subset of X contains a copy of X, 
there exists a hameomorphism fn from X into Gn for each positive integer n. 
For each n, define a function gn with domain Ran /n U [X — Gn] by 

&»(*) =/n_ 1(^) forx G Ran/ n 

gn(*) = P tor x £ X - Gn. 

Then by condition (2.8.1) gn can be continuously extended to a function 
kn e S(X). Note that 

(3.1.4) knofn = ix, the identity on X, and 

kmofn= (p) whenever m ^ n. 

Next we want to show that 

(3.1.5) <p(fn) 7
e <p(fm) whenever n ^ m. 

Let a be the congruence on S(X) which is induced by <p. That is, (/, g) Ç o-
if and only if #>(/) = <p(g). Now o- is a proper congruence since <p does not 
map everything into a single element. According to Theorem (1.6) in Chapter 
6 of [7, p. 262], there is a largest proper congruence 12 on S(X) and it is defined 
by (/» g) G Œ if a n d only if anytime one of the functions is injective on a sub-
space which is homeomorphic to X, the other function is also injective there 
and, in fact, the two functions coincide there. It is immediate that (fn,fm) $ Œ 
whenever n ^ m and since a C &, this means that (fm fm) Q a whenever 
n 9e m. In other words (3.1.5) is valid. Furthermore, it is also immediate that 
((p), fn) $ ^ for each n and hence that ((p),fn) $ <?> Thus 

(3.1.6) <p(fn) ^ v for each n. 

In view of (3.1.3), (3.1.5) and (3.1.6), {<p(fn)}u=i is an infinite family of 
distinct functions in S(Y) whose ranges all properly contain the retract V. 
Thus, since Y is concordant, the ranges of at least two of those functions 
intersect outside of V. We can take these two functions to be <p(fi) and yifi) 
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and we have 

q G Ran p ( / 0 H Ran p(/2) H [X - F]. 

Then ç>(/i)(ri) = q for some rx G Y and (p(f2)(r2) = q for some r2 G F. We 
use (3.1.4) and we get 

v(ri) = <p(p)(ri) = *>(g2o/i)(ri) = ^(g2)(^(/ i)(n)) = <p(g2)(q) 

= <p(g2)(<p(f2)(r2) = <p(g2of2)(r2) = <?fc)(>2). 

That is, 

(3.1.7) »(n) = *>(**) fa) 

and we will soon see that here is where the contradiction arises. Specifically, 
flfa) belongs to V but we will show that <pfar)fa) does not. We observe that 

<p(f2)(<p(ix)(r2)) = v(f2oix)(r2) = p ( / 2 ) fa ) = g 

which does not belong to V. To show that (3.1.7) is contradictory we need 
only show that ip(f2) maps points of V into V. Suppose z G V. Then we use 
(3.1.2) and the fact that v is the identity on V to get 

<P(/2)(Z) = <p(f2)(v(z)) = <p(f2) Ov(z) = V(z) = Z. 

Thus, (3.1.7) is, indeed, a contradiction and we conclude that <p is injective. 
Next, we assume that X is not totally disconnected and we verify that there 

exists a unique idempotent continuous selfmap v of Y and a unique homeo-
morphism h from X onto the range of v such that <p(f) = h of o /r"1 o z; for 
each / in S(X). But all this follows from the Main Theorem of [5, p. 149]. 
One easily verifies that condition (2.8.1) implies that X is strongly conformable 
(Definition (2.4), [5, p. 149]) and that Conditions (2.8.1) and (2.8.2) together 
imply that X is quasi-homogeneous (Definition (2.6), [5, p. 149]). Conse­
quently, the Main Theorem of [5, p. 149] applies and the proof of the present 
result is complete. 

If, in the previous theorem, we take Y to be either the closed unit interval 
or the space of real numbers, we can relax one of the conditions on X. 

THEOREM (3.2). let X be any clonable space, let Y be either the closed unit 
interval I or the space R of real numbers and let <p be a homomorphism from S(X) 
into S(Y). Then either <p maps everything into one single idempotent or ç is 
injective in which case there exists a unique idempotent v of S{Y) and a unique 
homeomorphism h from X onto the range of v such that <p(f) = h o / o h~l o v 
for each fin S (X). 

Proof. Suppose that <p does not map everything into a single idempotent. 
Then X must have more than one point and since it is clonable, it must then 
be infinite. Assume X is totally disconnected. Then X = A VJ B \J C where 
A, B and C are mutually disjoint, nonempty subsets which are simultaneously 
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both open and closed. Choose a £ A, b £ B, c Ç C and define/ in S(X) by 

f(x) = b for x G A 

f(x) = c for x G 5 

/(#) = a for x G C. 

Then {/, /2 , /3} is a subgroup of S(X) of order three. Since <p is nonconstant, 
Theorem (3.1) assures us that it is then injective. But then 5 ( F ) would have 
to have a subgroup of order three and this would contradict Theorem (5.6) of 
[3, p. 145]. Consequently, X is not totally disconnected and the conclusion now 
follows from Theorem (3.1). 

COROLLARY (3.3). Suppose that X is a clonable space and that there exists a 
nonconstant homomorphism <p from S(X) into S (I). Then <p is injective and X 
is an arc. 

Proof. The conclusion follows from Theorem (3.2) and the fact that the 
range of any nonconstant idempotent of S (I) is an arc. 

COROLLARY (3.4). Suppose that X is a clonable space and that there exists a 
nonconstant homomorphism ç from S(X) into S(R). Then <p is injective and X 
is an arc. 

Proof. It follows immediately from Theorem (3.2) that <p is injective and 
X is homeomorphic to a subinterval of R. Since X is clonable and every 
clonable space is compact, this means that X must be an arc. 

4. The endomorphism semigroup of S(X). In this section we associate 
with each semigroup 5 with identity, another semigroup EC(S) which we call 
the endocore of S. We show that there is a natural homomorphism y\ from EC(S) 
into End 5 the endomorphism semigroup of S. For a large number of semi­
groups, the homomorphism t] is injective and in the case of 5(7), it is actually 
an isomorphism onto the endomorphism semigroup of S (I). 

We define the endocore of S. Let SA = {(a, b) G 5 X 5 : ba = e) where e 
is the identity of S and let SE denote the collection of all idempotents of 5. 
Let EC(S) = SA\J SE and define a binary operation on EC(S) by 

(a, b)(c, d) = (ac, db) for (a, b), (c, d) G SA; 

(a, b)v = avb for (a, b) G SA and v G SE\ 

v{a, b) = v for (a, b) G SA and v G SE; 

vw = v for v,w^ SE. 

ECÇS) with the binary operation just defined is a semigroup and is the semi­
group we have already referred to as the endocore of 5. Note that SASE C SE. 
In fact, SE is precisely the set of left zeros of EC(S). 

Now we define a map rj from EC(S) into End 5 by 

rj(a, b)(x) = axb for all (a, b) G SA and x G 5; 
7](v) (x) = v for all v G SE and x £ S. 
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It is a routine matter to verify that 77 is a homomorphism from EC(S) into 
End 5 and we omit the proof. This is the map we mean when we speak of the 
natural or the canonical homomorphism from EC(S) into End 5. 

Definition (4.1). We say that the collection of left zeros of a semigroup 5 
distinguishes elements il a, b £ S and a 9£ b implies az 9^ bz for some left zero z 
of 5. 

PROPOSITION (4.2). Let S be any semigroup with identity whose collection of 
left zeros distinguishes elements. Then the canonical homomorphism from EC(S) 
into End 5 is infective. 

Proof. The conclusion is immediate if S has only one element so we assume 
card S > 1. The map 77 is certainly injective on SE. To show that 77 (a, b) 9^ rj(v) 
for any (a, b) £ SA and v 6 SE, we need only show that 77 (a, b) is nonconstant. 
In fact, 77 (a, b) is injective, for suppose 77 (a, b) (c) = 77 (a, b) (d). Then acb = adb 
and since ba = e, this implies that c = d. It remains for us to show that 77 is 
injective on SA. Suppose (a, b) 9^ (c, d). Assume first that a = c. Then b 7e d 
and we have 

77 (a, b){e) = aeb = ab 

7](c, d)(e) = ced = ad. 

If a& = ad, then & = bob = frad = d which is a contradiction. Thus 77 (a, ô) ^ 
77 (c, d) in this particular case. Now we consider the case where a 9^ c. Since 
the left zeros of S distinguish elements, we have az 9^ cz for some left zero z of 
5. Then 

77 (a, b){z) — azb = az 9^ cz = czd = 77 (c, d)(z) 

and we see that 77(a, b) ^ rj(c, d) in this case also. 

COROLLARY (4.3). Let X be any topological space whatsoever. Then the canoni­
cal homomorphism from EC(S(X)) into End S(X) is injective. 

Proof. Suppose / , g Ç S(X) and f 7e g. Then f(x) ^ g(x) for some x £ X 
which implies/ o (x) 9^ g o (x) where (x) is the constant function which maps 
everything into the point x. Thus, the left zeros of S(X) distinguish the 
elements of S(X) and the previous result applies. 

The latter corollary tells us that in some sense the endomorphism semigroup 
of S(X) is at least as large as the endocore of S(X). The next result tells us 
that for S (I) the two are in fact isomorphic. 

PROPOSITION (4.4). The canonical homomorphism from EC(S(I)) into End 
S (I) is actually an isomorphism onto End S (I). 

Proof. In view of the Corollary (4.3), we need only show that 77 is surjective. 
Let (p be any endomorphism of S (I). According to Theorem (3.2), there are 
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two possibilities: 

(4.4.1) <p(f) = v for a l l / Ç S (I) where v is some idempotent of S (I). 

(4.4.2) <p(f) = h of o Â-1 o v for a l l / 6 S (I) where v is some idempotent of 
S (I) and A is a homeomorphism from I onto the range of v. 

In the first case, rj maps z; onto <p while in the second it maps (h, hrl o v) onto p. 
This completes the proof. 

For any semigroup 5 with identity and more than one element, EC(S) is 
the disjoint union of the two subsemigroups SA and SE. The algebraic structure 
of SE is not interesting as it is just a left zero semigroup regardless of the semi­
group S. The semigroup SA however can be interesting and we look at it more 
closely in the case S = S (I). Now S(I)A is just the collection of all pairs (&, k) 
of continuous selfmaps h and k of I such that k o h is the identity map on / , 
with multiplication defined by 

(k, h) (r, t) = (fe o r, t o h). 

Suppose we let J denote the subsemigroup of S (I) consisting of all injective 
elements and 5/* the subsemigroup of surjective elements which map some 
subinterval onto I. One easily sees that the mapping which sends (k, h) into k 
is a homomorphism from S(I)A onto J' while the mapping which sends (k, h) 
into h is an antihomomorphism from S(I)A onto y . The semigroup J has 
been studied in some detail by L. M. Gluskin in [1] and [2] and some of his 
results can be applied in conjunction with some other results to immediately 
yield results about S(I)A and hence also about EC(S(I)). Item [2] is an 
English translation of [1] and specific references will be to [2]. Now we verify 
the following 

PROPOSITION (4.5). The semigroup J can be embedded into S(I)A and hence 
into End S (I), the endomorphism semigroup of S (I). 

Proof. Let h be any element of J. Then h maps / injectively onto some 
subinterval [a, v]. Define k(x) = h~l{%) for x G [a, b]. Then either k(a) = 0 or 
k(a) = 1. In the former case, extend k by defining k(x) = 0 for 0 ^ x ^ a 
and k(x) = 1 for b ^ x ^ 1 and in the latter case, extend k by defining k(x) = 
1 for 0 ^ x ^ a and k(x) = 0 for b S x ^ 1. Then k o h = id and hence 
(h, k) belongs to S(I)A. One can then verify that the mapping which sends h 
into (h, k) is an isomorphism from J into S(I)A. 

COROLLARY (4.6). End S (I) contains a subsemigroup with a continuum of 
elements that has no nontrivial homomorphic images and in addition has the 
property that each element of the subsemigroup generates a subsemigroup which is 
isomorphic to the semigroup of natural numbers under addition. 

Proof. This is an immediate consequence of Proposition (4.5) and Theorem 
(3.1) of [2, p. 280]. 
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5. A few closing remarks. The endomorphism semigroup of S (I) is com­
pletely determined in Proposition (4.4). The result follows quite easily from 
Theorem (3.2) and the crucial point is that I happens to be a clonable space 
for Theorem (3.2) does not otherwise apply. Note that R is not a clonable 
space and indeed the canonical homomorphism (which by Corollary (4.3) in 
injective) from EC(S(R)) into End S(R) turns out not to be surjective. In fact 
a stronger statement is true. The endocore of S(R) and the endomorphism 
semigroup of S(R) are definitely not isomorphic. Let us first look at S(R)A. 
A pair (h, k) belongs to S(R)A if and only if k o h = iR the identity map on R. 
But this means that both h and k are homeomorphisms mapping R onto R 
and that k = hrl. One readily verifies that S(R)A is isomorphic to the homeo-
morphism group of R. Therefore, S(R)A is a group and S(R)E is, of course, a 
left zero semigroup. It follows that the only idempotent element of EC(S(R)) 
which is not a left zero is the identity of that semigroup. So in order to show 
that EC(S(R)) is not isomorphic to End S(R), it is quite sufficient to produce 
an idempotent in End S(R) which is neither the identity nor a left zero. This is 
not at all difficult to do. Choose any constant function (x) in S(R) and define 
<£>(/) = ÎR if / is a homeomorphism mapping R onto R and <p(f) = (x) other­
wise. Then (p Ç End S(R) is certainly idempotent but it is not the identity. 
Nor is it a left zero since cp o a 9^ <p for any a which maps everything into a 
single idempotent. One may consult [6, pp. 350-352] for other examples 
of nonconstant endomorphisms of S(R) whose ranges are nevertheless finite. 

Further problems immediately suggest themselves. One is to determine, in 
some sense, the endomorphisms of S(R) and more generally of S(RN) where 
RN denotes the Euclidean iV-space. Although we have completely determined 
the endomorphisms of S (I), there still remains the problem of determining the 
endomorphisms of S(IN) where IN is the Euclidean iV-cell. We conclude with 
the following. 

CONJECTURE. Let <p be a nonconstant endomorphism of S(IN). Then <p(f) = 
h of o h~l o v for each f G S(IN) where v is an idempotent of S(IN) and h is a 
homeomorphism from IN onto the range of v. 

If the conjecture is true, it would then follow that EC{S{IN)) and End S(IN) 
are isomorphic. 
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