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Abstract

We introduce the notion of refined unramified cohomology of algebraic schemes and
prove comparison theorems that identify some of these groups with cycle groups. This
generalizes to cycles of arbitrary codimension previous results of Bloch–Ogus, Colliot-
Thélène–Voisin, Kahn, Voisin, and Ma. We combine our approach with the Bloch–Kato
conjecture, proven by Voevodsky, to show that on a smooth complex projective variety,
any homologically trivial torsion cycle with trivial Abel–Jacobi invariant has coniveau 1.
This establishes a torsion version of a conjecture of Jannsen originally formulated ⊗Q.
We further show that the group of homologically trivial torsion cycles modulo algebraic
equivalence has a finite filtration (by coniveau) such that the graded quotients are
determined by higher Abel–Jacobi invariants that we construct. This may be seen as
a variant for torsion cycles modulo algebraic equivalence of a conjecture of Green. We
also prove �-adic analogues of these results over any field k which contains all �-power
roots of unity.
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1. Introduction

Unramified cohomology of a smooth variety may be defined as the subgroup of the cohomol-
ogy of the generic point given by all classes that have trivial residues at all codimension-one
points, see [BO74] and [Col95, 4.1.1(a)]. Bloch and Ogus [BO74] showed that unramified coho-
mology in degree three is related to the Griffiths group of codimension-two cycles. Colliot-Thélène
and Voisin [CV12] computed the failure of the integral Hodge conjecture for codimension-
two cycles on smooth complex projective varieties in terms of unramified cohomology in
degree three; a similar statement holds for the integral Tate conjecture by Kahn [Kah12].
A relation between torsion codimension-three cycles with unramified cohomology in degree four
is due to Voisin [Voi12] and Ma [Ma17].

The results in [CV12, Kah12, Voi12, Ma17] use two main ingredients: the Gersten conjecture
proven by Bloch and Ogus [BO74], which identifies unramified cohomology of smooth varieties
with the global sections of a certain Zariski sheaf, and the Bloch–Kato conjecture, proven in
[MS83, Voe11].

This paper arose from the observation that the aforementioned results from [CV12,
Kah12] have more elementary proofs, not relying on the Gersten conjecture, nor on the
Bloch–Kato conjecture, see § 3 for more details. This leads us to the notion of refined unramified
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cohomology, which generalizes unramified cohomology. Our arguments work for cycles of arbi-
trary codimensions, over arbitrary fields, and even on singular schemes, see Theorems 1.6
and 1.8.

Our main results on algebraic torsion cycles that we explain next combine the machinery of
refined unramified cohomology with the Bloch–Kato conjecture [Voe11].

1.1 Torsion cycles and Abel–Jacobi invariants
A cycle z ∈ CHi(X) on a complex variety X has coniveau j, i.e. z ∈ N j CHi(X), if z is homolog-
ically trivial on a closed subset of codimension j. That is, z ∈ N j if z = ∂γ is the boundary
of a locally finite singular chain γ whose support is contained in a closed algebraic subset
of codimension j in X. This yields a finite descending filtration with N0 = CHi(X)hom and
N i−1 = CHi(X)alg, the subgroups of homologically and algebraically trivial cycles, respectively,
cf. [Blo85] and [Tot97, p. 491, Remark 2].

Jannsen showed that on smooth complex projective varieties, Nj CHi(X) := N i−j CHi(X) is
a filtration by adequate equivalence relations, see [Jan00, Theorem 5.6] (stated ⊗Q, but the
same arguments work integrally). In particular, N∗ interpolates naturally between algebraic and
homological equivalence, respectively, and it is multiplicative in a strong sense: N j CHi(X) ·
CHh(X) ⊂ N j+h CHi+h(X).

Theorem 1.1. Let X be a smooth projective variety over C and let i � 2. A homologically
trivial torsion cycle z ∈ CHi(X)tors has coniveau 1 if and only if Griffiths’ Abel–Jacobi invariant
λ(z) ∈ H2i−1(X,Q/Z) admits a lift to N1H2i−1(X,Q).

This theorem uses the fact that the torsion subgroup of Griffiths’ intermediate Jacobian
J2i−1(X) identifies canonically to the image of H2i−1(X,Q) in H2i−1(X,Q/Z), cf. [Blo79, p. 116].
The subgroup N1H2i−1(X,Q) ⊂ H2i−1(X,Q) consists of those classes that vanish away from a
divisor.

The case i = 2 may be deduced from [MS83, § 18]; the case i � 3 is new. Torsion cycles to
which the theorem applies are constructed, e.g., in [Tot97, SV05, Sch20].

Corollary 1.2. Let X be a smooth projective variety over C. Then for any positive integer n,
the n-torsion subgroup of CHi(X)tors/N

1 CHi(X)tors is finite.

We illustrate the above corollary in the case of cycles of codimension three. In this case
the coniveau filtration is of the form N2 ⊂ N1 ⊂ N0 ⊂ CH3(X). The above corollary shows that
the n-torsion in CH3(X) is finite modulo N1. In contrast, it is shown in [Sch00, RS10, Tot16]
that the n-torsion in N2 CH3(X) can be infinite (the torsion classes constructed there are all
algebraically trivial, hence contained in N2). Similarly, using the theory developed in this paper,
we show in [Sch20] that at least for n even, the n-torsion in CH3(X)tors/N

2 is in general infinite.
It follows that CH3(X)tors/N

0 and N0 CH3(X)tors/N
1 are the only graded pieces of CH3(X)tors

whose torsion is always finite. In this sense, Corollary 1.2 is optimal for i = 3. We also note that
CHi(X)/N1 CHi(X) is for i = 2 in general not a finitely generated group, see [Cle83, Voi00] (it
is conceivable that the same holds all i � 2).

Another immediate consequence of Theorem 1.1 is as follows.

Corollary 1.3. Let X be a smooth projective variety over C. A homologically trivial torsion
cycle z ∈ CHi(X)tors with trivial Abel–Jacobi invariant has coniveau 1.

Corollary 1.3 proves a torsion analogue of a conjecture of Jannsen (going back to a question
of Esnault) who writes in [Jan00, p. 227, (5)] that ‘cycles in the kernel of the Abel–Jacobi map
should be homologous to zero on a divisor, at least modulo torsion’. Jannsen showed that his

1468

https://doi.org/10.1112/S0010437X23007236 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007236


Refined unramified cohomology of schemes

conjecture follows from deep motivic conjectures: the existence of a Bloch–Beilinson filtration
F ∗ (see, e.g., [Jan00, § 2.1]) together with the standard conjecture B imply F j ⊂ N j−1 at least
rationally, see [Jan00, p. 226, (4)]. Jannsen’s conjecture generalizes a conjecture of Nori [Nor93],
which predicts that the transcendental Abel–Jacobi map on codimension-two cycles modulo
algebraic equivalence is injective, see [Tot97, p. 468].

Nowadays, essentially all deep conjectures in the theory of algebraic cycles on smooth com-
plex projective varieties are formulated rationally. For instance, Hodge originally formulated his
famous conjecture integrally, but when Atiyah and Hirzebruch showed that it fails for torsion
cycles [AH62], it became clear that one should phrase it rationally. Nonetheless, investigating
instances where the Hodge conjecture may hold integrally remained an active field of research,
see, e.g., [Voi06, CV12, BW20, Per22]. Similarly, it is natural to investigate to which extent
other cycle conjectures may hold integrally, or on torsion cycles, see, e.g., [Tot97, § 8]. In view
of the many torsion counterexamples to the integral Hodge conjecture (see, e.g., [AH62, Tot97,
SV05, BO20]), it may be surprising that the integral Jannsen conjecture holds by Corollary 1.3
unconditionally on torsion cycles.

The proof of Theorem 1.1 uses a homological interpretation of the transcendental Abel–Jacobi
invariant on torsion cycles that does not require the smoothness assumption on X. The main
point of this observation is that it allows for 0 � j � i− 2 to define higher Abel–Jacobi invariants,

λ
i
j,tr : N j CHi(X)tors −→ J

i
j,tr(X)tors,

by applying suitable Abel–Jacobi mappings on closed subschemes of X. Here,

J
i
j,tr(X)tors := lim−→

Z⊂X

HBM
2d−2i+1(Zan,Q/Z)/N1HBM

2d−2i+1(Zan,Q),

where d := dimX, Z ⊂ X runs through all closed subschemes with j = dimX − dimZ and N∗

denotes Grothendieck’s coniveau filtration on the respective Borel–Moore homology group.

Theorem 1.4. Let X be a separated scheme of finite type over C. Then for all 0 � j � i− 2,
we have

N j+1 CHi(X)tors = ker
(
λ

i
j,tr : N j CHi(X)tors → J

i
j,tr(X)tors

)
.

As N i−1 CHi(X) = CHi(X)alg is divisible, this theorem implies that the torsion subgroup of
Ai(X) := CHi(X)/ ∼alg admits a finite filtration (by coniveau) such that the graded pieces are
determined by higher Abel–Jacobi invariants. This should be compared to Green’s conjecture
[Gre98, Voi99], which predicts that rational Chow groups of smooth complex projective varieties
carry a finite filtration (expected to be the Bloch–Beilinson filtration) such that the graded
quotients are determined by higher Abel–Jacobi invariants.

Theorem 1.4 admits the following �-adic analogue, concerning the �-power torsion subgroup
CHi(X)[�∞] of CHi(X) := CHdim X−i(X).

Theorem 1.5. Let X be a separated scheme of finite type over a field k and let � be a prime
invertible in k. Assume that k contains all �-power roots of unity. Then for all 0 � j � i− 2, we
have

N j+1 CHi(X)[�∞] = ker
(
λ

i
j,tr : N j CHi(X)[�∞]→ J

i
j,tr(X)[�∞]

)
.

The coniveau filtration on CHi(X)[�∞] as well as the (higher) Abel–Jacobi invariants are
defined analogues to the case of complex schemes above, where we replace ordinary Borel–Moore
homology by its �-adic pro-étale analogue [BS15], see Proposition 6.6 and Definition 7.29.
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Theorem 1.5 proves analogues of Theorems 1.1 and 1.4 over any field k that contains all
�-power roots of unity. This includes in particular an �∞-torsion version of Jannsen’s conjecture
over any field that contains all �-power roots of unity, such as (function fields over) algebraically
closed fields.

1.2 Refined unramified cohomology and algebraic cycles
Let X be a separated scheme of finite type over a field k. We consider the increasing filtration

F0X ⊂ F1X ⊂ · · · ⊂ Fdim XX = X, where FjX := {x ∈ X | codim(x) � j},

and codim(x) := dimX − dim({x}). Each FjX may be seen as a pro-object in the category
of schemes. For a given (co-)homology functor H i(−, A(n)) that admits pullbacks along open
immersions of schemes of the same dimension, the (co-)homology of FjX is defined as direct
limit over all open subsets U ⊂ X with FjX ⊂ U . We then define the associated jth refined
unramified cohomology by

H i
j,nr(X,A(n)) := im(H i(Fj+1X,A(n))→ H i(FjX,A(n))). (1.1)

The Gysin sequence (see (1.4)) shows that the case j = 0 corresponds to classical unramified
cohomology.

1.2.1 Complex schemes. Now let k = C. For an abelian group A, let

H i(X,A(n)) := HBM
2dX−i(Xan, A(dX − n)), (1.2)

where HBM∗ denotes Borel–Moore homology of the underlying analytic space Xan and A(m) =
A⊗Z (2πi)mZ denotes the mth Tate twist. Restriction maps as required previously exist in this
setting and so we get refined unramified cohomology groups H i

j,nr(X,A(n)).
By [Ful98, § 19.1], there is a cycle class map

cliX : CHi(X) −→ H2i(X,Z(i)),

where CHi(X) := CHdX−i(X). We let Griffi(X) := ker(cliX)/ ∼alg.
If X is smooth and equi-dimensional, then HBM

2dX−i(Xan, A) � H i
sing(Xan, A) and the above

map agrees with the usual cycle class map in singular cohomology.

Theorem 1.6. Let X be a separated scheme of finite type over C and define refined unramified
cohomology as in (1.1) with cohomology theory in (1.2).

(i) There are canonical isomorphisms

coker(cliX)tors �
H2i−1

i−2,nr(X,Q/Z(i))

H2i−1
i−2,nr(X,Q(i))

, Griffi(X) �
H2i−1

i−2,nr(X,Z(i))
H2i−1(X,Z(i))

.

(ii) There is a transcendental Abel–Jacobi map

λi
tr : Griffi(X)tors −→

H2i−1(X,Q/Z(i))
N i−1H2i−1(X,Q(i))

.

If X is a smooth projective variety, this agrees with Griffiths’ transcendental Abel–Jacobi
map [Gri69] restricted to torsion cycles. Its kernel is isomorphic to

ker(λi
tr) � H2i−2

i−3,nr(X,Q/Z(i))/GiH2i−2
i−3,nr(X,Q/Z(i))

and its image is given by im(λi
tr) = N i−1H2i−1(X,Q/Z(i))div/N

i−1H2i−1(X,Q(i)).
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In this theorem, N∗ denotes Grothendieck’s coniveau filtration and H∗(X,Q/Z(i))div ⊂
H∗(X,Q/Z(i)) denotes the divisible subgroup. Moreover, GiH2i−2

i−3,nr(X,Q/Z(i)) denotes the sub-
space of H2i−2

i−3,nr(X,Q/Z(i)) generated by classes that admit a lift α ∈ H2i−2(Fi−2X,Q/Z(i))
whose image δ(α) ∈ H2i−1(Fi−2X,Z(i)) via the Bockstein map lifts to H2i−1(X,Z(i)),
cf. Definition 5.4 and Lemma 7.18.

The theorem contains the aforementioned results from [BO74, CV12, Voi12, Ma17] as the
special case where i = 2 in item (i) and i = 3 in item (ii), and where X is a smooth projective
variety. Item (i) uses Hilbert theorem 90, but not the Bloch–Kato conjecture. Item (ii) uses the
Bloch–Kato conjecture in degree two, proven by Merkurjev and Suslin, but not in higher degrees.

Item (i) in Theorem 1.6 leads to new results on the integral Hodge conjecture for uniruled
varieties. Indeed, Voisin [Voi06] proved that the integral Hodge conjecture holds for smooth
complex projective threefolds X that are uniruled (i.e. Z∗(X)tors = 0) and conjectured that it
should fail for codimension-two cycles on rationally connected varieties of dimension at least
four. This has later been proven in [CV12] (dimX � 6) and in full generality in [Sch19]. Taking
products X × Pn with Pn, the examples in [CV12, Sch19] also yield counterexamples to the
integral Hodge conjecture on unirational varieties for cycles of codimension greater than two.
However, in some sense these non-algebraic Hodge classes should still be regarded as degree-four
classes, because they are Gysin pushforwards of non-algebraic degree-four Hodge classes on a
subvariety of X × Pn (namely X × {pt.}).

The tools of this paper allow us to go further by studying the integral Hodge conjecture for
Hodge classes (of arbitrary degree) in the following strong sense.

Corollary 1.7. For any integer i � 2, there is a smooth uniruled complex projective variety
X such that the integral Hodge conjecture fails for codimension-i cycles on X in a way that
cannot be explained by the failure on proper subvarieties of X in the following sense: there is
a class α ∈ coker(cliX)tors such that for any closed subscheme Z ⊂ X of codimension j � 1, the
class α is not in the image of the natural map coker(cli−j

Z )tors → coker(cliX)tors.

In this corollary we may take X = Y × E, where Y is a certain unirational variety of dimen-
sion 3i and E is an elliptic curve, see Theorem 10.6. The problem of finding a unirational variety
X with the property stated in the corollary remains open for i � 3.

1.2.2 Arbitrary ground fields. Theorem 1.6 admits an �-adic analogue over any field k in
which � is invertible. The corresponding (co-)homology functor will be the �-adic pro-étale
Borel–Moore cohomology, see [BS15] and Proposition 6.6. For instance,

H i(X,Z�(n)) := H i−2dX (Xproét, π
!
X Ẑ�(n− dX)), (1.3)

where πX : X → Spec k is the structure map and dX = dimX. We construct in § 7.2 cycle class
maps

cliX : CHi(X)Z�
−→ H2i(X,Z�(i)), where CHi(X)Z�

:= CHdX−i(X)⊗Z Z�,

which for X smooth and equi-dimensional coincide with Jannsen’s cycle class in continuous étale
cohomology, see Lemma 9.1. Let N∗ be the associated coniveau filtration on CHi(X)Z�

and put

Ai
0(X)Z�

:= N0 CHi(X)Z�
/N i−1 CHi(X)Z�

.

This is the �-adic Griffiths group of homologically trivial �-adic cycles modulo algebraic equiva-
lence if k is algebraically closed, and it is the group of homologically trivial �-adic cycles modulo
rational equivalence if k is finitely generated, see [Jan00, Lemmas 5.7 and 5.8] and Lemma 7.5.
We denote the torsion subgroup of Ai

0(X)Z�
by Ai

0(X)[�∞].
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Theorem 1.8. Let k be a field and let � be a prime invertible in k. Let X be a separated scheme
of finite type over k and define refined unramified cohomology as in (1.1) with cohomology theory
in (1.3).

(i) There are canonical isomorphisms

coker(cliX)[�∞] �
H2i−1

i−2,nr(X,Q�/Z�(i))

H2i−1
i−2,nr(X,Q�(i))

and Ai
0(X)Z�

�
H2i−1

i−2,nr(X,Z�(i))
H2i−1(X,Z�(i))

.

(ii) There is a transcendental Abel–Jacobi map

λi
tr : Ai

0(X)[�∞] −→ H2i−1(X,Q�/Z�(i))/N i−1H2i−1(X,Q�(i)).

If X is a smooth projective variety and k is algebraically closed, then this map is induced
by Bloch’s Abel–Jacobi map on torsion cycles [Blo79]. Its kernel is isomorphic to

ker(λi
tr) � H2i−2

i−3,nr(X,Q�/Z�(i))/GiH2i−2
i−3,nr(X,Q�/Z�(i))

and its image is given by im(λi
tr) = N i−1H2i−1(X,Q�/Z�(i))div/N

i−1H2i−1(X,Q�(i)).

The filtration N∗ is the coniveau filtration and G∗ is defined similarly as in Theorem 1.6, see
Definition 5.4 and Lemma 7.18. Moreover, H2i−1(X,Q�/Z�(i))div ⊂ H2i−1(X,Q�/Z�(i)) denotes
the image of H2i−1(X,Q�(i))→ H2i−1(X,Q�/Z�(i)).

The computation of ker(λi
tr) uses as before Merkurjev and Suslin’s theorem. The Bloch–Kato

conjecture is not used otherwise (in particular, not in item (i)).
The first isomorphism in item (i) generalizes a result of Kahn [Kah12] who proved it for i = 2

and X smooth projective.

1.3 Comparison with Bloch–Ogus theory and Kato homology
Let X be an algebraic scheme over a field k and let H i(−, A(n)) be one of the (co)-homology the-
ories considered previously. For a point x ∈ X with closure Zx := {x} ⊂ X, we let H i(x,A(n)) =
H i(F0Zx, A(n)). The Gysin sequence (i.e. long exact sequence of pairs), yields in the colimit a
long exact sequence

Hp+q−1(FpX,A(n))
f→ Hp+q−1(Fp−1X,A(n)) ∂→

⊕
x∈X(p)

Hq−p(x,A(n− p)) ι∗→ Hp+q(FpX,A(n)),

(1.4)

see Lemma 5.8. Note that the image of f agrees, by definition, with the refined unramified
cohomology group Hp−1+q

p−1,nr (X,A(n)), which thus coincides with the kernel of the residue map
∂ above. This shows, in particular, that Hq

0,nr(X,A(n)) corresponds to traditional unramified
cohomology.

The above sequence gives rise to an exact couple D1
f→ D1

∂→ E1
ι∗→ D1, where

Dp,q
1 = Hp−1+q(Fp−1X,A(n)) and Ep,q

1 =
⊕

x∈X(p)

Hq−p(x,A(n− p)),

and f , ∂, and ι∗ have bi-degrees (−1, 1), (0, 0), and (1, 0), respectively. The associated spectral
sequence Ep,q

1 =⇒ Hp+q(X,A(n)) is convergent. The derived couple has the form D2 → D2 →
E2 → D2, where

D2 =
⊕
p,q

Dp,q
2 , Dp,q

2 = Hp−1+q
p−1,nr (X,A(n)),

is the direct sum of all refined unramified cohomology groups of X.
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It follows from Lemma 5.12 that d1 : E1 → E1 agrees with the differential of the coniveau
spectral sequence from [BO74, § 3], but see also Remark 1.9. Hence, E2 agrees with the sec-
ond page of the coniveau spectral sequence and the derived couple D2 → D2 → E2 → D2

shows that E2 is up to extensions determined by D2, hence by refined unramified cohomology,
see Proposition 7.35. In the special case where X is smooth and equi-dimensional, the Gersten
conjecture proven in [BO74] (see also [CHK97]) thus implies that the cohomologies Hp(XZar,Hq)
of the Zariski sheaf associated to U � ��Hq(U,A(n)) are up to extensions determined by refined
unramified cohomology.

Without any smoothness assumption on X, but under the condition that the ground field
k has finite cohomological dimension c, the derived couple D2 → D2 → E2 → D2 yields for A =
Z/�r canonical isomorphisms

Ep,d+c
2

∼−→ Hp+d+c
p,nr (X,μ⊗n

�r ), d = dimX,

see Corollary 7.36. By definition, Ep,d+c
2 agrees with the Kato homology of X (see, e.g., [Kat86,

KS12, Tia20]), and so we find that the latter is, in fact, a special instance of refined unramified
cohomology, cf. Remark 7.37. We remark that for X smooth projective, Kato homology as well as
traditional unramified cohomology are stable birational invariants of X, see, e.g., [CO89, CV12,
Tia20].

Remark 1.9. One of the key differences of this paper compared with previous work is the obser-
vation that for our purposes, the couple D1 → D1 → E1 → D1 is better suited than the couple

D′1
f ′
→ D′1 → E1 → D′1, used in [BO74, § 3] to define the coniveau spectral sequence. (Both cou-

ples stem from the long exact sequence of triples, but applied to different geometric situations.)
Moreover, we will not pass to the coniveau spectral sequence (as done, e.g., in [Blo79, CV12,
Kah12, Voi12, Ma17]), but work directly with the above couple, which contains more information.

Remark 1.10. Assume that X is smooth and equi-dimensional. The main result of [BO74] (see
also [CHK97]) is that the map f ′ : D′1 → D′1 is zero locally on X with the exception of only some
trivial bi-degrees; as a consequence, Ep,q

2 = 0 locally on X for all p 	= 0. In contrast, the image
of f : D1 → D1 is refined unramified cohomology and this invariant in general does not vanish
locally on X. In fact, the local vanishing of Ep,q

2 for p 	= 0 implies that f : Dp+1,q−1
2 → Dp,q

2 is
an isomorphism locally on X for all p � 1. It follows that the Zariski sheaf Hi

j,nr associated to
U � ��H i

j,nr(U,A(n)) does not depend on j � 0, hence agrees with Hi for all j � 0, which is in
general non-zero. (This shows in particular that at least in the smooth case, refined unramified
cohomology contains no interesting local information.)

1.4 Homology or cohomology?
The results described previously relied on a twisted Borel–Moore homology theoryHBM∗ (−, A(n))
with corresponding Borel–Moore cohomology theory H i(X,A(n)) := HBM

2dX−i(X,A(dX − n)), see
(1.2) and (1.3). We collect the properties of this functor that are crucial for us in § 4. In
sheaf theoretic terms, Borel–Moore cohomology will in practice be the (hyper-)cohomology
of some complex of sheaves. If X is smooth and equi-dimensional, Poincaré duality identifies
this complex to a locally constant sheaf. (For instance, �-adic Borel–Moore pro-étale cohomol-
ogy is given by H i(X,Z�(n)) = Ri Γ(Xproét, π

!
X Ẑ�(n− dX)[−2dX ]), where πX : X → Spec k and

π!
X � π∗X(dX)[2dX ] ifX is smooth and equi-dimensional of dimension dX , see § 6.1.) The resulting

theory thus coincides on smooth equi-dimensional algebraic schemes with ordinary cohomology,
but it differs in general. In particular, as long as one is interested only in smooth equi-dimensional
schemes, H i(X,A(n)) can be identified with ordinary cohomology in all our applications.
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(Working with singular schemes is, however, important for the proof of several of the main
results such as Theorems 1.1, 1.4, and 1.5 even if the total space is smooth projective.)

The functoriality properties of Borel–Moore cohomology differ from those of ordinary coho-
mology: the latter has arbitrary pullbacks but no pushforwards, whereas the former admits only
pullbacks along étale maps, but has proper pushforwards (which shift the degree), see § 4. The
situation is similar to the distinction between ordinary singular homology and Borel–Moore
homology (i.e. finite versus locally finite singular chains) in topology, which have also different
functoriality properties; they agree for compact analytic spaces but differ in general.

Instead of exploiting the notion of Borel–Moore cohomology, we could of course use the
formula H i(X,A(n)) = HBM

2dX−i(X,A(dX − n)) to write everything in terms of Borel–Moore
homology, which may be preferred by some readers. The reason we use Borel–Moore coho-
mology and wrote this paper cohomologically is that in the important special case where X is
smooth and equi-dimensional, H i(X,A(n)) will coincide with ordinary cohomology in all our
applications. This has, in particular, the advantage that the formulas that we prove for singular
varieties and in arbitrary codimension reduce in the special case of smooth projective varieties
to those in [CV12, Kah12, Voi12, Ma17], which motivate this paper. Moreover, the applications
of the theory in [Sch20, Sch22] concern smooth projective varieties and use the identification
of Borel–Moore cohomology with ordinary cohomology. This allows one to make use of cup
products, which are crucial (and which require a cohomological formulation). Writing this paper
homologically would thus make it significantly harder to read those applications.

After all, it is a matter of formal manipulations to rewrite this paper homologically, but
note that it will not be enough to just use H i(X,A(n)) = HBM

2dX−i(X,A(dX − n)), one should
also change the indices in the filtration F∗X to make the indices in the resulting formulas in
Theorems 1.6 and 1.8 appealing. Unfortunately, the translation between the homological and
the cohomological notation is tedious, so that we restrict ourselves to only one version here.

Although only a matter of notation, we do believe that the notion of Borel–Moore cohomology
may also be useful in the future.

2. Notation

A field is said to be finitely generated, if it is finitely generated over its prime field. An algebraic
scheme is a separated scheme of finite type over a field. A variety is an integral algebraic scheme.
An open subset of a scheme will always refer to a Zariski open subset, unless specified otherwise.
The dimension of an algebraic scheme is the maximum of the dimensions of its irreducible
components.

For an algebraic scheme X, we write X(i) for the set of all points x ∈ X with dim({x}) = i.
We then define X(i) := X(dX−i), where dX = dimX. That is, x ∈ X lies in X(i) if and only if
dimX − dim({x}) = i. Note that this is slightly non-standard, as it does not imply that the
codimension of x defined locally in X is i, but it has the advantage that the Chow group
CHi(X) := CHdX−i(X) (see [Ful98]) is the quotient of

⊕
x∈X(i) [x]Z by rational equivalence, where

[x]Z denotes the free Z-module with generator [x]. We refer to [Ful98, § 10.3] for the definition
of algebraic equivalence of cycles on algebraic schemes.

Whenever G and H are abelian groups (or R-modules for some ring R) so that there is a
canonical map H → G (and there is no reason to confuse this map with a different map), we
write G/H as a short hand for coker(H → G). For an abelian group G, we denote by G[�r] the
subgroup of �r-torsion elements, and by G[�∞] :=

⋃
r G[�r] the subgroup of elements that are

�r-torsion for some r � 1. We further write Tors(G) or Gtors for the torsion subgroup of G.
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Let I be a directed index set and let (Gi)i∈I be a direct system of abelian groups. We then
denote by

lim−→
i∈I

Gi

the direct limit of this system. Synonymously, we sometimes also call this the (filtered) colimit
of (Gi)i∈I and denote it by colimGi.

3. Warm-up: a simple proof of the Colliot-Thélène–Voisin theorem

Let X be a smooth complex variety. In this section, we present as a warm-up a proof of the
formula

coker(cl2X)tors � H3
nr(X,Q/Z)/H3

nr(X,Q), (3.1)

which is due to Colliot-Thélène and Voisin [CV12]. Their original proof relied on Voevodsky’s
proof of the Bloch–Kato conjecture; Kahn [Kah12] later showed that Bloch–Kato in degree two,
i.e. the Merkurjev–Suslin theorem, suffices to prove the result. Both approaches use the Gersten
conjecture proven by Bloch and Ogus, which identifies unramified cohomology with the global
sections of a certain Zariski sheaf, see [BO74]. In this section, we explain a simpler argument that
does not need Bloch–Kato in any degree and which does not make use of the Gersten conjecture.
The proof presented here generalizes easily to give the result for arbitrary codimension and, in
fact, on possibly singular schemes, see Theorem 7.7. This is the starting point of the more general
theory presented in the body of the paper.

To fix notation in this section, we denote by H i(X,A) singular cohomology of the underlying
analytic space Xan with coefficients in an abelian group A. This coincides with Borel–Moore
cohomology as considered in the rest of this paper, because X is smooth and irreducible (hence,
equi-dimensional).

As before, we define H i(FjX,A) as the direct limit over H i(U,A) where U ⊂ X runs through
all (Zariski) open subsets whose complement has codimension at least j + 1. The unramified
cohomology ofX is defined byH i

nr(X,A) = im(H i(F1X,A)→ H i(F0X,A)). The Gysin sequence
implies that this agrees with the definition given in [Col95, Theorem 4.1.1(a)] (cf. Lemma 5.8).
In other words, an element [α] ∈ H i

nr(X,A) is represented by a class α ∈ H i(U,A) for some open
subset U ⊂ X whose complement has codimension at least two (such open subsets are called
‘big’) and two such representatives yield the same element in H i

nr(X,A) if they coincide on some
dense open subset of X.

Our proof of (3.1) relies on the following lemma.

Lemma 3.1. The natural restriction map is an isomorphism

f :
H3(F1X,Q/Z)
H3(F1X,Q)

∼−→ H3
nr(X,Q/Z)
H3

nr(X,Q)
.

Proof. As f is clearly surjective, it suffices to prove that it is injective.
Note that H3(F1X,Q)→ H3

nr(X,Q) is surjective by definition. Hence, in order to prove
the injectivity of f it suffices to show the following: Let U ⊂ X be a big open subset and let
α ∈ H3(U,Q/Z) such that

α|V = 0 ∈ H3(V,Q/Z)

for some dense open subset V ⊂ U . Then we need to show that up to removing a codimension-
two subset from U , the class α lifts to H3(U,Q). Equivalently, we need to show that the image
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δ(α) ∈ H4(U,Z)tors via the Bockstein map (associated to 0→ Z→ Q→ Q/Z→ 0) vanishes after
removing a codimension-two subset from U .

Up to removing a codimension-two subset from U , we may assume that D := U \ V is smooth
of pure codimension one in U . As α|V = 0, the Gysin sequence shows that there is a class
ξ ∈ H1(D,Q/Z) with α = ι∗ξ, where ι∗ : H1(D,Q/Z)→ H3(U,Q/Z) denotes the Gysin push-
forward. Identifying the respective cohomology groups via Poincaré duality with Borel–Moore
homology, it follows directly from the definitions that the Bockstein map is compatible with ι∗.
It thus suffices to show that

δ(ξ) ∈ H2(D,Z)tors

vanishes after removing a codimension-one subset ofD. This, in turn, is a well-known consequence
of Hilbert theorem 90, see [Blo10, end of Lecture 5], which concludes the proof of the lemma. �

By the above lemma, it suffices to construct an isomorphism

g : coker(cl2X)tors −→ H3(F1X,Q/Z)/H3(F1X,Q). (3.2)

Here we note that both sides in (3.2) remain unchanged if we remove from X a closed
codimension-three subset (this is obvious for the right-hand side and it follows from the Gysin
sequence and purity for the left-hand side). We allow ourselves to perform such shrinkings in
what follows (this could be avoided if we were using Borel–Moore cohomology so that we can
work with singular schemes). Let α ∈ H4(X,Z) such that some multiple nα = cl2X(z) is algebraic.
Let Z := supp z. Up to removing Zsing from X, we may assume that Z is smooth. The Gysin
sequence then yields

H0(Z,Z) ι∗−→ H4(X,Z) −→ H4(U,Z) ∂−→ H1(Z,Z), (3.3)

where ∂ denotes the residue map and the pushforward ι∗ corresponds to the cycle class
map. As nα = cl2X(z) ∈ im(ι∗), we find that α|U ∈ H4(U,Z)tors is torsion. The Bockstein map
δ : H3(U,Q/Z)→ H4(U,Z) induces an isomorphism

δ−1 : H4(U,Z)tors

−→ H3(U,Q/Z)/H3(U,Q).

The right-hand side in the isomorphism maps naturally to the right-hand side in (3.2) (in fact,
the latter is just the direct limit of the former where one runs through all big open subsets
U ⊂ X). The map g above is then defined by

g(α) := [δ−1(α|U)].

The Gysin sequence implies that this definition is well-defined, i.e. g(α) does not change if we
add to α some algebraic class.

We aim to construct an inverse of g. To this end, let β ∈ H3(U,Q/Z) for some big open subset
U ⊂ X. The class α′ := δ(β) ∈ H4(U,Z) is a torsion class. Let Z = X \ U . Up to shrinking X, we
may assume that Z is smooth of pure codimension two in X. Then we have an exact sequence
as in (3.3) and the (trivial) fact that H1(Z,Z) is torsion-free implies that the torsion class
α′ ∈ H4(U,Z) lifts to a class α ∈ H4(X,Z). The fact that α′ is torsion implies that some multiple
of α is algebraic and, hence, [α] ∈ coker(cl2X)tors. If β lifts to a class in H3(U,Q), then α′ = 0 and
so the above construction yields a map

g′ : H3(F1X,Q/Z)/H3(F1X,Q) −→ coker(cl2X)tors, [β] � �� [α].

It follows from the construction that g and g′ are inverse to each other. Hence, g is an isomorphism
and the formula in (3.1) is proved.
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4. Borel–Moore cohomology

We list here properties of a functor, that we call Borel–Moore cohomology, which allows us to
run the arguments from § 3 (and more). Technically speaking, Borel–Moore cohomology will
in all our applications agree up to shifts with Borel–Moore homology, see also § 1.4 above. In
practice and in terms of sheaf theory, this means that Borel–Moore cohomology will be the
hypercohomology of some complex of sheaves on some site; the complex in question has by
Poincaré duality the property that it simplifies on smooth equi-dimensional schemes to a locally
constant sheaf. In other words, on smooth equi-dimensional varieties, Borel–Moore cohomology
will agree with ordinary cohomology. However, on singular spaces, Borel–Moore cohomology
and ordinary cohomology differ: for Borel–Moore cohomology we require pullbacks only along
open immersions of equi-dimensional schemes (and not along arbitrary morphisms), whereas we
require pushforwards along proper morphisms of possibly singular schemes (and not only for
smooth equi-dimensional schemes).

Definition 4.1. Let V be a category of Noetherian schemes such that the morphisms are given
by open immersions U ↪→ X of schemes with dim(U) = dim(X). We call V constructible, if for
any X ∈ V, the following hold:

– if Y ↪→ X is an open or closed immersion, then Y ∈ V;
– if X ∈ V is reduced, then the normalization of X is also in V.

Definition 4.2. Let V be a constructible category of Noetherian schemes as in Definition 4.1.
Let R be a ring and let A ⊂ ModR be a full subcategory of R-modules with R ∈ A. A twisted
Borel–Moore cohomology theory on V with coefficients in A is a family of contravariant functors

V −→ ModR, X � ��H i
BM(X,A(n)) with i, n ∈ Z and A ∈ A (4.1)

that are covariant in A and such that the following holds, where we write for simplicity

H i(X,A(n)) := H i
BM(X,A(n)).

(P1) For X,Y ∈ V and any proper morphism f : X → Y of schemes of relative codimension
c = dimY − dimX, there are functorial pushforward maps

f∗ : H i−2c(X,A(n− c)) −→ H i(Y,A(n)),

compatible with pullbacks along morphisms in V.
(P2) For any pair (X,Z) of schemes in V with a closed immersion Z ↪→ X of codimension

c = dim(X)− dim(Z) and with complement U with dim(X) = dim(U), there is a Gysin
exact sequence

· · · −→ H i(X,A(n)) r−→ H i(U,A(n)) ∂−→ H i+1−2c(Z,A(n− c)) ι∗−→ H i+1(X,A(n)) −→ · · ·
where r is induced by functoriality, ∂ is called residue map and ι∗ is induced by proper
pushforward from (P1). The Gysin sequence is functorial with respect to pullbacks along
open immersions f : V ↪→ X with dimV = dimX, dim(V ∩ Z) = dimZ, and dim(V \ (V ∩
Z)) = dimV , giving rise to the following commutative diagram for all i.

Hi(X,A(n))
r

��

f∗

��

Hi(U,A(n))
∂

��

f∗

��

Hi+1−2c(Z,A(n− c))

f∗

��

ι∗
�� Hi+1(X,A(n))

f∗

��

Hi(V,A(n))
r

�� Hi(V ∩ U,A(n))
∂

�� Hi+1−2c(V ∩ Z,A(n− c))
ι∗

�� Hi+1(V,A(n))
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Similarly, if f : X ′ → X is proper with Z ′ = f−1(Z) and dimX ′ = dim(X ′ \ Z ′), then the
proper pushforward along f induces for all i the following commutative diagram.

H i(X ′, A(n))
r

��

f∗
��

H i(U ′, A(n))
∂

��

f∗
��

H i+1−2c(Z ′, A(n− c))

f∗
��

ι∗
�� H i+1(X ′, A(n))

f∗
��

H i(X,A(n))
r

�� H i(U,A(n))
∂

�� H i+1−2c(Z,A(n− c))
ι∗

�� H i+1(X,A(n))

(P3) For any X ∈ V and x ∈ X, the groups

H i(x,A(n)) := lim−→
∅�=Vx⊂{x}

H i(Vx, A(n)), (4.2)

where Vx runs through all (Zariski) open dense subsets of {x} ⊂ X (with the reduced
subscheme structure), satisfy H i(x,A(n)) = 0 for i < 0. Moreover, there are isomorphisms
H0(x,A(0)) � A that are functorial in A, and for A = R there is a distinguished class
[x] ∈ H0(x,R(0)) (called the fundamental class) such that H0(x,R(0)) = [x]R is freely
generated by [x].

Remark 4.3. We warn the reader that even if Specκ(x) ∈ V, the cohomology of a point x ∈ X in
(4.2) may not agree with H i(Specκ(x), A(n)). This phenomenon is not new but already present
in [BO74] and in any other work where the Bloch–Ogus resolution for non-torsion coefficients is
used.

In what follows, we usually write μ⊗n
�r := Z/�r(n).

Definition 4.4. Let V be a constructible category of Noetherian schemes as in Definition 4.1.
Let � be a prime and let R = Z�. A twisted Borel–Moore cohomology theory on V with coefficients
in A ⊂ ModZ�

(see Definition 4.2) is called �-adic, if Z�, Q�, Q�/Z�, and Z/�r for all r � 1 are
contained in A, such that the following hold.

(P4) Functoriality in the coefficients induces isomorphisms of functors

lim−→
r

H i(−, μ⊗n
�r ) ∼−→ H i(−,Q�/Z�(n)) and H i(−,Z�(n))⊗Z�

Q�
∼−→ H i(−,Q�(n)).

(P5) For any X ∈ V, there is a long exact Bockstein sequence

· · · −→ H i(X,Z�(n)) ×�r−→ H i(X,Z�(n)) −→ H i(X,μ⊗n
�r ) ∂−→ H i+1(X,Z�(n)) ×�r−→ · · · ,

where H i(X,Z�(n))→ H i(X,μ⊗n
�r ) is given by functoriality in the coefficients and where δ

is called the Bockstein map. This sequence is functorial with respect to proper pushforwards
and pullbacks along morphisms in V.

(P6) For any X ∈ V and x ∈ X, there is a map ε : κ(x)∗ → H1(x,Z�(1)) such that Hilbert
theorem 90 holds in the sense that the map ε : κ(x)∗ → H1(x, μ⊗1

�r ) induced by reduc-
tion modulo �r is surjective. Moreover, for X ∈ V integral with generic point η, there is a
unit u ∈ Z� such that for any regular point x ∈ X(1), the natural composition

κ(η)∗ ε−→ H1(η,Z�(1)) ∂−→ H0(x,Z�(0)) = [x]Z�,

where ∂ is induced by (P2) and the last equality comes from (P3), sends f to [x](u · νx(f)).
Here, νx denotes the valuation on κ(η) induced by x.

Let X ∈ V be integral and let U ⊂ X be a big open subset, i.e. dim(X \ U) < dimX − 1.
Then H2(U,Z�(1)) � H2(X,Z�(1)) by (P2) and (P3) (see Corollary 5.10 below). Taking the
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direct limit over all U and using H0(x,Z�(0)) = [x]Z� from (P3), we find that the proper
pushforwards from (P1) induce a cycle class map

ι∗ :
⊕

x∈X(1)

[x]Z� −→ H2(X,Z�(1)). (4.3)

The following two options are of particular interest.

(P7.1) If X is integral and regular, the kernel of (4.3) is given by Z�-linear combinations of
algebraically trivial divisors.

(P7.2) If X is integral and regular, the kernel of (4.3) is given by Z�-linear combinations of
principal divisors.

Definition 4.5. Let V be a constructible category of Noetherian schemes, see Definition 4.1.
An �-adic twisted Borel–Moore cohomology theory H∗(−, A(n)) on V as in Definition 4.4 is
adapted to algebraic equivalence, if (P7.1) holds, and it is adapted to rational equivalence, if
(P7.2) holds.

In addition to �-adic theories, we also need the following integral variant. To this end, we
perform in each of the statements (P4)–(P6), (P7.1), and (P7.2) the formal replacement of
symbols:

Z� � Z, Q� � Q, �r � r,

and denote the corresponding statements by (P4′)–(P6′), (P7.1′), and (P7.2′), respectively.

Definition 4.6. Let V be a constructible category of Noetherian schemes (see Definition 4.1)
and let R = Z. A twisted Borel–Moore cohomology theory on V with coefficients in A ⊂ ModZ

as in Definition 4.2 is called integral, if Z, Q, Q/Z, and Z/r for all r � 1 are contained in A,
such that items (P4′)–(P6′) hold. The theory is adapted to algebraic (respectively, rational)
equivalence, if item (P7.1′) (respectively, (P7.2′)) holds true.

Remark 4.7. It seems natural to add in (P1) the requirement that pushforwards are compatible
with the functoriality in the coefficients. We did not do so because in this paper we only need
this compatibility for the natural maps Z�

×�→ Z�, Z� → Z/�r, Z� → Q�, and Q� → Q�/Z�, where
it follows from (P4) together with the compatibility of the Bockstein sequence with proper
pushforwards formulated in (P5).

5. Definition of refined unramified cohomology and simple consequences

In this section, we fix a constructible category V of Noetherian schemes, see Definition 4.1.
We further fix a ring R and a twisted Borel–Moore cohomology theory H∗(−, A(n)) on V with
coefficients in a full subcategory A ⊂ ModR, see Definition 4.2. In particular, (P1)–(P3) hold
true.

ForX ∈ V we write FjX := {x ∈ X | codim(x) � j}, where codim(x) := dim(X)− dim({x}).
We then define

H i(FjX,A(n)) := lim−→
FjX⊂U⊂X

H i(U,A(n)),

where the direct limit runs through all open subschemes U ⊂ X with FjX ⊂ U . As the direct
limit functor (i.e. filtered colimits) is exact, many of the properties ofH∗(X,A(n)) remain true for
FjX in place of X. Moreover, for m � j, there are canonical restriction maps H i(FmX,A(n))→
H i(FjX,A(n)).
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Definition 5.1. The jth refined unramified cohomology of X ∈ V with respect to a twisted
Borel–Moore cohomology theory H∗(−, A(n)) on V with coefficients in a full subcategory A ⊂
ModR, is given by

H i
j,nr(X,A(n)) := im

(
H i(Fj+1X,A(n)) −→ H i(FjX,A(n))

)
.

5.1 Three filtrations
Following Grothendieck, the coniveau filtration on H i(X,A(n)) is defined by

N jH i(X,A(n)) := ker(H i(X,A(n))→ H i(Fj−1X,A(n))). (5.1)

There is a similar coniveau filtration on refined unramified cohomology, defined as follows.

Definition 5.2. Let X ∈ V. The coniveau filtration N∗ is for h � j + 1 given by

NhH i(FjX,A(n)) := ker
(
H i(FjX,A(n))→ H i(Fh−1X,A(n))

)
and

NhH i
j,nr(X,A(n)) := H i

j,nr(X,A(n)) ∩NhH i(FjX,A(n)).

Somewhat dually to the coniveau filtration, we have the following filtration, which is also
decreasing.

Definition 5.3. Let X ∈ V. The decreasing filtration F ∗ is for m � j given by

FmH i(FjX,A(n)) := im
(
H i(FmX,A(n)) −→ H i(FjX,A(n))

)
and

FmH i
j,nr(X,A(n)) := H i

j,nr(X,A(n)) ∩ FmH i(FjX,A(n)).

Note that for m � j + 1, FmH i(FjX,A(n)) = FmH i
j,nr(X,A(n)).

Related to F ∗ there is another filtration that will be important for us, and which exists
only for A = Z/�r or A = Q�/Z�. To define it, note that exactness of the direct limit functor
ensures that the Bockstein sequence in (P5) holds for FjX in place of X. In particular, there is
a Bockstein map

δ : H i(FjX,μ
⊗n
�r )→ H i+1(FjX,Z�(n)).

Definition 5.4. Let X ∈ V. The decreasing filtration G∗ is for m � j given by

α ∈ GmH i(FjX,μ
⊗n
�r ) ⇐⇒ δ(α) ∈ FmH i+1(FjX,Z�(n)).

We then define

GmH i
j,nr(X,μ

⊗n
�r ) := im(GmH i(Fj+1X,μ

⊗n
�r )→ H i(FjX,μ

⊗n
�r )).

Using the isomorphism in (P4), we finally let

GmH i
j,nr(X,Q�/Z�(n)) := lim−→

r

GmH i
j,nr(X,μ

⊗n
�r ).

Remark 5.5. By definition, F ∗ and N∗ on H i
j,nr(X,A(n)) are induced by the corresponding

filtration on H i(FjX,A(n)). We warn the reader that the corresponding assertion does not hold
true for G∗.

5.2 Consequence of the Gysin sequence
Lemma 5.6. Let X � Y ∈ V with dimX = dimY and let A ∈ A. Then the canonical map given
by pullback is an isomorphism:

H i(X � Y,A(n)) 
−→ H i(X,A(n))⊕H i(Y,A(n)).
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Proof. Let iX (respectively, iY ) denote the inclusions of X (respectively, Y ) into X � Y . By the
Gysin sequence (P2), we have an exact sequence

H i(X,A(n)) iX∗−→ H i(X � Y,A(n)) iY ∗−→ H i(Y,A(n)).

Functoriality of this sequence with respect to proper pushforward and pullbacks along morphisms
in V shows that iX∗ and i∗Y admit splittings. Hence, the above sequence is part of a short exact
sequence that splits, which proves the lemma. �
Lemma 5.7. Let X ∈ V and A ∈ A. Then for any n ∈ Z and m, j � 0, the Gysin sequence in
(P2) induces a long exact sequence:

· · · −→ H i(Fj+mX,A(n)) −→ H i(Fj−1X,A(n)) ∂−→ lim−→
Z⊂X

codim(Z)=j

H i+1−2j(FmZ,A(n− j)) ι∗−→ · · · ,

where the direct limit runs through all closed reduced subschemes Z ⊂ X of codimension
codim(Z) = dimX − dimZ = j.

Proof. This follows immediately from (P2) by taking direct limits. We explain the details for
convenience of the reader. Let Z ⊂ X be closed with dimZ = dimX − j. Further, let W ⊂ Z
be closed of dimension dimW = dimZ −m− 1 = dimX − j −m− 1. By (P2), we get an exact
sequence

· · · −→ H i(X \W,A(n)) −→ H i(X \ Z,A(n)) ∂−→ H i+1−2j(Z \W,A(n− j)) ι∗−→ · · · .
We can now consider the index set I that consists of pairs (Z,W ) of closed subsets W ⊂ Z ⊂ X
with dimW = dimZ −m− 1 = dimX − j −m− 1. This is a directed set with respect to the
preorder given by declaring (Z,W ) � (Z ′,W ′) if and only if Z ⊂ Z ′ and W ⊂W ′. Taking the
direct limit over this index set, the above long exact sequence yields the sequence

· · · −→ H i(Fj+mX,A(n)) −→ H i(Fj−1X,A(n)) ∂−→ lim−→
Z⊂X

codim(Z)=j

H i+1−2j(FmZ,A(n− j)) ι∗−→ · · · ,

which is exact because the direct limit functor is exact. This proves the lemma. �
Lemma 5.8. Let X ∈ V and A ∈ A. Then for any j, n ∈ Z, (P2) induces a long exact sequence

−→ H i(FjX,A(n)) −→ H i(Fj−1X,A(n)) ∂−→
⊕

x∈X(j)

H i+1−2j(x,A(n− j)) ι∗−→ H i+1(FjX,A(n)),

where ι∗ (respectively, ∂) is induced by the pushforward (respectively, residue) map from the
Gysin exact sequence (P2).

Proof. Using additivity from Lemma 5.6, this identifies to the special case m = 0 in
Lemma 5.7. �
Corollary 5.9. Let X ∈ V. Then for any n ∈ Z and j,m � 0, the following sequence is exact:

lim−→
Z⊂X

codim(Z)=j

H i−2j
m,nr(Z,A(n− j)) ι∗−→ H i

j+m,nr(X,A(n)) −→ H i
j−1,nr(X,A(n)),

where the direct limit runs through all closed reduced subschemes Z ⊂ X of codimension
codim(Z) = dimX − dimZ = j.

Proof. The composition of the two arrows in the corollary is zero by Lemma 5.7. Conversely,
assume that α ∈ H i

j+m,nr(X,A(n)) maps to zero in H i
j−1,nr(X,A(n)). By Lemma 5.7, α = ι∗ξ
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for some ξ ∈ H i−2j(FmZ,A(n− j)) and some Z ⊂ X of codimension j. As α is unramified,
Lemma 5.8 shows that

ι∗(∂ξ) = ∂(ι∗ξ) = 0 ∈
⊕

x∈X(j+m+1)

H i−2j−2m−1(x,A(n− j −m− 1)), (5.2)

where the first equality uses that the Gysin sequence is functorial with respect to proper
pushforwards (see (P2)), so that ι∗ and ∂ commute. However, this implies that the class

∂ξ ∈
⊕

x∈Z(m+1)

H i−2j−2m−1(x,A(n− j −m− 1))

vanishes, as the above right-hand side is a subgroup of the right-hand side of (5.2), and ι∗
identifies to the inclusion. Hence, Lemma 5.8 implies ξ ∈ H i−2j

m,nr(Z,A(n− j)), as we want. This
concludes the proof of the corollary. �
Corollary 5.10. Let X ∈ V and A ∈ A. Then H i(FjX,A(n)) � H i(X,A(n)) for all j � �i/2�.
Proof. As H i(x,A(n)) vanishes for i < 0 by (P3), Lemma 5.8 implies

H i(FjX,A(n)) � H i(Fj−1X,A(n))

for all j with j > �i/2�. This proves the corollary by induction on j, because H i(FjX,A(n)) =
H i(X,A(n)) for j � dim(X). �
Corollary 5.11. Let X ∈ V and A ∈ A. Assume that there is a non-negative integer c, such
that for any X ∈ V and x ∈ X(j), H

i(x,A(n)) = 0 for i > j + c and all n. Then H i(FjX,A(n)) =
0 for all i > dimX + j + c and all n.

Proof. Our assumption implies by Lemma 5.8 that H i(FjX,A(n)) � H i(Fj−1X,A(n)) for all j
with i > j + dimX + c. Hence,H i(FjX,A(n)) � H i(F0X,A(n)) for all j with i > j + dimX + c.
But H i(F0X,A(n)) = 0 for all i > dimX + c by Lemma 5.6 and our assumption, because F0X
is the union of the generic points of the maximal-dimensional components of X. This proves the
corollary. �

The following lemma identifies the differential d1 on the E1-page of the coniveau spectral
sequence of Bloch and Ogus [BO74, § 3] with the composition ∂ ◦ ι∗.
Lemma 5.12. Let X ∈ V and A ∈ A. Let w ∈ X(p−1) with closure W ⊂ X and let τ : W̃ →W
be the normalization with generic point ηW̃ ∈ W̃ . Then the following diagram commutes for all
integers i and n:

H i(w,A(n)) = H i(ηW̃ , A(n))
∂

��

� �

��

⊕
w̃∈W̃ (1) H

i−1(w̃, A(n− 1))

τ∗
��⊕

x∈X(p−1) H i(x,A(n))
∂◦ι∗

��
⊕

x∈X(p) H i−1(x,A(n− 1))

where the vertical arrow on the left is the natural inclusion, the vertical arrow on the right is
induced by the proper pushforward maps from (P1), the upper horizontal arrow is induced by
the residue map in (P2), and the lower horizontal arrow is given by⊕

x∈X(p−1)

H i(x,A(n)) ι∗−→ H i+2p−2(Fp−1X,A(n+ p)) ∂−→
⊕

x∈X(p)

H i−1(x,A(n− 1)),

where ι∗ (respectively, ∂) is the pushforward (respectively, residue map) induced by (P2).
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Proof. Note that W ∈ V and, hence, W̃ ∈ V, cf. Definition 4.1. The lemma is thus a direct
consequence of the functoriality of the Gysin sequence (P2) with respect to proper pushforwards
(P1), as required in (P2). �

5.3 Torsion-freeness of the cohomology of points
In this section, we fix a prime � and assume that the twisted Borel–Moore cohomology theory
H∗(−, A(n)) on V is �-adic, see Definition 4.4. It is an observation of Bloch (see [Blo10, end of
Lecture 5]) that properties (P5) and (P6) have the following important consequence.

Lemma 5.13. Let V be a constructible category of Noetherian schemes as in Definition 4.1. Fix
a prime � and assume that H∗(−, A(n)) is an �-adic twisted Borel–Moore cohomology theory
on V as in Definition 4.4. Then for any X ∈ V and x ∈ X, H i(x,Z�(i− 1)) is torsion-free for
1 � i � 2.

Proof. Taking direct limits of abelian groups is exact, so that property (P5) implies that

H i(x,Z�(i− 1))[�r] � coker(H i−1(x,Z�(i− 1)) −→ H i−1(x, μ⊗i−1
�r )).

This vanishes for i = 1, as in this case we have by (P5) an exact sequence

H0(x,Z�(0)) ×�r−→ H0(x,Z�(0)) −→ H0(x, μ⊗0
�r ),

which by (P3) identifies to Z�
×�r

→ Z� → Z/� and so the last arrow is surjective.
By (P6), there is a surjection ε : κ(x)∗ �� ��H1(x, μ⊗1

�r ) which factors through H1(x,Z�(1)) and
so the above cokernel also vanishes for i = 2. This concludes the proof. �

Remark 5.14. The above proof shows more generally that H i+1(x,Z�(i)) is torsion-free if
there are surjections (κ(x)∗)⊗i �� ��H i(x, μ⊗i

�r ) that factor through H i(x,Z�(i)). In particular,
H i+1(x,Z�(i)) is torsion-free if a version of the Bloch–Kato conjecture holds in degree i in the
sense that there is a map KM

i (κ(x))→ H i(x,Z�(i)) which induces isomorphisms KM
i (κ(x))/�r �

H i(x, μ⊗i
�r ). It follows from Voevodsky’s proof of the Bloch–Kato conjecture [Voe11] that the

theories that we discuss in Propositions 6.6 and 6.9 have this property.

6. Examples of Borel–Moore cohomologies

In this section, we discuss some examples of functors that satisfy the properties from § 4. The
results are certainly well-known to experts and we only include them for convenience of the
reader.

6.1 �-adic Borel–Moore pro-étale cohomology
6.1.1 Continuous étale cohomology of Jannsen. Let X be a scheme over a field k and let

Ab(Xét)N be the abelian category of inverse systems of abelian étale sheaves on the small étale
site Xét of X. This category has enough injectives (see [Jan88]) and we may consider the left
exact functor

lim←−◦Γ : Ab(Xét)N −→ Ab, (Fr)
� �� lim←−

r

Γ(X,Fr).

Jannsen then defines the continuous étale cohomology groups

H i
cont(X, (Fr)) := Ri(lim←−◦Γ)((Fr)).
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These groups are closely related to the corresponding étale cohomology groups via the following
canonical short exact sequence (see [Jan88, § 1.6]):

0 −→ R1 lim←− H i−1(Xét, Fr) −→ H i
cont(Xét, (Fr)) −→ lim←−H

i(Xét, Fr) −→ 0, (6.1)

where lim←− denotes the inverse limit functor over r.
By [Jan88, (3.27)], we have the following Kummer exact sequence in Ab(Xét)N:

0 −→ (μ�r)r −→ (Gm,×�)r
×�r−→ (Gm, id)r −→ 0, (6.2)

where � is a prime invertible in k. Taking cohomology, the boundary map of the corresponding
long exact sequence yields maps

ε : H0(X,Gm) −→ H1
cont(X,Z�(1)) and c1 : Pic(X) −→ H2

cont(X,Z�(1)), (6.3)

where H i
cont(X,Z�(n)) := H i

cont(X, (μ
⊗n
�r )r).

6.1.2 Pro-étale cohomology of Bhatt and Scholze. For a scheme X we denote by Xproét the
pro-étale site of X formed by weakly étale maps of schemes U → X (with U of not too big
cardinality), see [BS15, Definition 4.1.1 and Remark 4.1.2]. As every étale map is weakly étale,
there is a natural map of associated topoi:

ν : Shv(Xproét) −→ Shv(Xét). (6.4)

The pullback ν∗ : D+(Xét)→ D+(Xproét) on bounded below derived categories is fully faithful
and the adjunction id→ R ν∗ν∗ is an isomorphism, see [BS15, Proposition 5.2.6]. For a sheaf
F ∈ Ab(Xproét) of abelian groups on Xproét, one defines

H i(Xproét, F ) := Ri Γ(Xproét, F ),

where Ri Γ denotes the ith right derived functor of the global section functor F � �� Γ(X,F ).
If the transition maps in the inverse system (Fr) ∈ Ab(Xét)N are surjective, then there is a

canonical isomorphism
H i(Xproét, lim ν∗Fr) � H i

cont(Xét, (Fr)), (6.5)

see [BS15, § 5.6].

6.1.3 Constructible complexes in the pro-étale topology. We present in this section some parts
of the six functor formalism on constructible complexes of Bhatt and Scholze in the special case
of algebraic schemes, i.e. separated schemes of finite type over a field, which suffices for our
purposes. In Remark 6.3 we add some comments on the more general setting from [BS15].

Let X be an algebraic scheme over a field k and recall ν from (6.4). For a prime � invertible
in k, let

Ẑ�(n) := lim ν∗μ⊗n
�r ∈ Ab(Xproét) (6.6)

and write Ẑ� := Ẑ�(0). Note that Ẑ� is a sheaf of rings on Xproét and Ẑ�(n) are Ẑ�-modules,
which are, in fact, locally free (e.g. they are free on the pro-étale covering Xk → X). We
may then consider the derived category D(Xproét, Ẑ�) of the abelian category Mod(Xproét, Ẑ�)
of sheaves of Ẑ�-modules on Xproét. A complex K ∈ D(Xproét, Ẑ�) is constructible, if it is
complete, i.e. K 
→ R lim(K ⊗L

Ẑ�
Z/�r), and K ⊗L

Ẑ�
Z/�r � ν∗Kr for a constructible complex

Kr ∈ D(Xét,Z/�
r), see [BS15, Definition 6.5.1]. The full subcategory spanned by constructible

complexes is denoted byDcons(Xproét, Ẑ�) ⊂ D(Xproét, Ẑ�). Constructible complexes are bounded,
see [BS15, Lemma 6.5.3].
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For a morphism f : X → Y of algebraic schemes, R f∗ respects constructibility and is right
adjoint to f∗comp : Dcons(Yproét, Ẑ�)→ Dcons(Xproét, Ẑ�), which is given by pullback followed by
(derived) completion, see [BS15, Lemma 6.7.2]. There is also a functor R f! : Dcons(Xproét, Ẑ�)→
Dcons(Yproét, Ẑ�) (see [BS15, Definition 6.7.6]) with a right adjoint f ! : Dcons(Yproét, Ẑ�)→
Dcons(Xproét, Ẑ�), see [BS15, Lemma 6.7.19]. If f is proper, R f! = R f∗ (by definition).

To explain the construction of f ! in [BS15], note that the pullback

ν∗ : Dcons(Xét,Z/�
r) 
−→ Dcons(Xproét,Z/�

r) (6.7)

is an equivalence (see the paragraph after [BS15, Definition 6.5.1]). Using this, we freely identify
complexes on the two sides with each other. For instance, we freely identify μ⊗n

�r on Yét with its
pullback ν∗μ⊗n

�r to Yproét. Now let K ∈ Dcons(Yproét, Ẑ�) with truncation Kr = K ⊗L

Z�
Z/�r and

let f !
r : Dcons(Yét,Z/�

r)→ Dcons(Xét,Z/�
r) be the exceptional pullback on the étale site, induced

by f , cf. [SGA4.3, Exposé XVIII]. As any constructible complex of sheaves of Z/�r-modules on
Xproét is also a constructible complex of Ẑ�-modules onXproét, we may by (6.7) identify f !

rKr with
an object in Dcons(Xproét, Ẑ�). By [BS15, Lemma 6.7.18], the natural reduction maps Kr → Km

for m � r make (f !
rKr) into a projective system and so, following Bhatt and Scholze (see [BS15,

Lemma 6.7.19]), one may define

f !K := R lim f !
rKr ∈ Dcons(Xproét, Ẑ�). (6.8)

This construction implies that many properties known from the étale site carry over to the
pro-étale site.

Lemma 6.1. Let f : X → Y be a morphism between algebraic schemes over a field k and let �
be a prime invertible in k. Then the following hold in Dcons(Xproét, Ẑ�).

(i) If f is weakly étale or a closed immersion, then f∗comp � f∗.
(ii) If f is étale, then f ! � f∗ � f∗comp.

(iii) If g : Y → Z is another morphism, then there is a natural isomorphism of functors f !g! 
−→
(g ◦ f)!.

(iv) If f is smooth of pure relative dimension d, then there is a canonical isomorphism of functors

f∗comp(d)[2d]

−→ f !, where f∗comp(n) := f∗comp(−⊗Ẑ�

Ẑ�(n)).
(v) Let f be smooth of pure relative dimension d. Then for any étale map j : U → X, the

diagram

(f ◦ j)∗comp(d)[2d]



�� (f ◦ j)!

j∗compf
∗
comp(d)[2d]



��

��

j∗compf
! � j!f !

��

commutes, where the horizontal maps are induced by the canonical isomorphisms from
item (iv) and the vertical arrows are induced by the canonical maps given by functoriality
of f∗comp and f !.

Proof. Item (i) follows from [BS15, Remark 6.5.10]. Item (ii) follows from this together with the
fact that for any K ∈ Dcons(Yproét, Ẑ�),

f∗compK

−→ R lim f∗rKr = R lim f !

rKr = f !K

because f !
r = f∗r since f is étale; see [SGA4.3, XVIII, Proposition 3.1.8(iii)].
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LetK ∈ Dcons(Zproét, Ẑ�) with truncationsKr = K ⊗L

Ẑ�
Z/�r ∈ Dcons(Yét,Z/�

r). By (6.7) and

the construction of f ! from (6.8), there is a natural map

f !g!K = R lim f !
r(R lim g!

rKr) = R lim(f !
r ◦ g!

r(Kr))

−→ R lim((gr ◦ fr)!Kr) = (g ◦ f)!K

induced by the natural isomorphism f !
r ◦ g!

r
∼→ (gr ◦ fr)!, given by adjunction and R(gr)! R(fr)!


→
R(gr ◦ fr)!. This proves item (iii).

LetK ∈ Dcons(Yproét, Ẑ�) with truncationsKr = K ⊗L

Ẑ�
Z/�r ∈ Dcons(Yét,Z/�

r). Assume that
f is smooth of pure relative dimension d. By Poincaré duality on the étale site, there are canonical
identifications f !

r = f∗r (d)[2d], see [SGA4.3, XVIII, Théorème 3.2.5] (cf. [Ver67, § 4.4]). We thus
obtain a canonical isomorphism:

f∗compK(d)[2d] 
−→ R lim f∗rKr(d)[2d] = R lim f !
rKr = f !K.

This holds functorially in K and so we get an isomorphism f∗comp(d)[2d]

→ f !, which proves

item (iv).
By item (ii), j∗comp � j! and so the commutativity of the diagram in item (v) follows from the

fact that the isomorphism in item (iv) is compatible with respect to compositions of smooth maps.
The latter follows by construction of f ! from the analogous result for constructible complexes on
the étale site and, hence, from [SGA4.3, XVIII, diagram above Théorème 3.2.5]. This concludes
the proof of the lemma. �

Let f : X → Y be a morphism between algebraic k-schemes. By adjunction, there are natural
transformations

Trf : R f!f
! −→ id and θf : id −→ R f∗f∗comp (6.9)

between functors on Dcons(Yproét, Ẑ�). For K ∈ Dcons(Yproét, Ẑ�), the maps are defined by asking
(see [BS15, Lemmas 6.7.2 and 6.7.19]) that the following diagrams commute:

K

��

θf
�� R f∗f∗compK

��

R limKr

R lim(θfr)
�� R lim(R fr∗f∗rKr)

R f!f
!K

��

Trf
�� K

��

R limR fr!f
!
rKr

R lim(Trfr)
�� R lim(Kr)

(6.10)

where Kr = K ⊗L

Ẑ�
Z/�r ∈ Dcons(Yét,Z/�

r), f•r , fr• denote the corresponding functors on
Dcons(Yét,Z/�

r) (respectively, Dcons(Xét,Z/�
r)) induced by f , and where as before we identify

Kr with ν∗Kr, using the equivalence (6.7).
For K ∈ Dcons(Yproét, Ẑ�), θf induces pullback maps:

f∗ : Ri Γ(Yproét,K) −→ Ri Γ(Xproét, f
∗
compK). (6.11)

If f is proper, then R f! = R f∗ and so Trf induces a pushforward map:

f∗ : Ri Γ(Xproét, f
!K) −→ Ri Γ(Yproét,K). (6.12)

Lemma 6.2. Let K ∈ Dcons(Yproét, Ẑ�) with truncations Kr = K ⊗L

Ẑ�
Z/�r ∈ Dcons(Yét,Z/�

r).
Then for any morphism f : X → Y between algebraic k-schemes, the following diagram
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commutes with exact rows.

0 �� R1 lim Ri−1 Γ(Xét, f
∗
rKr) �� Ri Γ(Xproét, f

∗
compK) �� lim Ri Γ(Xét, f

∗
rKr) �� 0

0 �� R1 lim Ri−1 Γ(Yét,Kr) ��

R1 lim(f∗
r )

��

Ri Γ(Yproét,K) ��

f∗
��

lim Ri Γ(Yét,Kr)

lim(f∗
r )

��

�� 0

If f is proper, then the following commutes with exact rows as well.

0 �� R1 lim Ri−1 Γ(Xét, f
!
rKr) ��

R1 lim((fr)∗)
��

Ri Γ(Xproét, f
!K) ��

f∗
��

lim Ri Γ(Xét, f
!
rKr)

lim((fr)∗)

��

�� 0

0 �� R1 lim Ri−1 Γ(Yét,Kr) �� Ri Γ(Yproét,K) �� lim Ri Γ(Yét,Kr) �� 0

Proof. The horizontal lines are parts of short exact sequences given by the composed functor
spectral sequence of R lim ◦R Γ, where we note that R lim has cohomological dimension � 1
on abelian groups. The lemma thus follows immediately from the commutative diagrams in
(6.10). �

Remark 6.3. Bhatt and Scholze’s six functor formalism on constructible complexes of Ẑ�-sheaves
on the pro-étale site works more generally for quasi-excellent quasi-compact quasi-separated
schemes over Z[1/�] and separated finitely presented maps between them, see [BS15, § 6.7].
Lemmas 6.1 and 6.2 remain true in this set-up (with the same proofs).

Remark 6.4. Related to Bhatt and Scholze’s pro-étale theory [BS15], there is Ekedahl’s �-adic
formalism [Ekh90], which leads to a six functor formalism (see [Ekh90, Theorem 6.3]) that is
closer in spirit to Jannsen’s continuous étale cohomology groups. We prefer to use Bhatt and
Scholze’s theory, as it allows us to work with actual sheaves on a site, whereas Ekedahl’s formal-
ism as well as Jannsen’s theory involve inverse systems of sheaves. The resulting triangulated
categories agree under suitable finiteness assumptions, see [BS15, § 5.5].

6.1.4 Properties (P1)–(P6), (P7.1), and (P7.2). Let k be a field and let � be a prime that
is invertible in k. Let V be the category whose objects are separated schemes of finite type over
k and where the morphisms are open immersions of schemes of the same dimension. For X ∈ V
of dimension d with structure morphism πX : X → Spec k, we define

H i(X,μ⊗n
�r ) := Ri−2d Γ(Xproét, π

!
Xμ
⊗n−d
�r ) ∈ ModZ�

, (6.13)

H i(X,Z�(n)) := Ri−2d Γ(Xproét, π
!
X Ẑ�(n− d)) ∈ ModZ�

, (6.14)

H i(X,Q�/Z�(n)) := lim−→
r

H i(X,μ⊗n
�r ) and H i(X,Q�(n)) := H i(X,Z�(n))⊗Z�

Q�, (6.15)

where Ẑ�(n) denotes the sheaf on Xproét defined in (6.6). By item (ii) in Lemma 6.1 and (6.11),
the cohomology groups in (6.13)–(6.15) are contravariantly functorial with respect to morphisms
in V (in fact, with respect to arbitrary étale maps U → X with dimU = dimX).

Lemma 6.5. Assume that X ∈ V is equi-dimensional and smooth over k. Then there are
canonical isomorphisms

H i(X,μ⊗n
�r ) � Ri Γ(Xproét, μ

⊗n
�r ) � H i

cont(Xét, (μ⊗n
�r , id)s) � H i(Xét, μ

⊗n
�r ),
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and

H i(X,Z�(n)) � Ri Γ(Xproét, Ẑ�(n)) � H i
cont(X, (μ

⊗n
�r )r),

which are compatible with respect to pullbacks along open immersions.

Proof. As π : X → Spec k is smooth of pure dimension d, there is a canonical isomorphism
(πX)∗comp(d)[2d]


→ π!
X , see item (iv) in Lemma 6.1. This isomorphism is compatible with respect

to pullbacks along open immersions by item (v) in Lemma 6.1. This yields the first isomorphism
in each row of the lemma. The comparison to continuous étale cohomology follows from (6.5) and
that to étale cohomology for finite coefficients from (6.1), because R lim1 vanishes on constant
inductive systems. This concludes the proof of the lemma. �

The main result of this section is the following.

Proposition 6.6. Let k be a field and let � be a prime that is invertible in k. Let A ⊂ ModZ�
be

the full subcategory of Z�-modules containing Z�, Q�, Q�/Z�, and Z/�r for all r � 1. Let V be the
category of separated schemes of finite type over k with morphisms given by open immersions
U ↪→ X with dimU = dimX. Let the cohomology functor (4.1) be given by (6.13)–(6.15). Then
(P1)–(P5) from Definitions 4.2 and 4.4 hold true. If k is perfect, then (P6) holds true as well.
Moreover:

– property (P7.1) holds if k is algebraically closed;
– property (P7.2) holds if k is the perfect closure of a finitely generated field.

In the terminology of Definitions 4.2, 4.4, and 4.5, the proposition states that H∗(−, A(n))
is a twisted Borel–Moore cohomology theory on V that is �-adic if k is perfect and it is adapted
to algebraic equivalence if k is algebraically closed, whereas it is adapted to rational equivalence
if k is the perfect closure of a finitely generated field.

Proof of Proposition 6.6. Item (P4) is clear (by definition). As the direct limit functor as well
as ⊗Z�

Q� is exact, it suffices to prove the remaining properties for A = Z/�r and A = Z�.

Step 1: item (P1). Let X,Y ∈ V and let f : X → Y be a proper morphism of schemes with c =
dimY − dimX. The existence of the pushforward f∗ : H i−2c(X,A(n− c))→ H i(Y,A(n)) follows
from (6.12) and item (iii) in Lemma 6.1. Functoriality in f (i.e. (f ◦ g)∗ = f∗g∗) follows from the
functoriality of the trace map (which by (6.9) may either be deduced from the corresponding
statement on the étale site, or directly from item (iii) in Lemma 6.1). Compatibility of f∗ with
pullbacks along open immersions may by Lemma 6.2 be checked in the case where A = Z/�r on
the étale site of X, which is well-known (and holds, in fact, for arbitrary étale maps in place of
open immersions), see [BO74, (1.2.2) and § 2.1]. This proves (P1).

Step 2: item (P2). Let X ∈ V and let i : Z ↪→ X be a closed immersion with complement j :
U ↪→ X. Let c = dimX − dimZ. By [BS15, Lemma 6.1.16], there is an exact triangle

R i∗i!π!
X

Tri−→ π!
X

θj−→ R j∗j∗compπ
!
X ,

where we used j∗ � j∗comp (see Lemma 6.1). By Lemma 6.1, j∗comp � j!, π!
Z

→ i!π!

X , and π!
U

→

j∗compπ
!
X . Hence, the above triangle identifies to an exact triangle

R i∗π!
Z −→ π!

X −→ R j∗π!
U .

Applying R Γ(Xproét,−), the corresponding long exact sequence yields the Gysin sequence
claimed in (P2). The map ι∗ in the Gysin sequence from item (P2) coincides, by construction,
with the proper pushforward with respect to the inclusion Z ↪→ X. Functoriality with respect to
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open immersions follows by Lemma 6.2 from the case A = Z/�r on the étale site which is well-
known (and holds, in fact, for arbitrary étale maps), see, e.g., [BO74, (1.1.2), Lemma 1.4, and
(2.1)]. Similarly, functoriality with respect to proper pushforwards follows by Lemma 6.2 from
the case of finite coefficients A = Z/�r on the étale site, which is well-known, see, e.g., [BO74,
(1.2.4) and (2.1)]. This proves (P2).

Step 3: item (P3). By the topological invariance of the pro-étale topos (see [BS15, Lemma 5.4.2]),
we may replace X be the base change to the perfect closure kper of k, and x by the unique point
in Xkper that lies over it via the natural map Xkper → X (where we use that the latter is a
universal homeomorphism). After this reduction step, we may assume that k is perfect.

Note that H i(x,A(n)) in (4.2) is defined as a direct limit where it suffices to run only
through the cohomology of regular (hence, smooth, because k is perfect) schemes, so that the
vanishing H i(x,A(n)) = 0 for i < 0 as well as the canonical isomorphism H0(x,A(0)) � A which
is functorial in A follows from Lemma 6.5. The fundamental class [x] ∈ H0(x,Z�(0)) corresponds
via the canonical isomorphism H0(x,Z�(0)) � Z� to 1 ∈ Z�. More precisely, let U ⊂ {x} be dense
and smooth over k. By Lemma 6.5, the canonical isomorphism in item (iv) of Lemma 6.1 induces
a canonical isomorphism

H0(U,Z�(0)) � H0(Uproét, Ẑ�(0)),

which is compatible with respect to restrictions to open subsets. The class of H0(U,Z�(0))
induced by the unit section of the pro-étale sheaf Ẑ�(0) yields a canonical fundamental class [U ] ∈
H0(U,Z�(0)) with H0(U,Z�(0)) = [U ]Z�. This class is compatible with respect to restrictions to
open subsets (see item (v) in Lemma 6.1), hence induces a canonical class [x] ∈ H0(x,Z�(0)) in
the limit. This proves (P3).

Step 4: item (P5). There is a canonical short exact sequence

0 −→ Ẑ�(n) ×�r−→ Ẑ�(n) −→ μ⊗n
�r −→ 0

of sheaves on (Spec k)proét. Applying π!
X , we arrive at the exact triangle

π!
X Ẑ�(n) ×�r−→ π!

X Ẑ�(n) −→ π!
Xμ
⊗n
�r . (6.16)

The Bockstein sequence in (P5) is (up to some shifts) the long exact sequence associated to this
triangle after applying R Γ(Xproét,−). Functoriality of the exceptional pullback π!

X shows that
the Bockstein sequence is functorial with respect to pullbacks along morphisms in V and with
respect to proper pushforwards from (P1). This proves (P5).

Step 5: item (P6) for k perfect. Let X ∈ V and let x ∈ X(1). In the direct limit (4.2) that
defines H i(x,A(n)), we may restrict ourselves to regular (hence, smooth, as k is perfect) dense
open subsets Vx ⊂ {x}, so that Lemma 6.5 identifies H i(Vx, A(n)) canonically with continuous
étale cohomology. The map ε : κ(x)∗ → H1(x,Z�(1)) is then induced by the Kummer sequence
in continuous étale cohomology, see (6.3). Surjectivity of the reduction ε : κ(x)∗ → H1(x, μ�r)
follows from the Kummer sequence in étale cohomology and Grothendieck’s Hilbert theorem 90,
which implies that

lim−→
F0X⊂U⊂X

H1
ét(U,Gm) � lim−→

F0X⊂U⊂X

Pic(U) = 0.

Let X ∈ V be integral of dimension d with generic point η and let x ∈ X(1) be a regular point
with closure i : D ↪→ X. We claim that the composition ∂ ◦ ε : κ(η)∗ → H0(x,Z�(0)) = [x]Z�
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satisfies

∂ ◦ ε(f) = [x](−νx(f)),

where νx denotes the valuation on κ(η) induced by x. It suffices to check this after reduction
modulo �r for r � 1. It follows from [SGA41

2 , p. 147, (cycle), Lemme 2.3.6] that the fundamental
class [x] ∈ H0(x, μ⊗0

�r ) that we defined above via Poincaré duality (i.e. via item (iv) in Lemma 6.1)
is induced by the cycle class

cl�r(D) ∈ H2
D(Xét, μ�r) = H2(Dét, i

!
rμ�r) � H2−2d(Dét, π

!
Dμ
⊗1−d
�r )

from [SGA41
2 , p. 138, (cycle), Définition 2.1.2]. The claim in question follows therefore from the

anticommutativity of the diagram in [SGA41
2 , p. 138, (cycle), (2.1.3)]. This concludes the proof

of (P6).
By Lemma 5.8 and Corollary 5.10 (which apply because we have proven (P1)–(P6) already),

the proper pushforward map from (P1) together with H0(x,Z�(0)) = [x]Z� from (P3) yields for
any X ∈ V a canonical map

ι∗ :
⊕

x∈X(1)

[x]Z� −→ H2(F1X,Z�(1)) � H2(X,Z�(1)),

as claimed in (4.3). If X is a smooth variety, then there is a canonical isomorphism
H2(X,Z�(1)) � H2

cont(X,Z�(1)) (see Lemma 6.5) and so we may compare ι∗ to the first Chern
class map c1 from (6.3), as follows.

Lemma 6.7. Let k be a field and let X be a smooth k-variety. For any Weil divisor D ∈⊕
x∈X(1) [x]Z, we have:

(i) ι∗D = c1(OX(D)), where ι∗ is the cycle class map from (4.3) and c1 is from (6.3);
(ii) c1(OX(D)) = 0 if and only if OX(D) ∈ Pic(X) is contained in the subgroup of �-divisible

elements of Pic(X).

Proof. The first assertion is [Jan88, Lemma 3.26]. For the second assertion, note that the Kummer
sequence (6.2) yields an exact sequence

H1(Xét, (Gm,×�)r) −→ Pic(X) c1−→ H2
cont(X,Z�(1)).

Functoriality of the extension in (6.1) shows that the image of the first map is given by subgroup
of �-divisible elements of Pic(X) (cf. [Jan88, Remark 6.15]), which concludes the proof of the
lemma. �

Step 6: item (P7.1) for k algebraically closed. Let us now assume that k is algebraically closed
and let X be a regular (hence, smooth, as k = k) variety over k. Note that (P7.1) is well-
known in the case where X is smooth projective, and we deduce the general case from this
statement in what follows. We denote by NS(X) = Pic(X)/ ∼alg the group of divisors modulo
algebraic equivalence on X. As k is algebraically closed, the subgroup of algebraically trivial
divisors in Pic(X) is �-divisible. By Lemma 6.7, the first Chern class map from (6.3) descends
to a map c1 : NS(X)⊗ Z� → H2(X,Z�(1)) and, again by Lemma 6.7, it suffices to show that
this is injective. Let X be a projective normal compactification of X and let τ : X ′ → X be an
alteration (i.e. a projective generically finite morphism with regular source) of degree prime to �,
which exists by [ILO14, Exposé X, Théorème 2.1]. Since k is algebraically closed, X ′ is smooth.
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Putting X ′ := τ−1(X), we get the following commutative diagram.

NS(X ′)⊗ Z�

c1
��

restr.

��

H2(X ′,Z�(1))

restr.

��

NS(X ′)⊗ Z�

(τ |X′ )∗
��

c1
�� H2(X ′,Z�(1))

(τ |X′ )∗
��

NS(X)⊗ Z�

c1
�� H2(X,Z�(1))

We claim that it suffices to show that the horizontal arrow in the middle is injective. To see
this, let α ∈ NS(X)⊗ Z�. Then c1(τ∗α) = τ∗c1(α) and so injectivity of the horizontal arrow in
the middle implies c1(α) 	= 0 unless τ∗α = 0, which, in turn, implies τ∗τ∗α = deg τ · α = 0 and
so α = 0 because deg τ is coprime to �.

By the localization sequence, the kernel of NS(X ′)⊗ Z� → NS(X ′)⊗ Z� is generated by
classes of divisors supported on X

′ \X. Similarly, the Gysin sequence (see (P2)) shows that
the kernel of the restriction map H2(X ′,Z�(1))→ H2(X ′,Z�(1)) is generated by the cycle
classes of these divisors. As the first horizontal map in the above diagram is injective by
[Mil80, p. 216, V.3.28], whereas the restriction map NS(X ′)→ NS(X ′) is surjective (see [Ful98,
Proposition 1.8]), this shows that the horizontal arrow in the middle of the above diagram is
injective, as desired. This proves (P7.1).

Step 7: item (P7.2) for k the perfect closure of a finitely generated field. We use the following
well-known lemma.

Lemma 6.8. Let X be a separated scheme of finite type over a field k of characteristic p > 0
and let E/k be a purely inseparable extension. Then the flat pullback map CHi(X)[1/p]→
CHi(XE)[1/p] is an isomorphism.

Proof. The argument is well-known; we recall it for convenience. By a standard limit argument, it
suffices to treat the case where E/k is a finite extension of degree ps for some s. Let f : XE → X
be the canonical map. Then f∗ ◦ f∗ = ps · id and so f∗ is injective after inverting p. As f is a
universal homeomorphism, we have that for any subvariety Z ⊂ XE : f∗f∗[Z] = m[Z] for some
m � 1 and f∗ ◦ f∗ = ps · id implies that m must be a p-power. Hence, f∗ is surjective after
inverting p, as desired. �

Now let k be the perfect closure of a finitely generated field k0 ⊂ k, and let X be a regular
(hence smooth) variety over k. By Lemma 6.7, it suffices to show that the map

c1 ⊗ Z� : Pic(X)⊗Z Z� −→ H2(X,Z�(1)) (6.17)

induced by c1 from (6.3) is injective, where we note that the right-hand side identifies to con-
tinuous étale cohomology by Lemma 6.5. Using the existence of prime to � alterations, the same
argument as in step 6 reduces us to the case where X is smooth projective over k. At this point
the argument is similar to [Jan88, Remark 6.15].

As X is defined over some finitely generated field, we may assume (up to enlarging k0) that
X = X0 ×k0 k for some smooth k0-variety X0.

Assume for the moment that X0 is geometrically integral. By Grothendieck’s theorem,
the Picard functor on X0 is then represented by the Picard scheme PicX0/k, see e.g. [Kle05,
Theorem 9.4.8]. In particular, Pic(X0) is given by the group of k0-rational points of PicX0/k.
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The quotient of PicX0/k by the identity component is always a finitely generated group scheme
(the Néron–Severi group). Moreover, the identity component is an abelian variety over k0 and
because k0 is finitely generated, its group of k0-rational points is finitely generated by Néron’s
Mordell–Weil theorem [Nér52]. It follows that Pic(X0) is a finitely generated abelian group.

In general,X0 will split into a finite union of geometrically integral smooth projective varieties
after a finite extension of the base field. The above argument together with a pull and push
argument then shows that, in general, Pic(X0) contains an n-torsion subgroup T for some n � 1
such that Q := Pic(X0)/T is a finitely generated abelian group. We consider the short exact
sequence 0→ T → Pic(X0)→ Q→ 0. As Q is finitely generated and T is n-torsion, this sequence
remains exact if we apply either the �-adic completion functor or ⊗ZZ�. Comparing the two
resulting short exact sequences, we find that

lim←−
r

(Pic(X0)/�r)

−→ Pic(X0)⊗Z Z�. (6.18)

The usual Kummer sequence on the étale site yields compatible injections Pic(X0)/�r ↪→
H2(X0, μ

⊗1
�r ), i.e. an injection of projective systems. Applying the inverse limit functor, this

yields by (6.18) an injection Pic(X0)⊗Z Z� ↪→ limH2(X0, μ
⊗1
�r ). By (6.1) and the construction

of c1 in (6.3), this injection factors through

c1 ⊗ Z� : Pic(X0)⊗Z Z� −→ H2(X0,Z�(1))

and so the latter must be injective as well. It follows that (6.17) is injective, because c1
is functorial with respect to pullbacks, and the canonical pullback maps yield isomorphisms
Pic(X0)⊗Z Z� � Pic(X)⊗Z Z� (see Lemma 6.8) and H2(X0,Z�(1)) � H2(X,Z�(1)) (see [BS15,
Lemma 5.4.2]), because k/k0 is purely inseparable by assumption. This concludes the proof
of (P7.2) and, hence, finishes the proof of the proposition. �

6.2 Borel–Moore cohomology of complex analytic spaces
If X is a complex algebraic scheme with underlying analytic space Xan and A is an abelian group,
then one may (and we do) define its Borel–Moore homology HBM

i (Xan, A) analogous to singular
homology with values in A, but with locally finite chains instead of finite chains, see [Bre97,
Theorem V.12.14 and Corollary V.12.21]. An alternative sheaf theoretic definition of the same
group can be found in [BM60] and [Bre97, Chapter V]; a definition in terms of relative singular
cohomology is given in [Ful98, Example 19.1.1] and the references therein. If X is smooth and
equi-dimensional of dimension dX , then HBM

i (Xan, A) � H2dX−i
sing (Xan, A) by Poincaré duality,

see [Bre97, Chapter V, § 9].

Proposition 6.9. Let V be the category whose objects are separated schemes of finite type
over C and whose morphisms are given by open immersions of schemes of the same dimension.
Further let A = ModZ and put A(n) := A⊗Z (2πi)nZ for all A ∈ A and n ∈ Z. Then let

H i(X,A(n)) := HBM
2dX−i(Xan, A(dX − n)),

where the right-hand side denotes Borel–Moore homology of the underlying analytic space,
and where dX = dimX. Then H∗(−, A(n)) defines an integral twisted Borel–Moore cohomology
theory that is adapted to algebraic equivalence, see Definition 4.6.

Proof. Property (P1′) follows from covariant functoriality of Borel–Moore homology with respect
to proper maps, and item (P2′) is a consequence of the long exact sequence of pairs in
Borel–Moore homology, see, e.g., [Ful98, § 19.1] and the references therein. If X is smooth and
integral, then H i(X,A(n)) � H i

sing(Xan, A(n)). In particular, H0(X,A(0)) � A and there is a
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canonical class

[X] ∈ H0
sing(Xan,Z(0)) = Z,

which corresponds to 1 ∈ Z. This proves (P3′), as in the direct limit (4.2), it suffices to run
through smooth integral varieties Vx ⊂ {x}.

It remains to prove that (P4′)–(P6′) and (P7.1′) hold, where we recall that these properties
are formally deduced from (P4)–(P6) and (P7.1) by the replacement of symbols Z� � Z, Q� � Q,
and �r � r.

Item (P4′) is clear and item (P5′) follows from the long exact sequence associated to the coef-
ficient sequence 0→ Z(1) ×r→ Z(1)→ Z/r(1)→ 0; functoriality of the Bockstein sequence with
respect to pullbacks and pushforwards in Borel–Moore (co-)homology are well-known and left to
the reader.

For property (P6′), note that in the direct limit (4.2) it suffices to run through regular
(Zariski) open subsets V := Vx of the closure of x in X. In this case, H i(V,A(n)) identifies to
singular cohomology and so the exponential sequence yields a map H0(Van,O∗Van

)→ H1(V,Z(1)).
Taking direct limits, and using that algebraic functions are holomorphic, we get a map ε : κ(x)∗ →
H1(x,Z(1)). For any positive integer r, this induces by reduction modulo r a map

ε : κ(x)∗ → H1(x,Z/r(1))

and we need to prove that this is surjective.
Consider the following commutative diagram of sheaves on Van (cf. [CV12, § 3.1]).

0 �� Z(1) ��

e
1
r −

��

OVan

e
1
r −

��

e−
�� O∗Van

=

��

�� 0

0 �� μr �� O∗Van

(−)r

�� O∗Van
�� 0

The rows in this diagram are exact and we get a boundary map β : H0(Van,O∗Van
)→ H1(V, μr).

Taking the direct limit over all (Zariski) open dense V ⊂ {x} and restricting β to algebraic
functions, we get a map β : κ(x)∗ → H1(x, μr). Commutativity of the above diagram shows that
β identifies to ε under the isomorphism Z/r(1)→ μr, 1⊗ (2πi) � �� e2πi/r. It thus suffices to show
that β is surjective. This follows by comparing the sequence above with the Kummer sequence
0→ μr → Gm → Gm → 0 on the étale site Vét and using that H1(Van, μr) � H1(Vét, μr) (see,
e.g., [Mil80, p. 117, III.3.12]) and

lim−→
∅�=V⊂{x}

H1(Vét,Gm) = 0,

because H1(Vét,Gm) � Pic(V ) by Grothendieck’s Hilbert theorem 90. We have thus shown that
ε is surjective. Finally, let X ∈ V integral with generic point η and a regular point x ∈ X(1). We
claim that the natural composition

κ(η)∗ ε �� �� H1(η,Z(1)) ∂−→ H0(x,Z(0)) = [x]Z,

where ∂ is induced by (P2′), maps f to [x](−νx(f)), where νx denotes the valuation on κ(η)
induced by x. It suffices to check this modulo an arbitrary prime power, which, thanks to the
comparison between étale cohomology and singular cohomology with finite coefficients
(see [Mil80, p. 117, III.3.12]), follows from step 5 in the proof of Proposition 6.6. This concludes
the proof of (P6′).
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Finally, property (P7.1′) is well-known in the case where X is smooth projective and follows
for arbitrary smooth X by choosing a smooth compactification (using resolution of singularities)
by a similar argument as in step 6 of the proof of Proposition 6.6. This concludes the proof of
the proposition. �

7. Comparison theorems to algebraic cycles

In this section, we fix a prime � and an �-adic twisted Borel–Moore cohomology theory
H∗(−, A(n)) on a constructible category of Noetherian schemes V with coefficients in a full
subcategory A ⊂ ModZ�

, see Definition 4.4. In particular, (P1)–(P6) hold true. The main result
is that this set-up allows us to compute several cycle groups efficiently.

7.1 �-adic Chow groups
We use the notation CHi(X)Z�

:= CHi(X)⊗Z Z�.

Lemma 7.1. For any X ∈ V, there is a canonical isomorphism

CHi(X)Z�
�

⊕
x∈X(i) [x]Z�

im
(⊕

x∈X(i−1) κ(x)∗ ⊗Z Z�
ε−→

⊕
x∈X(i−1) H1(x,Z�(1)) ∂◦ι∗−→

⊕
x∈X(i) [x]Z�

) ,
where ε is induced by the map from (P6), and where ∂ ◦ ι∗ denotes the composition⊕

x∈X(i−1)

H1(x,Z�(1)) ι∗−→ H2i−1(Fi−1X,Z�(1)) ∂−→
⊕

x∈X(i)

H0(x,Z�(0)) =
⊕

x∈X(i)

[x]Z�,

where ι∗ and ∂ are induced by (P2) and the last equality uses (P3).

Proof. We recall our convention that for a Noetherian scheme X, X(j) denotes the set of
points x ∈ X of dimension dim({x}) = dim(X)− j. In particular, CHi(X)Z�

is the quotient of⊕
x∈X(i) [x]Z� by the Z�-submodule generated by cycles that are given by the pushforward of a

principal divisor on the normalization of some subvariety W ⊂ X with dimW = dimX − i+ 1.
The lemma therefore follows directly from Lemma 5.12 and the second part of (P6). This
concludes the proof. �

In view of Lemma 7.1, it is natural to make the following definition.

Definition 7.2. For X ∈ V, we define

Ai(X)Z�
:=

⊕
x∈X(i) [x]Z�

im
(⊕

x∈X(i−1) H1(x,Z�(1)) ∂◦ι∗−→
⊕

x∈X(i) [x]Z�

) .
By Lemma 7.1, there is a canonical surjection

CHi(X)Z�
�� ��Ai(X)Z�

.

We compute the kernel of this surjection in Lemma 7.4.

7.2 Cycle class maps and coniveau filtration
By Corollary 5.10, H2i(X,Z�(i)) � H2i(FiX,Z�(i)). The Gysin sequence from Lemma 5.8
therefore yields a map

ι∗ :
⊕

x∈X(i)

[x]Z� −→ H2i(X,Z�(i)),
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which is zero on the image of ∂ :
⊕

x∈X(i−1) H1(x,Z�(1))→
⊕

x∈X(i) [x]Z�. It thus follows from
Lemma 7.1 and Definition 7.2 that there is a well-defined cycle class map

cliX : CHi(X)Z�
−→ H2i(X,Z�(i)), (7.1)

which factors through the canonical surjection CHi(X)Z�
�� ��Ai(X)Z�

. We then define

CHi
0(X)Z�

:= ker(cliX).

As the category V is constructible, Z ∈ V for any closed subscheme Z ⊂ X. Using this, we
can define the coniveau filtration N∗ on CHi(X)Z�

as follows.

Definition 7.3. A class z ∈ CHi(X)Z�
has coniveau j, i.e. z ∈ N j CHi(X)Z�

, if and only if it is
homologically trivial on a closed subscheme of codimension j. More precisely, z ∈ N j CHi(X)Z�

if and only if there is a closed subscheme ι : Z ↪→ X with j = dimX − dimZ and a cycle z′ ∈
CHi−j

0 (Z)Z�
with z = ι∗z′ ∈ CHi(X)Z�

.

For the case when X is not equi-dimensional, we recall from § 2 that X(i) := X(d−i) and so
CHi(X)Z�

is the group of �-adic cycles of dimension d− i, where d = dimX.
The coniveau filtration N∗ on CHi(X)Z�

is of the following form

N i = 0 ⊂ N i−1 ⊂ N i−2 ⊂ · · · ⊂ N1 ⊂ N0 = CHi
0(X)Z�

⊂ CHi(X)Z�
.

This definition is related to the groups Ai(X)Z�
from Definition 7.2, as follows.

Lemma 7.4. Let X ∈ V. Then Ai(X)Z�
= CHi(X)Z�

/N i−1 CHi(X)Z�
.

Proof. We need to show that a codimension-i cycle on X has coniveau i− 1 if and only if it is
represented by a cycle in

im
( ⊕

x∈X(i−1)

H1(x,Z�(1)) ∂◦ι∗−→
⊕

x∈X(i)

[x]Z�

)
. (7.2)

For Z ∈ V the Gysin sequence (P2) yields a residue map

∂ : H1(F0Z,Z�(1)) −→
⊕

z∈Z(1)

[z]Z�.

The compatibility of the Gysin sequence with proper pushforwards yields the following
commutative diagram.

H1(F0Z
red,Z�(1)) ��

��

⊕
z∈(Zred)(1) [z]Z�

=

��

H1(F0Z,Z�(1)) ��
⊕

z∈Z(1) [z]Z�

Here Zred denotes the reduced scheme that underlies Z. If Z ⊂ X is closed so that U = X \ Z
satisfies dimU = dimX, then the comparison of the Gysin sequences for the pairs (X,Z) and
(X,Zred) shows by the five lemma that the pushforward map H i(Zred, A(n))→ H i(Z,A(n)) is
an isomorphism. This argument remains valid if we replace Z by some dense open subset Z◦ ⊂ Z
and X by X \ (Z \ Z◦). It follows that in the above diagram the vertical arrow on the left is
an isomorphism for all Z ⊂ X closed with dim(X \ Z) = dimX. The image in (7.2) therefore
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agrees with

im
( ⊕

Z⊂X

H1(F0Z,Z�(1)) ∂◦ι∗−→
⊕

x∈X(i)

[x]Z�

)
,

where Z ⊂ X runs through all closed subschemes Z ⊂ X with i− 1 = dimX − dimZ and ι :
Z ↪→ X denotes the inclusion.

Let us now fix a subscheme Z ⊂ X with i− 1 = dimX − dimZ. As the Gysin sequence
(P2) is functorial with respect to proper pushforwards, we get from Lemma 5.8 the following
commutative diagram with exact rows.

H1(F0Z,Z�(1))

ι∗
��

∂
��
⊕

z∈Z(1) [z]Z�
� �

ι∗
��

cl1Z
�� H2(Z,Z�(1))

ι∗
��

H2i−1(Fi−1X,Z�(i))
∂

��
⊕

x∈X(i) [x]Z�

cliX
�� H2i(X,Z�(i))

Exactness of the first row shows that the �-adic cycles that are homologically trivial on Z are
exactly those in the image of ∂ in the left upper corner. This description together with the
commutativity of the square on the left implies the lemma. �

By the above lemma, Ai(X)Z�
= CHi(X)Z�

/N i−1 CHi(X)Z�
. The following lemma computes

this quotient (and, hence, N i−1 CHi(X)Z�
) in the cases where (P7.1) and (P7.2) hold, respec-

tively; the result is essentially due to Jannsen, see [Jan00, Lemmas 5.7 and 5.8] where it is
proven ⊗Q�.

Before we state the next result, we refer the reader to [Ful98, § 10.3] for the definition of
algebraic equivalence of algebraic cycles.

Lemma 7.5. For X ∈ V, the following holds:

(i) If (P7.1) holds, then

N i−1 CHi(X)Z�
= CHi(X)alg ⊗Z Z� and Ai(X)Z�

= (CHi(X)/ ∼alg)⊗Z Z�.

(ii) If (P7.2) holds, then N i−1 CHi(X)Z�
= 0 and Ai(X)Z�

= CHi(X)⊗Z Z�.

Proof. We aim to describe the image of⊕
x∈X(i−1)

H1(x,Z�(1)) ι∗−→ H2i−1(Fi−1X,Z�(1)) ∂−→
⊕

x∈X(i)

[x]Z�.

By Lemma 5.12, the image is generated by the images of the maps

H1(F0W
′,Z�(1)) ∂−→

⊕
w∈(W ′)(1)

[w]Z�
τ∗−→

⊕
x∈X(i)

[x]Z�,

where W ⊂ X runs through all closed subvarieties of codimension dimX − dimW = i− 1 and
τ : W ′ →W denotes the normalization. By Lemma 5.8, the image of ∂ above is given by the
kernel of

ι∗ :
⊕

w∈(W ′)(1)
[w]Z� −→ H2(F1W

′,Z�(1)) � H2(W ′,Z�(1)), (7.3)

where the last isomorphism is due to Corollary 5.10. Since W ′ is normal, it is regular in codi-
mension one and so we may in (7.3) up to shrinking W ′ assume that W ′ is regular. The kernel of
(7.3) then coincides with the Z�-module spanned by algebraically trivial divisors on W ′ if (P7.1)
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holds, and it coincides with the Z�-module spanned by principal divisors if (P7.2) holds. This
description proves the lemma. �

7.3 The cokernel of the cycle class map
Definition 7.6. For X ∈ V, we define

Zi(X)Z�
:= coker

(
cliX : CHi(X)Z�

−→ H2i(X,Z�(i))
)
,

and Zi(X)[�r] := Zi(X)Z�
[�r], where the cycle class map cliX is from (7.1).

The following result generalizes Colliot-Thélène and Voisin’s computation of the failure of
the integral Hodge conjecture for codimension-two cycles on smooth complex projective varieties
from [CV12]. The argument follows the same lines as in § 3 above.

Theorem 7.7. For any X ∈ V, there are canonical isomorphisms:

Zi(X)[�r] � H2i−1
i−2,nr(X,μ

⊗i
�r )/H2i−1

i−2,nr(X,Z�(i)), (7.4)

Zi(X)[�∞] � H2i−1
i−2,nr(X,Q�/Z�(i))/H2i−1

i−2,nr(X,Q�(i)). (7.5)

The image of H2i(X,Z�(i))[�r]→ Zi(X)[�r] corresponds via the isomorphism in (7.4) to the
subspace generated by the image of H2i−1(X,μ⊗i

�r )→ H2i−1
i−2,nr(X,μ

⊗i
�r ). Similarly, the image

of H2i(X,Z�(i))[�∞]→ Zi(X)[�∞] corresponds via the isomorphism in (7.5) to the subspace
generated by the image of

H2i−1(X,Q�/Z�(i))→ H2i−1
i−2,nr(X,Q�/Z�(i)).

Before we turn to the proof of the above theorem we need the following.

Lemma 7.8. Let X ∈ V. Then the natural map

H2i−1(Fi−1X,μ
⊗i
�r )

H2i−1(Fi−1X,Z�(i))
−→ F i−1H2i−1(Fi−2X,μ

⊗i
�r )

F i−1H2i−1(Fi−2X,Z�(i))
=

H2i−1
i−2,nr(X,μ

⊗i
�r )

H2i−1
i−2,nr(X,Z�(i))

is an isomorphism.

Proof. As the above map is clearly surjective, it suffices to show that it is injective. As

F i−1H2i−1(Fi−2X,Z�(i)) = im(H2i−1(Fi−1X,Z�(i))→ H2i−1(Fi−2X,Z�(i))),

it thus suffices to show that any element

α ∈ ker
(
H2i−1(Fi−1X,μ

⊗i
�r ) −→ H2i−1(Fi−2X,μ

⊗i
�r )

)
satisfies

δ(α) = 0 ∈ H2i(Fi−1X,Z�(i)),

which by (P5) implies that α lifts to an integral class. By Lemma 5.8, α = ι∗ξ for some

ξ ∈
⊕

x∈X(i−1)

H1(x, μ⊗1
�r ).

As δ commutes with ι∗ by functoriality of the Bockstein sequence in (P5), we find δ(α) = ι∗(δ(ξ)).
On the other hand,

δ(ξ) ∈
⊕

x∈X(i−1)

H2(x,Z�(1))

is �r-torsion by property (P5), whereas the above direct sum is torsion-free by Lemma 5.13.
Hence, δ(α) = 0, which concludes the proof of the lemma. �
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Proof of Theorem 7.7. By Lemma 5.8, we have an exact sequence⊕
x∈X(i)

[x]Z�
ι∗−→ H2i(X,Z�(i)) −→ H2i(Fi−1X,Z�(i)) −→

⊕
x∈X(i)

H1(x,Z�(0)).

By Lemma 5.13, the last term in this sequence is torsion-free and so

Zi(X)[�r] � H2i(Fi−1X,Z�(i))[�r].

By property (P5), the Bockstein map thus induces an isomorphism

Zi(X)[�r] � H2i−1(Fi−1X,μ
⊗i
�r )

H2i−1(Fi−1X,Z�(i))
. (7.6)

By Lemma 7.8, we then get a canonical isomorphism

Zi(X)[�r] �
H2i−1

i−2,nr(X,μ
⊗i
�r )

H2i−1
i−2,nr(X,Z�(i))

,

which proves (7.4).
Now let α ∈ H2i−1(Fi−1X,μ

⊗i
�r ) with image

[α] ∈ H2i−1(Fi−1X,μ
⊗i
�r )

H2i−1(Fi−1X,Z�(i))
.

By Corollary 5.10, H2i−1(FiX,μ
⊗i
�r ) � H2i−1(X,μ⊗i

�r ) and so [α] lifts to F iH2i−1(Fi−1X,μ
⊗i
�r )

if and only if δ(α) ∈ H2i(Fi−1X,Z�(i))[�r] lifts to an �r-torsion class in H2i(X,Z�(i)). Hence,
the image of the �r-torsion classes H2i(X,Z�(i))[�r] inside Zi(X)[�r] correspond via (7.6) to the
subspace

F iH2i−1(Fi−1X,μ
⊗i
�r )

H2i−1(Fi−1X,Z�(i))
⊂ H2i−1(Fi−1X,μ

⊗i
�r )

H2i−1(Fi−1X,Z�(i))
,

where we recall that F iH2i−1(Fi−1X,μ
⊗i
�r ) ⊂ H2i−1(Fi−1X,μ

⊗i
�r ) is the image of H2i−1(X,μ⊗i

�r ),
see Corollary 5.10. Combining this with the isomorphism in Lemma 7.8, we find that the image of
H2i(X,Z�(i))[�r]→ Zi(X)[�r] corresponds via the isomorphism in (7.4) to the subspace generated
by the image of H2i−1(X,μ⊗i

�r )→ H2i−1
i−2,nr(X,μ

⊗i
�r ), as claimed.

By (P4), the identity (7.5) as well as the assertion on the image of H2i(X,Z�(i))[�∞]→
Zi(X)[�∞] follow from what we have proven above by taking direct limits over r. This concludes
the proof of the theorem. �

The proof has the following consequence, that we want to record here.

Corollary 7.9. Let X ∈ V and α ∈ H2i−1(Fi−1X,μ
⊗i
�r ). Then

δ(α) ∈ im(H2i(X,Z�(i))→ H2i(Fi−1X,Z�(i))).

Proof. By Lemma 5.8, we have an exact sequence⊕
x∈X(i)

[x]Z�
ι∗−→ H2i(X,Z�(i)) −→ H2i(Fi−1X,Z�(i)) −→

⊕
x∈X(i)

H1(x,Z�(0)).

For any α ∈ H2i−1(Fi−1X,μ
⊗i
�r ), the class δ(α) ∈ H2i(Fi−1X,Z�(i)) is torsion and so Lemma 5.13

implies that it maps to zero in
⊕

x∈X(i) H1(x,Z�(0)). �

7.4 The �-adic Griffiths group
Recall from (7.1) that the cycle class map cliX : CHi(X)Z�

→ H2i(X,Z�(i)) factorizes through

Ai(X)Z�
from Definition 7.2. We denote the induced cycle class map on Ai(X)Z�

by c̃l
i

X .
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Definition 7.10. For X ∈ V, we define

Ai
0(X)Z�

:= ker
(
c̃l

i

X : Ai(X)Z�
−→ H2i(X,Z�(i))

)
.

By Lemma 7.5, Ai
0(X)Z�

coincides with the �-adic Griffiths group of homologically trivial
Z�-cycles modulo algebraic equivalence if (P7.1) holds, whereas it is given by the kernel of the
cycle class map CHi(X)Z�

→ H2i(X,Z�(i)) if (P7.2) holds.
Using the definition of Ai(X)Z�

from § 7.1, we get

Ai
0(X)Z�

=
ker

(
ι∗ :

⊕
x∈X(i) [x]Z� −→ H2i(X,Z�(i))

)
im

(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x,Z�(1)) −→

⊕
x∈X(i) [x]Z�

) . (7.7)

The following result is motivated by Bloch and Ogus’ computation of the second Griffiths group
of a smooth complex projective variety in [BO74, (7.5)].

Proposition 7.11. For X ∈ V, there is a canonical isomorphism

Ai
0(X)Z�

� H2i−1
i−2,nr(X,Z�(i))/H2i−1(X,Z�(i)).

Proof. By Lemma 5.8 and Corollary 5.10, we have exact sequences

H2i−1(X,Z�(i)) −→ H2i−1(Fi−1X,Z�(i))
∂−→

⊕
x∈X(i)

[x]Z�
ι∗−→ H2i(X,Z�(i))

and ⊕
x∈X(i−1)

H1(x,Z�(1)) ι∗−→ H2i−1(Fi−1X,Z�(i)) −→ H2i−1(Fi−2X,Z�(i)).

This shows by (7.7) that Ai
0(X)Z�

is isomorphic to

im
(
H2i−1(Fi−1X,Z�(i))
H2i−1(X,Z�(i))

−→ H2i−1(Fi−2X,Z�(i))
H2i−1(X,Z�(i))

)
,

which proves the proposition by definition of H2i−1
i−2,nr(X,Z�(i)). �

Combining Theorem 7.7 and Proposition 7.11, we obtain the following.

Corollary 7.12. Let X ∈ V. Then there is a canonical short exact sequence

0 −→ Ai
0(X)Z�

⊗ Z/�r −→
H2i−1

i−2,nr(X,μ
⊗i
�r )

H2i−1(X,μ⊗i
�r )
−→ Zi(X)[�r]

H2i(X,Z�(i))[�r]
−→ 0.

Proof. By Proposition 7.11, there is an exact sequence

Ai
0(X)Z�

⊗ Z/�r −→
H2i−1

i−2,nr(X,μ
⊗i
�r )

H2i−1(X,μ⊗i
�r )
−→

H2i−1
i−2,nr(X,μ

⊗i
�r )

H2i−1
i−2,nr(X,Z�(i))⊕H2i−1(X,μ⊗i

�r )
−→ 0.

By Theorem 7.7, Zi(X)[�r] � H2i−1
i−2,nr(X,μ

⊗i
�r )/H2i−1

i−2,nr(X,Z�(i)). One checks that the natural map
H2i−1(X,μ⊗i

�r )→ Zi(X)[�r] is induced by the Bockstein morphism and so its image coincides with
the image of the natural map H2i(X,Z�(i))[�r]→ Zi(X)[�r]. We thus obtain an exact sequence

Ai
0(X)Z�

⊗ Z/�r −→
H2i−1

i−2,nr(X,μ
⊗i
�r )

H2i−1(X,μ⊗i
�r )
−→ Zi(X)[�r]

H2i(X,Z�(i))[�r]
−→ 0 (7.8)

and it remains to show that the first arrow is injective. For this, let z ∈
⊕

x∈X(i) [x]Z� with ι∗z = 0
and let [z] ∈ Ai

0(X)Z�
. By Lemma 5.8, there is a class α ∈ H2i−1(Fi−1X,Z�(i)) with ∂α = z.
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The map in question sends [z] to the image of α in

F i−1H2i−1(Fi−2X,μ
⊗i
�r )

H2i−1(X,μ⊗i
�r )

=
H2i−1

i−2,nr(X,μ
⊗i
�r )

H2i−1(X,μ⊗i
�r )

.

If this vanishes, then there is a class ξ ∈
⊕

x∈X(i−1) H1(x, μ⊗1
�r ) such that

∂(α+ ι∗ξ) = 0 ∈
⊕

x∈X(i)

[x]Z/�r,

where α denotes the image of α in H2i−1(Fi−1X,μ
⊗i
�r ). By property (P6), we can pick a lift

ξ′ ∈
⊕

x∈X(i−1) H1(x,Z�(1)) of ξ and find that

∂(α+ ι∗ξ′) ∈
⊕

x∈X(i)

[x]Z�

is zero modulo �r. The above cycle and z = ∂α have the same class in Ai(X)Z�
and so z has

trivial image in Ai
0(X)Z�

/�r. This shows that the first map in (7.8) is injective and so the exact
sequence from the corollary follows. This concludes the proof. �

The following result gives a geometric interpretation of the extension

Ei
�r :=

H2i−1
i−2,nr(X,μ

⊗i
�r )

H2i−1(X,μ⊗i
�r )

from Corollary 7.12.

Lemma 7.13. For X ∈ V, there is a canonical isomorphism

Ei
�r(X) � ker(c̄liX : Ai(X)Z�

/�r −→ H2i(X,μ⊗i
�r )),

where c̄liX denotes by reduction modulo �r of the cycle class map c̃l
i

X : Ai(X)Z�
→ H2i(X,Z�(i)).

Proof. By Lemma 5.8, we have exact sequences

H2i−1(X,μ⊗i
�r ) −→ H2i−1(Fi−1X,μ

⊗i
�r ) ∂−→

⊕
x∈X(i)

[x]Z/�r ι∗−→ H2i(X,μ⊗i
�r )

and ⊕
x∈X(i−1)

H1(κ(x), μ⊗1
�r ) ι∗−→ H2i−1(Fi−1X,μ

⊗i
�r ) −→ H2i−1(Fi−2X,μ

⊗i
�r ).

Combining these two sequences, we find that Ei
�r(X) is isomorphic to

coker
(
∂ ◦ ι∗ :

⊕
x∈X(i−1)

H1(κ(x), μ⊗1
�r ) −→ ker

(
ι∗ :

⊕
x∈X(i)

[x]Z/�r → H2i(X,μ⊗i
�r )

))
.

By (P5) and (P6), H1(κ(x),Z�(1))/�r � H1(κ(x), μ⊗1
�r ) and so the above cokernel injects into

Ai(X)Z�
/�r = coker

( ⊕
x∈X(i−1)

H1(x,Z�(1)) ∂◦ι∗−→
⊕

x∈X(i)

[x]Z�

)/
�r,

cf. Definition 7.2. Moreover, a class z ∈ Ai(X)Z�
with reduction [z] ∈ Ai(X)Z�

/�r satisfies [z] ∈ Ei
�r

if and only if

c̃l
i

X(z) ∈ ker(H2i(X,Z�(i))→ H2i(X,Z�(i))/�r)
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where we use that H2i(X,Z�(i))/�r ↪→ H2i(X,μ⊗i
�r ) by (P5). This concludes the proof of the

lemma, because

H2i(X,Z�(i))/�r −→ H2i(X,μ⊗i
�r )

is injective by (P5). �

7.5 A transcendental Abel–Jacobi map on torsion cycles
We write for simplicity Ai

0(X)[�r] := Ai
0(X)Z�

[�r], where Ai
0(X)Z�

denotes the kernel of the cycle

class map c̃l
i

X : Ai(X)Z�
→ H2i(X,Z�(i)), see Definition 7.10.

In this section, we show that there is a canonical map

λi
tr : Ai

0(X)[�∞] −→ H2i−1(X,Q�/Z�(i))
N i−1H2i−1(X,Q�(i))

, (7.9)

where we recall that N jH i(X,A(n)) = ker(H i(X,A(n))→ H i(Fj−1X,A(n))). Our result is
motivated by Bloch’s Abel–Jacobi map on CHi(X)[�∞] constructed in [Blo79] in the case where
X is smooth projective over an algebraically closed field. We compare the two constructions
in § 8. We show that for k = k̄ and when H∗ denotes Borel–Moore pro-étal cohomology (see
Proposition 6.6), then the above map is the transcendental Abel–Jacobi map on torsion cycles,
i.e. the smallest quotient of Bloch’s map that descends to a map on

Ai
0(X)[�∞] =

N0 CHi(X)Z�

N i−1 CHi(X)Z�

[�∞].

(The adjective transcendental stems from the fact that N i−1 CHi(X)Z�
= CHi(X)alg ⊗Z Z� is the

space of algebraically trivial �-adic cycles in this case.) We call the above map the transcendental
Abel–Jacobi map, regardless of the ground field and the Borel–Moore cohomology theory chosen.

Lemma 5.8 and Corollary 5.10, we have an exact sequence

H2i−1(X,Z�(i)) −→ H2i−1(Fi−1X,Z�(i)) ∂−→
⊕

x∈X(i)

[x]Z�
ι∗−→ H2i(X,Z�(i)). (7.10)

Now let [z] ∈ Ai
0(X)[�r] for some r and some z ∈

⊕
x∈X(i) [x]Z�. Then ι∗z = c̃l

i

X(z) = 0 by the

definition of c̃l
i

X and so we may choose a lift α ∈ H2i−1(Fi−1X,Z�(i)) via (7.10). This is well-
defined up to classes that come from H2i−1(X,Z�(i)). As [z] is �r-torsion, (7.7) implies that
∂(�rα− ι∗ξ) = 0 for some ξ ∈

⊕
x∈X(i−1) H1(x,Z�(1)). Hence, there is a class β ∈ H2i−1(X,Z�(i))

with

β = �rα− ι∗ξ ∈ F iH2i−1(Fi−1X,Z�(i)). (7.11)

By (P4), β/�r ∈ H2i−1(X,Q�(i)). Using functoriality of H∗(−, A(n)) in the coefficients, we may
consider the image of that class in H2i−1(X,Q�/Z�(i)) and define (7.9) via

λi
tr([z]) :=

[
β/�r

]
. (7.12)

Lemma 7.14. The map λi
tr given by (7.12) is well-defined.

Proof. Let us first fix a representative z of [z]. Then λi
tr([z]) does not depend on the choice of α,

as this would change β by a class in �r ·H2i−1(X,Z�(i)). In addition, the class ξ is well-defined
up to classes ζ ∈

⊕
x∈X(i−1) H1(x,Z�(1)) with ∂(ι∗ζ) = 0. This changes β by

ι∗ζ ∈ F iH2i−1(Fi−1X,Z�(i)) � H2i−1(X,Z�(i))
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and, hence, by a class in N i−1H2i−1(X,Z�(i)). In particular,

[
β/�r

]
∈ H2i−1(X,Q�/Z�(i))
N i−1H2i−1(X,Q�(i))

remains unchanged.
Finally, if we replace z by a cycle z′ that represents the same class in Ai

0(X)Z�
, then, by (7.7),

z − z′ = ∂ι∗ζ for some ζ ∈
⊕

x∈X(i−1) H1(x,Z�(1)). However, then we can replace α by α− ι∗ζ
and ξ by ξ − �r · ζ, so that the class β does not change at all via this process. This proves the
lemma. �

The following alternative description of λi
tr is useful.

Lemma 7.15. Let X ∈ V and let [z] ∈ Ai
0(X)Z�

be an �r-torsion class. By Proposition 7.11, [z] is
represented by a class α ∈ H2i−1

i−2,nr(X,Z�(i)) such that �r · α lifts to a class β ∈ H2i−1(X,Z�(i)).
Then

λi
tr([z]) = [β/�r] ∈ H2i−1(X,Q�/Z�(i))

N i−1H2i−1(X,Q�(i))
.

Proof. By the proof of Proposition 7.11, α lifts to a class α′ ∈ H2i−1(Fi−1X,Z�(i)) such that
∂α′ = z ∈

⊕
x∈X(i) [x]Z� is a representative of [z] ∈ Ai

0(X)Z�
. As [z] is �r-torsion, the construction

of λi
tr shows that there is a class β′ ∈ H2i−1(X,Z�(i)) and ξ ∈

⊕
x∈X(i−1) H1(x,Z�(1)) such that

β′ = �r · α′ + ι∗ξ

and

λi
tr([z]) = [β′/�r] ∈ H2i−1(X,Q�/Z�(i))

N i−1H2i−1(X,Q�(i))
.

As β and β′ both restrict to the same class on Fi−2X, we find that

β/�r − β′/�r ∈ N i−1H2i−1(X,Q�(i)).

Hence, λi
tr([z]) = [β/�r], which concludes the proof of the lemma. �

7.6 The image of the transcendental Abel–Jacobi map on torsion cycles
For X ∈ V we write

H i(X,Q�/Z�(n))div := im(H i(X,Q�(n))→ H i(X,Q�/Z�(n))),

which is a divisible subgroup of H i(X,Q�/Z�(n)); if the torsion subgroup of H i+1(X,Z�(n))
is finitely generated, then H i(X,Q�/Z�(n))div is, in fact, the maximal divisible subgroup of
H i(X,Q�/Z�(n)). For j � 0, we consider the coniveau filtration

N jH i(X,Q�/Z�(n))div := ker(H i(X,Q�/Z�(n))div → H i(Fj−1X,Q�/Z�(n))).

The following result computes the image of λi
tr. It is motivated by the description of the image

of the Abel–Jacobi map on CH2(X)tors for smooth projective varieties over algebraically closed
fields, due to Bloch and Merkurjev and Suslin, see [MS83, § 18.4].

Proposition 7.16. For X ∈ V, the transcendental Abel–Jacobi map λi
tr from Lemma 7.14

satisfies

im(λi
tr) =

N i−1H2i−1(X,Q�/Z�(i))div

N i−1H2i−1(X,Q�(i))
.

Proof. Let [z] ∈ Ai
0(X)[�∞] and let α ∈ H2i−1(Fi−1X,Z�(i)) with ∂α = z. Assume that

�r · [z] = 0. Then, as we have shown, there are classes ξ ∈
⊕

x∈X(i−1) H1(x,Z�(1)) and
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β ∈ H2i−1(X,Z�(i)) such that (7.11) holds true. By definition, λi
tr([z]) = [β/�r] is the class

represented by the image of β/�r ∈ H2i−1(X,Q�(i)). This shows, in particular,

im(λi
tr) ⊂

H2i−1(X,Q�/Z�(i))div

N i−1H2i−1(X,Q�(i))
=

im(H2i−1(X,Q�(i))→ H2i−1(X,Q�/Z�(i)))
N i−1H2i−1(X,Q�(i))

.

Next, note that ι∗ξ vanishes on Fi−2X and so (7.11) implies that

[β/�r] = [α] = 0 ∈ H2i−1(Fi−2X,Q�/Z�(i))

because α is an integral class. Hence,

im(λi
tr) ⊂

N i−1H2i−1(X,Q�/Z�(i))div

N i−1H2i−1(X,Q�(i))
,

as desired.
Conversely, let

γ ∈ N i−1H2i−1(X,Q�/Z�(i))div.

By Lemma 5.8,

γ ∈ im
( ⊕

x∈X(i)

H1(x,Q�/Z�(1))→ H2i−1(Fi−1X,Q�/Z�(i))
)
.

As H1(x,Q�(1))→ H1(x,Q�/Z�(1)) is surjective by (P4) and (P6), we conclude (using again
(P4)) that there is a class ξ ∈

⊕
x∈X(i) H1(x,Z�(1)) and a positive integer r such that γ lifts to

the class
1
�r
· ι∗ξ ∈ H2i−1(Fi−1X,Q�(i)).

As γ lifts to a rational class by assumption, (P4) implies there is a class β ∈ H2i−1(X,Z�(i))
and a positive integer r′ such that γ lifts to β/�r

′ ∈ H2i−1(X,Q�(i)). Up to replacing r and r′

by their maximum (and ξ, respectively β, by a suitable multiple), we may assume that r = r′.
Then let

α′ := β/�r − ι∗ξ/�r ∈ H2i−1(Fi−1X,Q�(i)).

Note that the image of α′ in H2i−1(Fi−1X,Q�/Z�(i)) vanishes. By (P4) and (P5), it follows
that α′ lifts to a class α ∈ H2i−1(Fi−1X,Z�(i)). We then find that there is a torsion class τ ∈
H2i−1(Fi−1X,Z�(i)) such that

�rα = β − ι∗ξ + τ ∈ H2i−1(Fi−1X,Z�(i)).

As τ is torsion, there is a positive integer s such that �s · τ = 0 and we get

�sβ = �r+sα+ �sι∗ξ ∈ H2i−1(Fi−1X,Z�(i)).

Let z := ∂α with associated class [z] ∈ Ai
0(X). Then the above identity shows that [z] is

�r+s-torsion with associated transcendental Abel–Jacobi invariant

λi
tr([z]) = [�sβ/�r+s] = [β/�r] = [γ] ∈ H2i−1(X,Q�/Z�(i))/N i−1H2i−1(X,Q�(i)).

Hence, [γ] ∈ im(λi
tr), which concludes the proof of the proposition. �
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7.7 The kernel of the transcendental Abel–Jacobi map on torsion cycles
Definition 7.17. For X ∈ V, we define

T i(X)[�∞] := ker
(
λi

tr : Ai
0(X)[�∞] −→ H2i−1(X,Q�/Z�(i))

N i−1H2i−1(X,Q�(i))

)
,

where λi
tr is the transcendental Abel–Jacobi map defined in § 7.5. We further let T i(X)[�r] ⊂

T i(X)[�∞] denote the subgroup of �r-torsion elements.

Recall the filtrations F ∗ and G∗ from Definitions 5.3 and 5.4.

Lemma 7.18. Let X ∈ V. Then

GiH2i−2
i−3,nr(X,μ

⊗i
�r ) ⊂ H2i−2

i−3,nr(X,μ
⊗i
�r )

is the subspace of classes α ∈ H2i−2
i−3,nr(X,μ

⊗i
�r ) that admit a lift α′ ∈ H2i−2(Fi−2X,μ

⊗i
�r ) such that

δ(α′) ∈ H2i−1(Fi−2X,Z�(i)) lifts to H2i−1(X,Z�(i)).

Proof. This is an immediate consequence of the definition and the fact that

F iH2i−1(Fi−2X,Z�(i)) = im(H2i−1(X,Z�(i))→ H2i−1(Fi−2X,Z�(i))),

because H2i−1(FiX,Z�(i)) � H2i−1(X,Z�(i)) by Corollary 5.10. �

The following result is motivated by [Voi12, Ma17], where T 3(X)[�∞] is computed for smooth
projective varieties over k = C.

Theorem 7.19. Let X ∈ V and assume that for any x ∈ X, H3(x,Z�(2)) is torsion-free. Then
there are canonical isomorphisms

T i(X)[�∞] � H2i−2(Fi−2X,Q�/Z�(i))
GiH2i−2(Fi−2X,Q�/Z�(i))

�
H2i−2

i−3,nr(X,Q�/Z�(i))

GiH2i−2
i−3,nr(X,Q�/Z�(i))

.

This theorem is deduced from the following two propositions.

Proposition 7.20. For any X ∈ V, there is a canonical isomorphism

T i(X)[�∞] � H2i−1(Fi−2X,Z�(i))[�∞]
F iH2i−1(Fi−2X,Z�(i))[�∞]

.

Proof. Let [z] ∈ Ai
0(X)[�r] for some r. By construction and Lemma 7.14, λi

tr([z]) = 0 if and only if
for some classes α ∈ H2i−1(Fi−1X,Z�(i)), ξ ∈

⊕
x∈X(i−1) H1(x,Z�(1)), and β ∈ H2i−1(X,Z�(i))

with z = ∂α and

β = �rα− ι∗ξ ∈ H2i−1(Fi−1X,Z�(i)), (7.13)

we have that β/�r ∈ H2i−1(X,Q�/Z�(i)) admits a lift

γ ∈ N i−1H2i−1(X,Q�(i)) = ker(H2i−1(X,Q�(i))→ H2i−1(Fi−2X,Q�(i))).

This means that

β/�r = γ + ε ∈ H2i−1(X,Q�(i))

for some ε ∈ H2i−1(X,Z�(i)). Replacing α by α− ε, we may assume that ε = 0 and so β/�r ∈
N i−1H2i−1(X,Q�(i)).
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By Lemma 5.8, there is an exact sequence⊕
x∈X(i−1)

H1(x,Z�(1)) ι∗−→ H2i−1(Fi−1X,Z�(i)) f−→ H2i−1(Fi−2X,Z�(i)),

where f denotes the canonical restriction map. As β/�r ∈ N i−1H2i−1(X,Q�(i)), we find that
λi

tr([z]) = 0 implies that the image f(α) ∈ H2i−1(Fi−2X,Z�(i)) of α is torsion. We claim that the
map

ϕ : T i(X)[�∞] −→ H2i−1(Fi−2X,Z�(i))[�∞]
F iH2i−1(Fi−2X,Z�(i))[�∞]

, [z] � ��ϕ([z]) := [f(α)]

is well-defined. Here we emphasize that the class α ∈ H2i−1(Fi−1X,Z�(i)) used in the definition
of ϕ([z]) is not an arbitrary representative that satisfies ∂α = z, but it is chosen in such a way
that β from (7.13) satisfies β/�r ∈ N i−1H2i−1(X,Q�(i)).

To prove that ϕ is well-defined, let us first fix z. Then the condition ∂α = z shows that α is
unique up to classes in H2i−1(X,Z�(i)) and so [f(α)] is independent of the choice of α for fixed
z as we quotient out F iH2i−1(Fi−2X,Z�(i))[�∞] in the above formula. If z′ and z have the same
class in Ai(X)Z�

, then, by (7.7), z − z′ = ∂ι∗ζ for some ζ ∈
⊕

x∈X(i−1) H1(x,Z�(1)). The class
α′ := α− ι∗ζ then satisfies ∂(α− ι∗ζ) = z′ and, by (7.13),

β = �rα′ − ι∗(ξ − ζ) ∈ H2i−1(Fi−1X,Z�(i)).

As β/�r ∈ N i−1H2i−1(X,Q�(i)), we find that α′ may be used to compute ϕ([z′]), that is, ϕ([z′]) =
f(α′). By exactness of the above sequence, f(α′) = f(α) and so ϕ([z′]) = ϕ([z]). This proves that
ϕ is well-defined, as claimed. It remains to see that ϕ is an isomorphism.

To see that ϕ is injective, assume that in the above construction, f(α) lifts to a class in
H2i−1(X,Z�(i)). Then, by Lemma 5.8, there is a class ε ∈

⊕
x∈X(i−1) H1(x,Z�(1)) such that

α− ι∗ε ∈ H2i−1(Fi−1X,Z�(i))

lifts to H2i−1(X,Z�(i)). As ∂α and ∂(α− ι∗ε) = 0 have the same image in Ai
0(X)Z�

, it follows
that

[z] = [∂α] = [∂(α− ι∗ε)] = 0 ∈ Ai
0(X)Z�

,

as desired.
Next, we claim that ϕ is surjective. For this, let γ ∈ H2i−1(Fi−2X,Z�(i))[�r]. Then

∂γ ∈
⊕

x∈X(i−1)

H2(x,Z�(1))

is torsion and so it must vanish by Lemma 5.13. Hence, γ = f(α) for some α ∈
H2i−1(Fi−1X,Z�(i)). The cycle z = ∂α is then homologically trivial (i.e. lies in the kernel
of cliX) by exactness of (7.10). The class [z] ∈ Ai

0(X)Z�
of z is �r-torsion, because f(�rα) = 0

and so �rα = ι∗ξ (and, hence, �rz = ∂ι∗ξ) for some ξ ∈
⊕

x∈X(i−1) H1(x,Z�(1)). In particular,
0 = �rα− ι∗ξ and so λi

tr([z]) = 0 by construction in § 7.5. Hence, [z] ∈ T i(X)[�r]. By the previous
definition of ϕ, we have ϕ([z]) = f(α) = γ. This concludes the proof of the proposition. �
Proposition 7.21. Let X ∈ V and assume that for any x ∈ X, H3(x,Z�(2)) is torsion-free.
Then the natural map

H2i−2(Fi−2X,μ
⊗i
�r )

GiH2i−2(Fi−2X,μ
⊗i
�r )
−→

H2i−2
i−3,nr(X,μ

⊗i
�r )

GiH2i−2
i−3,nr(X,μ

⊗i
�r )

is an isomorphism.
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Proof. The map in question is surjective by definition.
Now let α ∈ H2i−2(Fi−2X,μ

⊗i
�r ) so that the image α′ ∈ H2i−2(Fi−3X,μ

⊗i
�r ) of α is contained

in GiH2i−2
i−3,nr(X,μ

⊗i
�r ). By Lemma 7.18, this means that there is a lift α′′ ∈ H2i−2(Fi−2X,μ

⊗i
�r ) of

α′ such that
δ(α′′) ∈ H2i−1(Fi−2X,Z�(i))

lifts to a class β ∈ H2i−1(X,Z�(i)). Then α− α′′ lies in the kernel of

H2i−2(Fi−2X,μ
⊗i
�r ) −→ H2i−2(Fi−3X,μ

⊗i
�r ).

Lemma 5.8 thus implies that

α− α′′ = ι∗ξ ∈ H2i−2(Fi−2X,μ
⊗i
�r )

for some ξ ∈
⊕

x∈X(i−2) H2(x, μ⊗2
�r ). The class

δ(ι∗ξ) = ι∗(δ(ξ)) ∈
⊕

x∈X(i−2)

H3(x,Z�(2))

is torsion by property (P5) and so it vanishes, because H3(x,Z�(2)) is torsion-free by assumption.
This shows that δ(α) = δ(α′′). As δ(α′′) extends to the class β ∈ H2i−1(X,Z�(i)), the same holds
for δ(α) and so

α ∈ GiH2i−2(Fi−2X,μ
⊗i
�r ).

This proves that the map in question is injective, as desired. �
Remark 7.22. The torsion-freeness assumption in the proposition (respectively, in Theorem 7.19)
will in all applications be satisfied by Merkurjev and Suslin’s theorem [MS83], i.e. by the
Bloch–Kato conjecture in degree two, see Remark 5.14.

Proof of Theorem 7.19. We claim that the Bockstein map

δ : H2i−2(Fi−2X,μ
⊗i
�r ) −→ H2i−1(Fi−2X,Z�(i))

from property (P5) induces an isomorphism

H2i−2(Fi−2X,μ
⊗i
�r )

GiH2i−2(Fi−2X,μ
⊗i
�r )
� H2i−1(Fi−2X,Z�(i))[�r]
F iH2i−1(Fi−2X,Z�(i))[�r]

. (7.14)

By (P5), the image of δ is H2i−1(Fi−2X,Z�(i))[�r] and so it suffices to show that

δ−1
(
F iH2i−1(Fi−2X,Z�(i))[�r]

)
= GiH2i−2(Fi−2X,μ

⊗i
�r ),

which is exactly the definition of Gi (see Definition 5.4). This proves the claim. Taking direct
limits and using (P4), we get an isomorphism

H2i−2(Fi−2X,Q�/Z�(i))
GiH2i−2(Fi−2X,Q�/Z�(i))

� H2i−1(Fi−2X,Z�(i))[�∞]
F iH2i−1(Fi−2X,Z�(i))[�∞]

.

The first isomorphism in Theorem 7.19 follows therefore from Proposition 7.20. The second
isomorphism follows from Proposition 7.21 by taking direct limits. This concludes the proof of
the theorem. �
Corollary 7.23. For any X ∈ V there are subgroups T i

0 (X)[�r] ⊂ T i(X)[�r] with T i(X)[�∞] =⋃
r T i

0 (X)[�r] and a canonical isomorphism

T i
0 (X)[�r] � H2i−2(Fi−2X,μ

⊗i
�r )

GiH2i−2(Fi−2X,μ
⊗i
�r )
�

H2i−2
i−3,nr(X,μ

⊗i
�r )

GiH2i−2
i−3,nr(X,μ

⊗i
�r )

.
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Proof. By Proposition 7.20, there is a canonical isomorphism

T i(X)[�∞] � H2i−1(Fi−2X,Z�(i))[�∞]
F iH2i−1(Fi−2X,Z�(i))[�∞]

.

Using this isomorphism, we define

T i
0 (X)[�r] :=

H2i−1(Fi−2X,Z�(i))[�r]
F iH2i−1(Fi−2X,Z�(i))[�r]

.

Hence, T i
0 (X)[�r] ⊂ T i(X)[�∞] is a subgroup of �r-torsion elements and so T i

0 (X)[�r] ⊂
T i(X)[�r]. Note also that T i(X)[�∞] =

⋃
r T i

0 (X)[�r]. The corollary thus follows from (7.14) and
Proposition 7.21. �

For the final result of this subsection, we need the following definition, where for X ∈ V we
let

δ̃ : H i(X,μ⊗n
�r ) −→ H i+1(X,μ⊗n

�r )

be the composition of the Bockstein map δ from (P5) with the reduction modulo �r map

H i+1(X,Z�(n)) −→ H i+1(X,μ⊗n
�r )

given by functoriality in the coefficients.

Definition 7.24. For any X ∈ V, we define a decreasing filtration G̃∗ on H i(FjX,μ
⊗n
�r ) by

α ∈ G̃mH i(FjX,μ
⊗n
�r ) ⇐⇒ δ̃(α) ∈ FmH i+1(FjX,μ

⊗n
�r ).

Moreover,

G̃mH i
j,nr(X,μ

⊗n
�r ) := im(G̃mH i(Fj+1X,μ

⊗n
�r )→ H i(FjX,μ

⊗n
�r )).

It follows directly from the definition that GmH i(FjX,μ
⊗n
�r ) ⊂ G̃mH i(FjX,μ

⊗n
�r ).

Proposition 7.25. For any X ∈ V, the kernel of the canonical surjection

T i
0 (X)[�r] � H2i−2(Fi−2X,μ

⊗i
�r )

GiH2i−2(Fi−2X,μ
⊗i
�r )

�� ��
H2i−2(Fi−2X,μ

⊗i
�r )

G̃iH2i−2(Fi−2X,μ
⊗i
�r )

is given by all classes in T i
0 (X)[�r] that are �r-divisible in Ai(X)Z�

.

Proof. By Proposition 7.11, there is a canonical isomorphism

Ai
0(X)Z�

� H2i−1
i−2,nr(X,Z�(i))/H2i−1(X,Z�(i)).

The natural inclusion

T i
0 (X)[�r] ↪→ Ai

0(X)Z�

corresponds via the isomorphism in Corollary 7.23 to the map

H2i−2(Fi−2X,μ
⊗i
�r )

GiH2i−2(Fi−2X,μ
⊗i
�r )
−→

H2i−1
i−2,nr(X,Z�(i))
H2i−1(X,Z�(i))

, [α] � �� [δ(α)].

Here, the fact that δ(α) ∈ H2i−1(Fi−2X,Z�(i)) lies in F i−1H2i−1(Fi−2X,Z�(i)) follows from
Lemma 5.8, because δ(α) is torsion whereas

⊕
x∈X(i−1) H2(x,Z�(i)) is torsion-free by

Lemma 5.13.
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Now let [α] ∈ T i
0 (X)[�r] with α ∈ H2i−2(Fi−2X,μ

⊗i
�r ). As we have shown, the class

δ(α) ∈ H2i−1(Fi−2X,Z�(i))

admits a lift

δ(α)′ ∈ H2i−1(Fi−1X,Z�(i)). (7.15)

By Lemma 5.8, the lift is unique up to classes coming from
⊕

x∈X(i−1) H1(κ(x),Z�(1)). Moreover,
there is an exact sequence

H2i−1(X,Z�(i)) −→ H2i−1(Fi−1X,Z�(i))
∂−→

⊕
x∈X(i)

[x]Z�.

The class

∂(δ(α)′) ∈
⊕

x∈X(i)

[x]Z�

is unique up to an element of the image of

∂ ◦ ι∗ :
⊕

x∈X(i−1)

H1(x,Z�(1)) −→
⊕

x∈X(i)

[x]Z�.

The cokernel of this map is isomorphic to Ai(X)Z�
, see Definition 7.2. As ∂ is trivial on classes

that lift to H2i−1(X,Z�(i)), we get a well-defined map

H2i−2(Fi−2X,μ
⊗i
�r )

GiH2i−2(Fi−2X,μ
⊗i
�r )
−→ Ai(X)Z�

, [α] � �� [∂(δ(α)′)].

This map identifies via the isomorphism in Corollary 7.23 to the inclusion T i
0 (X)[�r] ↪→ Ai(X)Z�

.
Let us first assume that

[∂(δ(α)′)] ∈ Ai(X)Z�

is divisible by �r. Then up to a suitable choice of the lift δ(α)′, we may assume that ∂(δ(α)′) is
zero modulo �r. By Lemma 5.8, there is an exact sequence

H2i−1(X,μ⊗i
�r ) −→ H2i−1(Fi−1X,μ

⊗i
�r ) ∂−→

⊕
x∈X(i)

[x]Z/�r.

We thus conclude that the reduction δ̃(α)′ modulo �r of δ(α)′ lifts to a class in H2i−1(X,μ⊗i
�r ).

As δ̃(α)′ is a lift of δ̃(α), this implies α ∈ G̃iH2i−1(Fi−2X,μ
⊗i
�r ).

Conversely, assume that α ∈ H2i−2(Fi−2X,μ
⊗i
�r ) lies in G̃iH2i−2(Fi−2X,μ

⊗i
�r ). That is,

δ̃(α) ∈ H2i−1(Fi−2X,μ
⊗i
�r )

lifts to a class in H2i−1(X,μ⊗i
�r ). Consider the lift δ(α)′ ∈ H2i−1(Fi−1X,Z�(i)) of δ(α) from above.

The reduction δ(α)′ ∈ H2i−1(Fi−1X,μ
⊗i
�r ) modulo �r of the lift δ(α)′ is a lift of δ̃(α). As δ̃(α) lifts

to H2i−1(X,μ⊗i
�r ), Lemma 5.8 implies that there is a class

ξ ∈
⊕

x∈X(i−1)

H1(x, μ�r),

such that

∂
(
δ(α)′ − ι∗ξ

)
= 0 ∈

⊕
x∈X(i)

[x]Z/�r.
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As ξ lifts by (P6) to a class in
⊕

x∈X(i−1) H1(κ(x),Z�(1)), and because ∂
(
δ(α)′

)
is the reduction

modulo �r of ∂(δ(α)′), we conclude that

[∂(δ(α)′)] ∈ Ai(X)Z�

is zero modulo �r. Hence, the class [α] ∈ T i
0 (X)[�r] is divisible by �r in Ai(X)Z�

, as we want. This
concludes the proof of the proposition. �

7.8 More on the coniveau filtration on Chow groups
Recall the coniveau filtration N∗ on CHi(X)Z�

from Definition 7.3. By Lemma 7.4,

Ai(X)Z�
= CHi(X)Z�

/N i−1 CHi(X)Z�
and Ai

0(X)Z�
= N0 CHi(X)Z�

/N i−1 CHi(X)Z�
.

It follows that N∗ induces a filtration on Ai
0(X)Z�

, given by

N jAi
0(X)Z�

= N j CHi(X)Z�
/N i−1 CHi(X)Z�

for 0 � j � i− 1. Note that N i−1Ai
0(X)Z�

= 0. We thus have a finite decreasing filtration of the
form

0 = N i−1 ⊂ N i−2 ⊂ N i−3 ⊂ · · · ⊂ N1 ⊂ N0 = Ai
0(X)Z�

.

Let f : X → Y be a proper morphism of schemes X,Y ∈ V and let c = dimY − dimX. The
definition of Ai(X)Z�

and Ai
0(X)Z�

(see Definitions 7.2 and 7.10) together with the functoriality
of the Gysin sequence (P2) with respect to the pushforward maps from (P1) implies that there
are natural pushforward maps

f∗ : Ai(X)Z�
−→ Ai+c(Y )Z�

and f∗ : Ai
0(X)Z�

−→ Ai+c
0 (Y )Z�

.

Using these maps, we get the following description of the above filtration on Ai
0(X)Z�

.

Lemma 7.26. Let X ∈ V. The coniveau filtration N∗ on Ai
0(X)Z�

is given by

N jAi
0(X)Z�

= im
(

lim−→
Z⊂X

Ai−j
0 (Z)Z�

→ Ai
0(X)Z�

)
,

where Z ⊂ X runs through all closed subschemes with dimZ = dimX − j.
The following lemma shows that the coniveau filtration on algebraic cycles is surprisingly

well-behaved.

Lemma 7.27. For X ∈ V, the canonical pushforward maps

lim−→
Z⊂X

N0 CHi−j(Z)Z�
−→ N j CHi(X)Z�

and lim−→
Z⊂X

Ai−j
0 (Z)Z�

−→ N jAi
0(X)Z�

are isomorphisms, where Z ⊂ X runs through all closed subschemes with dimZ = dimX − j.
Proof. Both pushforward maps in question are surjective by definition, cf. Lemma 7.26. Moreover,
injectivity is trivial unless 0 � j � i− 1, which we assume from now on.

We first prove injectivity of the first map. Let z ∈ CHi−j(Z)Z�
be a cycle that is rationally

equivalent to zero on X. Then there is a closed subscheme W ⊂ X with i− 1 = dimX − dimW
such that z is rationally equivalent to zero on Z ∪W . Since j � i− 1, we find that the subscheme
Z ∪W appears in the direct limit in question, which settles the injectivity of the first map in
the lemma.

Injectivity of the second map is similar. �
For the following proposition, recall the definition of the coniveau filtration N∗ on refined

unramified cohomology from Definition 5.2.
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Proposition 7.28. For X ∈ V, the isomorphism from Proposition 7.11 induces an isomorphism

N jAi
0(X)Z�


−→
N jH2i−1

i−2,nr(X,Z�(i))
N jH2i−1(X,Z�(i))

.

Proof. By Proposition 7.11, there is a canonical isomorphism

Ai
0(X)Z�

� H2i−1
i−2,nr(X,Z�(i))/H2i−1(X,Z�(i)).

By Corollary 5.9, for any 0 � j � i− 1, there is a canonical exact sequence

lim−→H
2(i−j)−1
i−j−2,nr (Z,Z�(i− j)) ι∗−→ H2i−1

i−2,nr(X,Z�(i)) −→ H2i−1
j−1,nr(X,Z�(i)),

where the direct limit runs through all closed reduced subschemes Z ⊂ X of dimension dimZ =
dimX − j. Here the first map is induced by the pushforward map with respect to Z ↪→ X and
the second map is the canonical restriction map.

The above sequence induces a sequence

lim−→
H

2(i−j)−1
i−j−2,nr (Z,Z�(i− j))

H2(i−j)−1(Z,Z�(i− j))
ι∗−→

H2i−1
i−2,nr(X,Z�(i))
H2i−1(X,Z�(i))

−→
H2i−1

j−1,nr(X,Z�(i))
H2i−1(X,Z�(i))

,

and one directly checks that this sequence remains exact. By Proposition 7.11, the first arrow in
this sequence identifies to the natural map

lim−→ Ai−j
0 (Z)Z�

ι∗−→ Ai
0(X)Z�

.

It follows from the functoriality of the Gysin sequence with respect to proper pushforwards (see
(P2)) that this map agrees with the pushforward of cycles induced by Z ↪→ X. Hence, the image
of the above map is given by N jAi

0(X)Z�
. The above exact sequence thus yields a canonical

isomorphism

N jAi
0(X)Z�

� ker
(
H2i−1

i−2,nr(X,Z�(i))
H2i−1(X,Z�(i))

−→
H2i−1

j−1,nr(X,Z�(i))
H2i−1(X,Z�(i))

)
.

By the definition of the coniveau filtration (see Definition 5.2), we thus obtain

N jAi
0(X)Z�

� im
(
N jH2i−1

i−2,nr(X,Z�(i)) −→
H2i−1

i−2,nr(X,Z�(i))
H2i−1(X,Z�(i))

)
.

The kernel of the above map is given by the image of N jH2i−1(X,Z�(i)) and so

N jAi
0(X)Z�

�
N jH2i−1

i−2,nr(X,Z�(i))
N jH2i−1(X,Z�(i))

as desired. This concludes the proof of the proposition. �

7.9 Higher transcendental Abel–Jacobi mappings
The coniveau filtration N∗ on CHi(X)Z�

induces a filtration N∗ on

Ai
0(X)Z�

= N0 CHi(X)Z�
/N i−1 CHi(X)Z�

and, hence, on the torsion subgroup Ai
0(X)[�∞] ⊂ Ai

0(X)Z�
. The goal of this section is to show

that the graded pieces of this filtration are detected by higher Abel–Jacobi invariants. To this
end it will be convenient to consider

J
i
tr(X)[�∞] := H2i−1(X,Q�/Z�(i))/N1H2i−1(X,Q�(i)).

Here we use a bar in our notation to emphasize that we are quotienting out N1H2i−1(X,Q�(i))
and not N i−1H2i−1(X,Q�(i)), as in the construction of λi

tr in § 7.5. For i � 2, we have
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N i−1H2i−1(X,Q�(i)) ⊂ N1H2i−1(X,Q�(i)) and so λi
tr induces a canonical map

λ̄i
tr : Ai

0(X)[�∞] −→ J
i
tr(X)[�∞], (7.16)

where we note that Ai
0(X)Z�

= 0 for i � 1 by Lemma 7.4.

Definition 7.29. For 0 � j � i, we define the jth higher transcendental �∞-torsion intermedi-
ate Jacobian of X by

J
i
j,tr(X)[�∞] := lim−→

Z⊂X

J
i−j
tr (Z)[�∞],

where Z ⊂ X runs through all subschemes with dimZ = dimX − j.
It follows from Lemma 7.27 that the map λ̄i−j

tr from (7.16), applied to the subschemes Z ⊂ X
with dimZ = dimX − j, yields in the limit a canonical higher Abel–Jacobi map

λ̄i
j,tr : N jAi

0(X)[�∞] −→ J
i
j,tr(X)[�∞]. (7.17)

Note that J i
0,tr(X)[�∞] = J

i
tr(X)[�∞] and λ̄i

0,tr = λ̄i
tr. The following theorem computes the kernel

of λ̄i
j,tr

Theorem 7.30. Let X ∈ V and assume that the twisted �-adic Borel–Moore cohomol-
ogy theory H∗ on V has the property that for all Z ⊂ X with dimZ = dimX − j, the
group H2(i−j)−1(F0Z,Z�(i− j)) is torsion-free. Then for any j � 0, we have ker

(
λ̄i

j,tr

)
=

N j+1Ai
0(X)[�∞].

Proof. By Lemma 7.27 and the construction of λ̄i
j,tr via direct limits, it suffices by induction to

show that
ker

(
λ̄i

tr

)
= N1Ai

0(X)[�∞].

To this end, let [z] ∈ Ai
0(X)[�∞] and let α ∈ H2i−1

i−2,nr(X,Z�(i)) be a representative of [z] via the
isomorphism in Proposition 7.11. Let r � 1 such that �r[z] = 0 ∈ Ai

0(X)[�∞]. Then �r · α lifts to
a class β ∈ H2i−1(X,Z�(i)). By Lemma 7.15,

λ̄i
tr([z]) = [β/�r] ∈ H

2i−1(X,Q�/Z�(i))
N1H2i−1(X,Q�(i))

.

Assume now that λ̄i
tr([z]) = 0. As H2i−1(F0X,Z�(i)) is torsion-free by assumption, the preim-

age of N1H2i−1(X,Q�(i)) via the natural map H2i−1(X,Z�(i))→ H2i−1(X,Q�(i)) is given by
N1H2i−1(X,Z�(i)). Hence, (P4) and the assumption [β/�r] = 0 implies that there is a class
β′ ∈ N1H2i−1(X,Z�(i)) and a positive integer r′ such that

β/�r = β′/�r
′ ∈ H2i−1(X,Q�/Z�(i)).

Up to replacing r and r′ by their maximum and β, respectively, β′ by a suitable multiple, we
may assume that r = r′. We then consider the class

γ := β − β′ ∈ H2i−1(X,Z�(i)).

As r = r′, γ/�r = 0 ∈ H2i−1(X,Q�/Z�(i)). Hence, there is a class δ ∈ H2i−1(X,Z�(i)) and a
torsion class τ ∈ H2i−1(X,Z�(i)) with

γ = �rδ + τ.

As τ is torsion, there is a positive integer s such that �sτ = 0. Hence,

�sβ = �sβ′ + �r+sδ
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is a lift of �r+sα ∈ H2i−1
i−2,nr(X,Z�(i)). As β′ ∈ N1, we deduce that the image of �r+sα in

H2i−1(F0X,Z�(i)) agrees with the image of �r+sδ. Replacing α by α− δ (which does not change
the class [z] that α represents, because ∂δ = 0), we may assume that δ = 0 and we find that the
image of �r+sα in H2i−1(F0X,Z�(i)) vanishes. The latter is torsion-free by assumption and so
we conclude that the image of α in H2i−1(F0X,Z�(i)) vanishes. By Proposition 7.28, this implies
[z] ∈ N1Ai

0(X)[�∞], as we want. This concludes the proof of the theorem. �
Remark 7.31. The torsion-freeness condition in the theorem will in our applications be satisfied
by the Bloch–Kato conjecture, proven by Voevodsky, see Remark 5.14.

7.10 The second piece of the coniveau filtration
In [Voi12, Ma17], Voisin and Ma showed that T 3(X)[�∞] is related to unramified cohomology
up to an error term given by the torsion subgroup of H5(X,Z�(3))/N2H5(X,Z�(3)). The next
result shows that this error term is exactly what is captured by the G∗-filtration on traditional
unramified Q�/Z�-cohomology from Definition 5.4. In particular, the statement in Theorem 7.19
specializes in the case of codimension-three cycles on smooth complex projective varieties to the
result in [Voi12, Ma17].

Proposition 7.32. For X ∈ V, there is a canonical surjection

ϕ :
(

H i(X,Z�(n))
N2H i(X,Z�(n))

)
tors

�� ��
G�i/2�H i−1

0,nr(X,Q�/Z�(n))

H i−1
0,nr(X,Q�(n))

,

which maps the image of H i(X,Z�(n))tors on the left onto the image of H i−1(X,Q�/Z�(n)) on
the right. If H i−2(x,Z�(n)) is torsion-free for all x ∈ X(1), then ϕ is an isomorphism.

Remark 7.33. By Remark 5.14, Voevodsky’s proof of the Bloch–Kato conjecture implies that
H i−2(x,Z�(i− 3)) is torsion-free for the cohomology theories in Propositions 6.6 and 6.9, so that
the surjection in the above proposition will be an isomorphism for n = i− 3 in those cases, but
we do not use this result in the remainder of this paper.

Proof of Proposition 7.32. Recall that N2H i(X,Z�(n)) = ker(H i(X,Z�(n))→ H i(F1X,Z�(n))).
Hence, (

H i(X,Z�(n))
N2H i(X,Z�(n))

)
tors


−→ Tors
(
F �i/2�H i(F1X,Z�(n)))

)
, (7.18)

because H i(F�i/2�X,Z�(n))) � H i(X,Z�(n))) by Corollary 5.10.
By (P4) and exactness of the direct limit functor, the integral Bockstein sequence (P5) yields

in the limit r →∞ a Bockstein sequence

· · · −→ H i(X,Z�(n)) −→ H i(X,Q�(n)) −→ H i(X,Q�/Z�(n)) δ−→ H i+1(X,Z�(n)) −→ · · · ,
where by slight abuse of notation we still denote the boundary map by δ. By the description
of Q�-cohomology in (P4), the image of δ agrees with the torsion subgroup of H i+1(X,Z�(n)).
Using exactness of the direct limit functor once again, we find that the above sequence remains
exact for FjX in place of X. By the definition of G∗ in Definition 5.4, δ therefore induces an
exact sequence

H i−1(F1X,Q�(n)) −→ G�i/2�H i−1(F1X,Q�/Z�(n)) −→ Tors(F �i/2�H i(F1X,Z�(n)))) −→ 0.

From this we conclude a canonical isomorphism

G�i/2�H i−1(F1X,Q�/Z�(n))/H i−1(F1X,Q�(n)) 
−→ Tors(F �i/2�H i(F1X,Z�(n))))

induced by δ. Combining this with (7.18), we get the surjection ϕ as claimed in the proposition.
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It remains to analyze the kernel of the canonical map

G�i/2�H i−1(F1X,Q�/Z�(n))
H i−1(F1X,Q�(n))

−→ G�i/2�H i−1(F0X,Q�/Z�(n))
H i−1(F1X,Q�(n))

.

To this end, let α ∈ G�i/2�H i−1(F1X,Q�/Z�(n)) be a class that vanishes on F0X. By Lemma 5.8,

α = ι∗ξ, for some ξ ∈
⊕

x∈X(1)

H i−3(x,Q�/Z�(n− 1)).

If H i−2(x,Z�(n)) is torsion-free for all x ∈ X(1), then δ(ξ) = 0 and so δ(α) = 0 by functoriality
of the Bockstein sequence (see (P5)). Hence, α lifts to a class in H i−1(F1X,Q�(n)) and so it
vanishes in the above quotient. This concludes the proof of the proposition. �

Remark 7.34. A version of Proposition 7.32 has been proven independently by Ma [Ma22].

7.11 Comparison with Bloch–Ogus theory and to Kato homology
In this section, we define

Ej,i+j
2 (X,A(n)) :=

ker(∂ ◦ ι∗ :
⊕

x∈X(j) H i(x)→
⊕

x∈X(j+1) H i−1(x))
im(∂ ◦ ι∗ :

⊕
x∈X(j−1) H i+1(x)→

⊕
x∈X(j) H i(x))

, (7.19)

where H∗(x) is short hand for H∗(x,A(n− c)), where c = codim(x) = dimX − dim({x}). If X
is smooth and equi-dimensional over a field k and H∗ satisfies the properties of Bloch–Ogus
in [BO74, § 1] (see, e.g., [BO74, § 2]), then Ej,i+j

2 (X,A(n)) � Hj(X,Hi+j
X (A(n))) identifies

by [BO74] to the jth cohomology of the Zariski sheaf associated to U � ��H i+j(U,A(n)).

Proposition 7.35. For any X ∈ V, there is a canonical long exact sequence

· · · → H i+2j−1
j−1,nr (X,A(n))→ H i+2j−1

j−2,nr (X,A(n))→ Ej,i+j
2 (X,A(n))→ H i+2j

j,nr (X,A(n))→ · · · .

Proof. The result follows, as explained in § 1.3, from the derived couple associated to the couple
from Lemma 5.8. With the aim of making the involved maps explicit, we spell out the argument
in some detail in what follows.

Let [ξ] ∈ Ej,i+j
2 (X,A(n)) with ξ ∈

⊕
x∈X(j) H i(x) and ∂ ◦ ι∗(ξ) = 0. By Lemma 5.8, the

condition ∂ ◦ ι∗(ξ) = 0 is equivalent to

ι∗ξ ∈ F j+1H2j+i(FjX).

If ξ = ∂ ◦ ι∗(ζ) for some ζ ∈
⊕

x∈X(j−1) H i+1(x), then

ι∗ξ = ι∗ ◦ ∂ ◦ ι∗(ζ) = 0

by the exactness of the Gysin sequence. It follows that there is a well-defined map

Ej,i+j
2 (X,A(n)) −→ H i+2j

j,nr (X,A(n)), [ξ] � �� ι∗ξ. (7.20)

Any class in the image of this map lies in the kernel of

H i+2j
j,nr (X,A(n)) −→ H i+2j

j−1,nr(X,A(n)) (7.21)

because ι∗ξ vanishes when restricted to Fj−1X by Lemma 5.8. Conversely, any class α ∈
H i+2j

j,nr (X,A(n)) in the kernel of the above restriction map is, by Lemma 5.8, of the form α = ι∗ξ
for some ξ ∈

⊕
x∈X(j) H i(x). The fact that α ∈ H i+2j

j,nr (X,A(n)) ⊂ H i+2j(FjX,A(n)) is unrami-
fied implies ∂ ◦ ι∗(ξ) = 0, and so α lies in the image of (7.20). Hence, the composition of (7.20)
and (7.21) is exact.
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Now let [ξ] ∈ Ej,i+j
2 (X,A(n)) with ξ ∈

⊕
x∈X(j) H i(x) and ∂ ◦ ι∗(ξ) = 0 be a class in the

kernel of (7.20). By the exactness of the Gysin sequence, this means that ξ = ∂α for some
α ∈ H i+2j−1(Fj−1X,A(n)). Hence, the natural sequence

H i+2j−1(Fj−1X,A(n)) ∂−→ Ej,i+j
2 (X,A(n)) ι∗−→ H i+2j

j,nr (X,A(n)) (7.22)

is exact. The image of

ι∗ :
⊕

x∈X(j−1)

H i+1(x,A(n− j + 1)) −→ H i+2j−1(Fj−1X,A(n))

lies in the kernel of the first map in (7.22) by the definition in (7.19). By the Gysin sequence, it
follows that (7.22) descends to an exact sequence

H i+2j−1
j−2,nr (X,A(n)) ∂−→ Ej,i+j

2 (X,A(n)) ι∗−→ H i+2j
j,nr (X,A(n)). (7.23)

Let [α] ∈ H i+2j−1
j−2,nr (X,A(n)) with α ∈ H i+2j−1(Fj−1X,A(n)) and assume that

∂α = 0 ∈ Ej,i+j
2 (X,A(n)).

This means that there is a class ζ ∈
⊕

x∈X(j−1) H i+1(x) with ∂(α− ι∗ζ) = 0. Hence, up to
replacing α by α− ι∗ζ, we may assume ∂α = 0 and so

[α] ∈ F jH i+2j−1(Fj−2X,A(n)).

Conversely, any class in F jH i+2j−1(Fj−2X,A(n)) clearly maps to zero in Hj(X,Hi+j
X (A(n))).

Hence, the kernel of the first map in (7.23) agrees with the image of the canonical restriction
map

H i+2j−1
j−1,nr (X,A(n)) −→ H i+2j−1

j−2,nr (X,A(n)).

This concludes the proof of the proposition. �
Corollary 7.36. Let c � 0 be a non-negative integer. Let X ∈ V with d := dimX and assume
that for any x ∈ X(j), H

i(x, μ⊗n
�r ) = 0 for i > j + c. Then there is a canonical isomorphism

Ej,d+c
2 (X,μ⊗n

�r ) ∼−→ Hd+c+j
j,nr (X,μ⊗n

�r ).

Proof. Our assumption implies by Corollary 5.11:

H i
j,nr(X,A(n)) = 0 for all j < i− d− c.

The result in question is then an immediate consequence of Proposition 7.35. �
Remark 7.37. The condition in Corollary 7.36 is satisfied for c = 0 if k = C and the underlying
cohomology theory is singular/étale cohomology. It is also satisfied if k has finite cohomological
dimension c and the cohomology theory is twisted �-adic pro-étale cohomology, which for finite
coefficients agrees with étale cohomology and so H i(x, μ⊗n

�r ) identifies by [Mil80, p. 88, III.1.16]
to the Galois cohomology of the residue field κ(x). In both cases, Ej,d+c

2 (X,μ⊗n
�r ) coincides, by

definition, with Kato homology of X, see [Kat86, KS12, Tia20]. Corollary 7.36 thus shows that
Kato homology is a special case of refined unramified cohomology.

8. Comparison with Bloch’s map

In [Blo79], Bloch constructed an Abel–Jacobi map on torsion cycles in the Chow group of smooth
projective varieties over algebraically closed ground fields. Bloch’s map induces a transcendental

1514

https://doi.org/10.1112/S0010437X23007236 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X23007236


Refined unramified cohomology of schemes

Abel–Jacobi map on torsion cycles in the Griffiths group of such varieties and we aim to show in
this section that Bloch’s map agrees with the map that we constructed in § 7.5 (applied to the
cohomology theory from Proposition 6.6 in the case where k = k̄ is algebraically closed and X
is smooth projective).

In contrast to Bloch’s map, the transcendental Abel–Jacobi map that we defined in § 7.5
works for arbitrary algebraic schemes over a field. This is crucial for the construction of the
higher Abel–Jacobi maps in § 7.9.

8.1 �r-torsion in Chow groups
Fix a prime � and an �-adic twisted Borel–Moore cohomology theory H∗(−, A(n)) on a con-
structible category of Noetherian schemes V with coefficients in a full subcategory A ⊂ ModZ�

,
as in Definitions 4.2 and 4.4. For X ∈ V, x ∈ X there are isomorphisms H0(x,A(0)) � A that
are functorial in A. Moreover, there is a distinguished class [x] ∈ H0(x,Z�(0)) and we denote
the image of that class in H0(x, μ⊗0

�r ) by the same symbol, so that H0(x, μ⊗0
�r ) = [x]Z/�r. For

any X ∈ V, properties (P1)–(P3), (P5), and (P6) thus imply the existence of the following
commutative diagram with exact rows (cf. [Blo79, (2.1)]).

⊕
x∈X(i−1) κ(x)∗ ⊗Z Z�

×�r

��

ε

��

⊕
x∈X(i−1) κ(x)∗ ⊗Z Z� ��

ε

��

⊕
x∈X(i−1) κ(x)∗/(κ(x)∗)�r

�
��

�� 0

⊕
x∈X(i−1) H1(x, Z�(1))

×�r

��

∂◦ι∗
��

⊕
x∈X(i−1) H1(x, Z�(1)) ��

∂◦ι∗
��

⊕
x∈X(i−1) H1(x, μ⊗1

�r )

∂◦ι∗
��

�� 0

0 ��
⊕

x∈X(i) [x]Z� ��

��

×�r

��
⊕

x∈X(i) [x]Z� ��

��

⊕
x∈X(i) [x]Z/�r �� 0

CHi(X)Z�

��

×�r

�� CHi(X)Z�

��

Ai(X)Z�

×�r

�� Ai(X)Z�

The following result is motivated by [Blo79, § 2].

Lemma 8.1. For any X ∈ V, there are canonical isomorphisms

φr : CHi(X)[�r] 
−→
ker

(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x, μ⊗1

�r ) −→
⊕

x∈X(i) [x]Z/�r
)

ker
(
∂ ◦ ι∗ ◦ ε :

⊕
x∈X(i−1) κ(x)∗ ⊗Z Z� −→

⊕
x∈X(i) [x]Z�

)
and

ψr : Ai(X)[�r] 
−→
ker

(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x, μ⊗1

�r ) −→
⊕

x∈X(i) [x]Z/�r
)

ker
(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x,Z�(1)) −→

⊕
x∈X(i) [x]Z�

) .
Proof. Note that the first arrow in the third row of the above diagram is injective, whereas
the last arrows in the first two rows are surjective by property (P6). The result is therefore an
immediate consequence of the snake lemma and the presentation of CHi(X)Z�

in Lemma 7.1 and
the definition of Ai(X)Z�

in Definition 7.2, respectively. �

8.2 The case of smooth projective varieties over algebraically closed fields
In this section, we assume that k is an algebraically closed field, � is a prime that is invertible
in k and V denotes the category of separated schemes of finite type over k. Let A ⊂ ModZ�

be
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the full subcategory spanned by Z�,Q�,Q�/Z� and Z/�r for all r � 1. We further fix the �-adic
twisted Borel–Moore cohomology theory on V with coefficients in A given by Proposition 6.6,
cf. Definitions 4.2 and 4.4. We also note that (P7.1) holds true by Proposition 6.6, as k is
algebraically closed.

If X ∈ V is regular and equi-dimensional, then

H i(X,A(n)) � H i
cont(Xét, A(n)) � H i(Xét, A(n)),

where the first isomorphism comes from Lemma 6.5 and the second isomorphism uses that k is
algebraically closed, so that continuous étale cohomology of algebraic schemes over k coincides
with usual étale cohomology, as the R1 lim term in (6.1) vanishes in this case by finiteness
of the corresponding étale cohomology groups, cf. [Jan88]. (As usual, étale cohomology with
Z�-coefficients has to be understood in the above formula as the inverse limit limH i(Xét, μ

⊗n
�r )

and cohomology with Q� or Q�/Z� coefficients is as usual defined by asking that (P4) holds.)
Bloch [Blo79] used Bloch–Ogus theory [BO74] and the Weil conjectures, proven by

Deligne [Del74], to construct a map

λ : CHi(X)[�∞] −→ H2i−1(X,Q�/Z�(i)), (8.1)

which agrees with the Abel–Jacobi map on homologically trivial cycles in the case where k = C,
see [Blo79, Proposition 3.7]. To give a description of Bloch’s map in the present context, we need
the following.

Lemma 8.2. Let k be an algebraically closed field and let � be a prime that is invertible in k.
Let X be a smooth projective variety over k. Then the image of

ker
(
∂ ◦ ι∗ ◦ ε :

⊕
x∈X(i−1)

κ(x)∗ −→
⊕

x∈X(i)

[x]Z�

)
⊗Z Z�

via the composition⊕
x∈X(i−1)

κ(x)∗ ⊗Z Z�
ε−→

⊕
x∈X(i−1)

H1(x,Z�(1)) ι∗−→ H2i−1(Fi−1X,Z�(i))

is torsion.

Proof. Our proof is similar to [Blo79, Lemma 2.4] but we avoid Bloch–Ogus theory.
Let ξ ∈

⊕
x∈X(i−1) κ(x)∗ ⊗Z Z� with ∂(ι∗(ε(ξ))) = 0. By Lemma 5.8, we get

ι∗(ε(ξ)) ∈ F iH2i−1(Fi−1X,Z�(i)) � H2i−1(X,Z�(i)).

If k is the algebraic closure of a finite field, then X and ξ are both defined over Fq for some
finite field Fq ⊂ k. In particular, X = X0 ×Fq k and the Frobenius F (given by x � �� xq on X0

and by id on k) satisfies
F (ι∗(ε(ξ))) = ι∗(ε(ξq)) = q · ι∗(ε(ξ)).

As X is smooth projective, the Weil conjectures [Del74] imply that q cannot appear as an
eigenvalue of the action of F on H2i−1(X,Q�(i)) and so ι∗(ε(ξ)) must be torsion, as claimed.

If k is not the algebraic closure of a finite field, then the result in question follows from
spreading out the problem over a finitely generated field, which allows us to specialize to a finite
field and so the smooth proper base change theorem yields the result. This proves the lemma. �

Taking the direct limit of the isomorphisms from Lemma 8.1, we obtain an isomorphism

φ : CHi(X)[�∞] 
−→
ker

(
∂ ◦ ι∗ :

⊕
x∈X(i−1) H1(x,Q�/Z�(1))→

⊕
x∈X(i) [x]Q�/Z�

)
ker

(
∂ ◦ ι∗ ◦ ε :

⊕
x∈X(i−1) κ(x)∗ ⊗Z Q� →

⊕
x∈X(i) [x]Q�

) .
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Proposition 8.3. There is a well-defined map

λ′ : CHi(X)[�∞] −→ H2i−1(X,Q�/Z�(i)),

given by

λ′(φ−1([ξ])) := −ι∗ξ ∈ F iH2i−1(Fi−1X,Q�/Z�(i)) � H2i−1(X,Q�/Z�(i)).

Proof. The natural map

H2i−1(X,Z�(i))tors −→ lim−→
r

H2i−1(X,μ⊗i
�r ) � H2i−1(X,Q�/Z�(i))

is zero. Lemma 8.2 thus implies that for any ξ ∈
⊕

x∈X(i−1) κ(x)∗ ⊗Z Q� with ∂(ι∗(ε(ξ))) = 0,

ι∗(ε(ξ)) ∈ F iH2i−1(Fi−1X,Q�/Z�(i)) � H2i−1(X,Q�/Z�(i))

vanishes. This concludes the proof. �
The minus sign in Proposition 8.3 is necessary to make our definition compatible with λi

tr

defined in § 7.5; a similar sign issue was noted by Bloch, see [Blo79, p. 112].

Lemma 8.4. The map λ′ constructed above coincides with the map (8.1) constructed by Bloch:
λ = λ′.

Proof. This follows directly from Lemma 5.12 by comparing our construction with Bloch’s con-
struction via diagram (2.2) in [Blo79], where we recall that Bloch included the minus sign in
[Blo79, p. 112]. �

As mentioned previously, because k is algebraically closed, (P7.1) holds true. Lemma 7.5
thus implies

Ai
0(X)Z�

= Griffi(X)⊗Z Z�

is the group of homologically trivial codimension-i cycles with coefficients in Z� modulo algebraic
equivalence. In particular, Ai

0(X)[�∞] = Griffi(X)[�∞] is the group of classes in Griffi(X) that are
annihilated by some power of �.

Proposition 8.5. Let k be an algebraically closed field and letX be a smooth projective variety
over k. The map

λi
tr : Griffi(X)[�∞] −→ H2i−1(X,Q�/Z�(i))

N i−1H2i−1(X,Q�(i))

constructed in § 7.5 is induced by Bloch’s map in (8.1) and, hence, agrees with the transcendental
Abel–Jacobi map if k = C.

Proof. If k = C, then Bloch’s map agrees with the Abel–Jacobi map on torsion cycles, see [Blo79,
Proposition 3.7]. It thus suffices to show that λi

tr from § 7.5 is induced by Bloch’s map in
(8.1). For this, let z ∈

⊕
x∈X(i) [x]Z� be a homologically trivial cycle. Then ∂α = z for some

α ∈ H2i−1(Fi−1X,Z�(i)). Assume that z is �r-torsion modulo algebraic equivalence. As in § 7.5,
we find classes β ∈ H2i−1(X,Z�(i)) and ξ ∈

⊕
x∈X(i−1) H1(x,Z�(i)) with

β = �r · α− ι∗ξ ∈ F iH2i−1(Fi−1X,Z�(i)).

In particular, ∂ ◦ ι∗(ξ)/�r = z and so ψr([z]) = [ξ/�r], where ψr is the isomorphism from
Lemma 8.1. By our construction of Bloch’s map, we thus find

λ([z]) = λ′([z]) = −ι∗ξ/�r ∈ F iH2i−1(Fi−1X,Q�/Z�(i)) � H2i−1(X,Q�/Z�(i)).
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On the other hand,

λi
tr([z]) = [β/�r] ∈ H2i−1(X,Q�/Z�(i))/N i−1H2i−1(X,Q�(i))

by our construction of λi
tr in § 7.5. The result thus follows from the fact that

β/�r + ι∗ξ/�r = α = 0 ∈ H2i−1(Fi−1X,Q�/Z�(i)),

because α is an integral class. This proves the proposition. �

9. Proof of the main results (�-adic)

9.1 �-adic twisted Borel–Moore cohomology
Fix a field k and a prime � that is invertible in k. Let V be the category whose objects are
separated schemes of finite type over k and such that the morphisms are given by open immersions
of schemes of the same dimension. This is a constructible category of Noetherian schemes as in
Definition 4.1. Let A ⊂ ModZ�

be the full subcategory with objects Z�,Q�,Q�/Z� and Z/�r for
all r � 1. By Proposition 6.6, �-adic pro-étale Borel–Moore cohomology H∗(−, A(n)) as defined
in (6.13)–(6.15) is a twisted Borel–Moore cohomology theory on V with coefficients in A which
is �-adic if k is perfect, see Definitions 4.2 and 4.4. In particular, all results from § 5 and 7 hold
true in this set-up. Here we recall that for i � 1:

Ai(X)Z�
=

CHi(X)Z�

N i−1 CHi(X)Z�

and N jAi
0(X)Z�

= N jAi(X)Z�
=

N j CHi(X)Z�

N i−1 CHi(X)Z�

(9.1)

for 0 � j � i− 1, see Lemma 7.4. Moreover, Lemma 7.5 implies that Ai
0(X)Z�

= Griffi(X)Z�
if k

is algebraically closed and Ai
0(X)Z�

= ker(cliX) ⊂ CHi(X)Z�
if k is the perfect closure of a finitely

generated field.

Lemma 9.1. In the above notation, assume in addition that X is smooth and equi-dimensional.
Then the cycle class map

cliX : CHi(X)Z�
−→ H2i(X,Z�(i)),

constructed in (7.1) coincides with Jannsen’s cycle class map in continuous étale cohomology
from [Jan88].

Proof. By Lemma 6.8 and the topological invariance of the pro-étale topos (see [BS15,
Lemma 5.4.2]), we may replace k by its perfect closure and assume that k is perfect. Let X
be a smooth variety over k. By Lemma 6.5, H∗(X,A(n)) agrees with the corresponding continu-
ous étale cohomology group. The cycle class map in (7.1) is defined via the Gysin pushforward,
where one uses excision to reduce to the case of a cycle whose support is smooth. Our claim thus
follows from [Jan88, Remark 3.24]. �

9.2 Proof of Theorem 1.8

Proof of Theorem 1.8. We use the notation from § 9.1 and claim that it suffices to prove
Theorem 1.8 after replacing k by its perfect closure kper. Indeed, this does not change �-adic Chow
groups by Lemma 6.8 and it does not change the (pro-)étale topos (see [BS15, Lemma 5.4.2]),
so that H∗(−, A(n)) remains unchanged by passing from k to kper.

We may and will from now on assume that k is perfect, so that H∗(−, A(n)) is an �-adic
twisted Borel–Moore cohomology theory on V by Proposition 6.6. For any X ∈ V, we thus get a
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cycle class map

cliX : CHi(X)Z�
:= CHi(X)⊗Z Z� −→ H2i(X,Z�(i)),

constructed in § 7.2. If X is smooth and equi-dimensional, then, by Lemma 6.5, H i(X,Z�(n)) �
H i

cont(Xét,Z�(n)) agrees with Jannsen’s �-adic continuous étale cohomology groups, see § 6.1.1.
It follows from the construction of cliX via the Gysin sequence (see (P2)) that if X is a smooth
variety, then cliX agrees with Jannsen’s cycle class map (see Lemma 9.1).

Recall from Definitions 7.2 and 7.10 the groups Ai(X)Z�
and Ai

0(X)Z�
and recall the

description from (9.1) (that we used as a definition in the introduction).
Item (i) in Theorem 1.8 is then a consequence of Theorem 7.7 and Proposition 7.11.
By § 7.5, there is a map

λi
tr : Ai

0(X)[�∞] −→ H2i−1(X,Q�/Z�(i))/N i−1H2i−1(X,Q�(i)),

where N jH i(X,A(n)) := ker(H i(X,A(n))→ H i(Fj−1X,A(n))). If k is algebraically closed and
X is smooth projective, then this map agrees by Proposition 8.5 with Bloch’s transcenden-
tal Abel–Jacobi mapping on torsion cycles from [Blo79] (cf. § 8). Item (ii) thus follows from
Theorem 7.19 and Proposition 7.16. This concludes the proof of Theorem 1.8. �

9.3 Proof of Theorem 1.5
The following lemma shows that in our set-up, the result of Theorem 7.30 holds true whenever
k contains all �-roots of unity.

Lemma 9.2. In the notation of § 9.1, the following holds. Then for any X ∈ V and any i and n,
H i(F0X,Z�(n)) is torsion-free if one of the following conditions holds:

(i) n = i− 1;
(ii) k contains all �-power roots of unity.

Proof. By additivity of the cohomology functor (see Lemma 5.6), we may assume that X is
irreducible with generic point ηX ∈ X. If k contains all �-power roots of unity, H i(F0X,Z�(n)) �
H i(F0X,Z�(i− 1)) for all i and n. It thus suffices to prove the lemma under assumption
(9.2). As X is irreducible, H i(F0X,Z�(i− 1)) = H i(ηX ,Z�(i− 1)) and so the claim follows from
Remark 5.14 and Voevodsky’s proof of the Bloch–Kato conjecture [Voe11]. �

By (7.17) there is a higher Abel–Jacobi mapping

λ̄i
j,tr : N jAi

0(X)[�∞] −→ J
i
j,tr(X)[�∞] (9.2)

where N∗ denotes the coniveau filtration on Ai
0(X)[�∞] from § 7.8.

Theorem 9.3. Let X be a separated scheme of finite type over k. Let i � 2 and assume that
one of the following holds:

(i) k contains all �-power roots of unity; or
(ii) i = 2.

Then for all 0 � j � i− 2, we have

N j+1Ai
0(X)[�∞] = ker

(
λ̄i

j,tr : N jAi
0(X)[�∞]→ J

i
j,tr(X)[�∞]

)
.

Proof. We aim to apply Theorem 7.30. To this end we need to ensure that for any closed sub-
scheme Z ⊂ X,H2(i−j)−1(F0Z,Z�(i− j)) is torsion-free. By Lemma 9.2, this condition is satisfied
if k contains all �-power roots of unity, or if i = 2 and j = 0. This concludes the proof. �
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We are now in a position to prove Theorem 1.5, which follows from the following slightly
stronger result.

Theorem 9.4. Let X be a separated scheme of finite type over a field k and let � be a prime
invertible in k. Let i � 2 and assume that one of the following holds:

(i) k contains all �-power roots of unity; or
(ii) i = 2.

Then for all 0 � j � i− 2, we have

N j+1 CHi(X)[�∞] = ker
(
λ

i
j,tr : N j CHi(X)[�∞]→ J

i
j,tr(X)[�∞]

)
.

Proof. By (9.1),

Ai
0(X)[�∞] = N0 CHi(X)Z�

/N i−1 CHi(X)Z�
.

The higher transcendental Abel–Jacobi mapping from (7.17) thus yields for 0 � j � i− 2
mappings

λ̄i
j,tr : N j CHi(X)[�∞] −→ J

i
j,tr(X)[�∞] = lim−→

Z⊂X

H2i−2j−1(Z,Q�/Z�(i− j))
N1H2i−2j−1(Z,Q�(i− j))

,

where Z ⊂ X runs through all closed subschemes with j = dimX − dimZ. Theorem 9.3 then
implies that for 0 � j � i− 2, the kernel of the above map is given by N j+1 CHi(X)[�∞], as
desired. �

9.4 Applications of Theorems 1.5 and 9.4
The simplest (non-trivial) consequence of Theorem 9.4 is as follows.

Corollary 9.5. Let X be a smooth equi-dimensional algebraic scheme over a finitely generated
field k. Let � be a prime invertible in k and let CHi

0(X)[�∞] denote the group of �-power torsion
cycles with trivial cycle class in Jannsen’s continuous �-adic étale cohomology. Then there is a
canonical injection

λ2
tr : CH2

0(X)[�∞] ↪→ H3
cont(Xét,Q�/Z�(2))/N1H3

cont(Xét,Q�(2)).

Corollary 9.5 should be compared with a result of Merkurjev and Suslin [MS83, § 18],
who showed that Bloch’s Abel–Jacobi mapping on �-power torsion cycles on smooth projec-
tive varieties over algebraically closed fields [Blo79] is injective on codimension-two cycles.
Corollary 9.5 has previously been proven in the particular case where k = Fq is a finite field
and X is smooth projective in [CSS83, Théorème 4] (in fact, [CSS83, Théorème 4] proves that
CH2

0(X)[�∞] = 0 in this case; this also follows from our set-up, see Proposition 7.16 and note
that H3

cont(Xét,Q�(2)) = H3(Xét,Q�(2)) = 0 for weight reasons, cf. [CSS83, pp. 780–781]).

Proof of Corollary 9.5. By the same argument as in the proof of Theorem 1.8, we may replace
k by its perfect closure and hence assume that k is the perfect closure of a finitely generated
field. The result then follows from Theorem 1.5 (or Theorem 7.19) together with the fact that
A2

0(X)Z�
= CH2

0(X)Z�
if the ground field k is (the perfect closure of a) finitely generated, see

Proposition 6.6 and Lemma 7.5. �
Let X and Y be smooth projective equi-dimensional k-schemes. A cycle Γ ∈ CHdim X(X × Y )

yields actions on Chow groups that are compatible with the cycle class maps in continuous étale
cohomology. Hence, we get an action Γ∗ : N0 CHi(X)[�∞]→ N0 CHi(Y )[�∞]. Similarly, there
are actions Γ∗ : H i

cont(Xét, A(n))→ H i
cont(Yét, A(n)) for A ∈ {Q�/Z�,Q�}. The latter respect
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Grothendieck’s coniveau filtration N∗, as can be checked with the help of a moving lemma
(see, e.g., [Lev05, Theorem 2.13]). We conclude that correspondences act on source and target
of the map

λi
tr : N0 CHi(X)[�∞] −→ H2i−1

cont (X,Q�/Z�(i))/N i−1H2i−1
cont (X,Q�(i))

induced from the map in § 7.5 (cf. Lemma 7.4). We will show in [Sch22] that these actions are
compatible with the map λi

tr. The case i = 2 is simpler, and we give a direct proof in the following
lemma.

Lemma 9.6. Let X,Y be smooth projective equi-dimensional k-schemes and let Γ ∈
CHdim X(X × Y ). Then the following diagram commutes.

A2
0(X)[�∞]

Γ∗
��

λ2
tr

�� H3
cont(X,Q�/Z�(2))/N1H3

cont(X,Q�(2))

Γ∗
��

A2
0(Y )[�∞]

λ2
tr

�� H3
cont(Y,Q�/Z�(2))/N1H3

cont(Y,Q�(2))

Proof. By the description of λi
tr from Lemma 7.15, it suffices to show that the isomorphism

A2
0(X)Z�


−→ H3
nr(X,Z�(2))/H3(X,Z�(2))

from Proposition 7.11 is compatible with the action of correspondences. As X is smooth and
equi-dimensional, the Gersten conjecture [BO74, CHK97] identifies H3

nr(X,Z�(2)) with the
global sections of the corresponding Bloch–Ogus sheaf, associated to U � ��H3

cont(Uét,Z�(2)). This
description makes it easy to define an action on unramified cohomology, cf. [CV12, § 9, Appen-
dice] (an action in a more general setting has been constructed by Rost [Ros96]). Using this
description, one can readily check that the above isomorphism is compatible with the action of
cycles, which concludes the lemma. �

Corollary 9.5 implies for instance the Rost nilpotence conjecture for surfaces up to inverting
the exponential characteristic, originally due to Gille [Gil10, Gil14] and with an alternative proof
due to Rosenschon and Sawant [RS18].

Corollary 9.7. Let X be a smooth projective equi-dimensional scheme over a field k with
base change X̄ = X ×k k̄, where k̄ denotes an algebraic closure. Let Γ ∈ CHdim X(X ×X) and
assume that the base change Γ̄ = Γ×k k̄ acts trivially on H i(X̄ét,Q�/Z�(2)) for i � 3. Then the
action

Γ◦N∗ : CH2(X)[�∞] −→ CH2(X)[�∞]

is zero for N � 10.

Proof. A straightforward limit argument reduces us to the case where k is finitely generated.
(This uses that étale cohomology does not change under algebraically closed field exten-
sions.) By Lemma 9.6 and Corollary 9.5, it thus suffices to show that Γ◦5 acts trivially on
H4

cont(Xét,Z�(2))[�∞] and on H3
cont(Xét,Q�/Z�(2)). The Bockstein sequence yields a canonical

surjection
H3

cont(Xét,Q�/Z�(2))→ H4
cont(Xét,Z�(2))[�∞]

that is compatible with the action of correspondences. It thus suffices to show that Γ◦5∗ acts
trivially on H3

cont(Xét,Q�/Z�(2)). Note that H3
cont(Xét,Q�/Z�(2)) = colimr H

3
cont(Xét, μ

⊗2
�r ) and

H3
cont(Xét, μ

⊗2
�r ) = H3(Xét, μ

⊗2
�r ), cf. [Jan88, (3.1)]. The assertion in question thus follows from
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the fact that the Hochschild–Serre spectral sequence for étale cohomology (see [Mil80, p. 105,
III.2.20]) is compatible with the action of correspondences. (In the last step, we are implicitly
working with the separable closure of k and not with the algebraic closure; this is possible because
neither Chow groups nor étale cohomology change by purely inseparable field extensions, see
Lemma 6.8.) �

Recall that the exponential characteristic e of a field k is 1 if char k = 0 and p if p = char k > 0.

Corollary 9.8. Let S be a smooth projective scheme of pure dimension two over a field k
of exponential characteristic e. Let Γ ∈ CH2(S ×k S) be a correspondence with base change
Γ̄ ∈ CH2(Sk̄ ×k̄ Sk̄) to the algebraic closure k̄ of k. Assume that Γ̄ is torsion and homologically
trivial in �-adic étale cohomology for any prime � invertible in k̄. Then up to inverting e, the
composition Γ◦N is zero for N � 11.

Proof. A standard norm argument shows that Γ is torsion. By the Chinese remainder theorem,
we may assume that Γ is �r-torsion for some integer r � 0 and some prime � invertible in k. Let
X := S × S. The assumptions imply that there is a correspondence Ω ∈ CH4(X ×X)[�∞] which
is homologically trivial over k̄ and such that Ω◦N∗ (Γ) = Γ◦N+1. The assertion thus follows from
Corollary 9.7. �
Remark 9.9. Up to inverting the exponential characteristic, Corollary 9.8 is slightly stronger
than the original conjecture of Rost for surfaces, proven in [Gil10, Gil14, RS18]. Indeed, we are
only asking that Γ̄ is torsion and homologically trivial, while the original formulation asks that
Γ is rationally equivalent to 0 over k̄ (or equivalently over some field extension of k).

10. Proof of main results over C

10.1 Integral twisted Borel–Moore cohomology
Let V be the category whose objects are separated schemes of finite type over C and such
that the morphisms are given by open immersions of schemes of the same dimension. This is a
constructible category of Noetherian schemes as in Definition 4.1. Let A := ModZ and define for
X ∈ V and A ∈ A,

H i(X,A(n)) := HBM
2dX−i(Xan, A(dX − n)),

where dX := dimX andHBM∗ denotes Borel–Moore homology andXan denotes the analytic space
that underlies X and A(n) := A⊗Z (2πi)nZ denotes the nth Tate twist of A. By Proposition 6.9,
H∗ defines an integral twisted Borel–Moore cohomology theory that is adapted to algebraic
equivalence, cf. Definition 4.6. It follows that all results from §§ 5 and 7 hold true in the above
set-up if we formally make the replacements Z� � Z, Q� � Q, �r � r, and [�∞]� tors.

10.2 Proof of Theorem 1.6

Proof of Theorem 1.6. We use the notation from § 10.1. Performing the aforementioned for-
mal replacements Z� � Z, Q� � Q, �r � r, and [�∞]� tors, Lemma 7.5 shows that Ai

0(X)Z =
Griffi(X) is the group of homologically trivial cycles modulo algebraic equivalence. The
arguments in § 7.5 yield a map

λi
tr : Griffi(X)tors −→ J i

tr(X)tors := H2i−1(X,Q/Z(i))/N i−1H2i−1(X,Q(i)), (10.1)

where N jH i(X,A(n)) := ker(H i(X,A(n))→ H i(Fj−1X,A(n))). If X is smooth projective, we
claim that this map agrees with Griffiths transcendental Abel–Jacobi map restricted to torsion
cycles. By the Chinese remainder theorem, it suffices to show this for classes that are �-power
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torsion for some prime �. In this case our map identifies by Proposition 8.5 with Bloch’s map,
which, in turn, identifies with Griffiths map by [Blo79, Proposition 3.7].

Theorem 1.6 follows now as previously from Theorem 7.7, Proposition 7.11, Theorem 7.19,
and Proposition 7.16 (after performing the formal replacements Z� � Z, Q� � Q, �r � r, and
[�∞]� tors). This concludes the proof of Theorem 1.6. �

10.3 Proof of Theorems 1.1 and 1.4, and Corollaries 1.2 and 1.3
Lemma 10.1. In the notation of § 10.1, for any X ∈ V and any i and n, H i(F0X,Z(n)) is torsion-
free.

Proof. By additivity of the cohomology functor (see Lemma 5.6), we may assume that X is
irreducible with generic point ηX ∈ X. By definition, H i(F0X,Z(n)) � H i(F0X,Z(i− 1)) for all
i and n. As X is irreducible, the latter coincides with H i(ηX ,Z(i− 1)) and so the claim follows
from Remark 5.14 and Voevodsky’s proof of the Bloch–Kato conjecture [Voe11]. �
Proof of Theorem 1.4. Theorem 1.4 follows with help of Lemma 10.1 via the same arguments as
in the proof of Theorem 1.5. This requires as in Theorem 1.6 the formal replacements Z� � Z,
Q� � Q, �r � r, and [�∞]� tors in § 7. �
Proof of Theorem 1.1. This is a consequence of Theorem 1.4 together with the fact that λi

tr

factorizes for smooth projective varieties through Bloch’s Abel–Jacobi map for torsion cycles,
which, in turn, agrees with the Abel–Jacobi invariants due to Griffiths in that case, see
Proposition 8.5. The assumption i � 2 is needed, because the assertion in Theorem 1.4 is empty
for i = 1. �
Proof of Corollary 1.2. By Theorem 1.1, the n-torsion of N0 CHi(X)tors/N

1 CHi(X)tors injects
into the n-torsion of a quotient of H2i−1(X,Q/Z), hence is finite. Moreover, the cycle class
map yields an injection of CHi(X)/N0 CHi(X) into H2i(X,Z) and so the n-torsion subgroup
of CHi(X)tors/N

0 CHi(X)tors must be finite as well. Altogether we conclude that the n-torsion
subgroup of CHi(X)tors/N

1 CHi(X)tors is finite, as claimed. �
Proof of Corollary 1.3. This is an immediate consequence of Theorem 1.1. �

10.4 Applications of Theorem 1.4
For a complex algebraic scheme X, we recall that the coniveau filtration N j on Griffi(X) is
defined by saying that a cycle z ∈ Griffi(X) lies in N j if and only if there is a closed subset
Z ⊂ X with j = dimX − dimZ and a homologically trivial cycle z′ on Z such that z agrees with
the pushforward of z′, cf. Definition 7.3. This yields a finite decreasing filtration on Griffi(X)
with N i−1 = 0, cf. Lemmas 7.4 and 7.5.

Corollary 10.2. Let X be a separated scheme of finite type over C. Then

Griffi(X)tors = N1 Griffi(X)tors = · · · = N j Griffi(X)tors for all j � 2i− 1− dimX.

Proof. We use the notation from § 10.1. Proposition 7.16 implies that for any separated scheme
X of finite type over C, we have

im(λ̄i
tr) =

N i−1H2i−1(X,Q/Z(i))div

N1H2i−1(X,Q(i))
,

where H2i−1(X,Q/Z(i))div = im(H2i−1(X,Q(i))→ H2i−1(X,Q/Z(i))). As affine varieties have
no cohomology in degrees greater than their dimension, and because H i(X,A(n)) depends only
on the underlying reduced scheme and agrees with singular cohomology if X is smooth, we find
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that N1H2i−1(X,Q(i)) = H2i−1(X,Q(i)) for 2i− 1 > dimX and so im(λ̄i
tr) = 0 for 2i− 1 >

dimX. It follows that im(λ̄i
j,tr) = 0 for 2i− 2j − 1 > dimX − j, i.e. for j < 2i− 1− dimX.

Theorem 1.4 thus implies that N j+1 Griffi(X)tors = N j Griffi(X)tors for j < 2i− 1− dimX,
which proves Corollary 10.2. �

10.5 Algebraic cycles and traditional unramified cohomology in arbitrary degree
For j � m, there is a canonical restriction map

H i
j,nr(X,A(n)) −→ H i

m,nr(X,A(n)). (10.2)

Recall from § 5 that we denote its image by F j+1H i
m,nr(X,A(n)). We describe the effect of

applying the restriction map (10.2) to Theorem 1.6 next.

Corollary 10.3. LetX be a separated scheme of finite type over C. Then for any 0 � j � i− 2,
there are canonical exact sequences

lim−→ Zi−j(Z)tors −→ Zi(X)tors −→
F i−1H2i−1

j−1,nr(X,Q/Z(i))

F i−1H2i−1
j−1,nr(X,Q(i))

−→ 0,

lim−→ Griffi−j(Z) −→ Griffi(X) −→
F i−1H2i−1

j−1,nr(X,Z(i))
H2i−1(X,Z(i))

−→ 0,

lim−→ T
i−j(Z) −→ T i(X) −→

F i−2H2i−2
j−1,nr(X,Q/Z(i))

GiF i−2H2i−2
j−1,nr(X,Q/Z(i))

−→ 0,

where in the direct limits, Z ⊂ X runs through all reduced closed subschemes ofX with dim(X)−
dim(Z) = j.

This corollary is particularly interesting for j = 1. In this case, the refined unramified
cohomology groups above agree with traditional unramified cohomology H i

nr(X,A(n)) =
H i

0,nr(X,A(n)). The corollary then identifies certain graded pieces of traditional unramified coho-
mology with certain birationally invariant quotients of the above cycle groups. In particular,
non-trivial elements in certain pieces of the F ∗ filtration on traditional unramified cohomology
H i

nr(X,A(n)) = H i
0,nr(X,A(n)) detect exactly those cycles on X that are not supported in codi-

mension one in the sense that they are not pushforwards of the respective cycle groups on some
divisor on X. This improves some results obtained independently by Ma in [Ma22].

Proof of Corollary 10.3. The corollary follows from Theorem 1.6 and Corollary 5.9. We give
some details for Griffi(X); the other cases are similar.

We use the same notation as in the proof of Theorem 1.6 and fix the integral twisted
Borel–Moore cohomology theory H∗(−, A(n)) on separated schemes of finite type over C from
Proposition 6.9. By Theorem 1.6, there is a canonical isomorphism

Griffi(X) � H2i−1
i−2,nr(X,Z(i))/H2i−1(X,Z(i)).

By Corollary 5.9, for any 0 � j � i− 1, there is a canonical exact sequence

lim−→H
2(i−j)−1
i−j−2,nr (Z,Z(i− j)) ι∗−→ H2i−1

i−2,nr(X,Z(i)) −→ F i−1H2i−1
j−1,nr(X,Z(i)) −→ 0,

where the direct limit runs through all closed reduced subschemes Z ⊂ X of dimension dimZ =
dimX − j. Here the first map is induced by the pushforward map with respect to Z ↪→ X and
the second map is the canonical restriction map. The latter is surjective by definition of the
filtration F ∗ (see Definition 5.3).
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The above sequence induces a sequence

lim−→
H

2(i−j)−1
i−j−2,nr (Z,Z(i− j))

H2(i−j)−1(Z,Z(i− j))
ι∗−→

H2i−1
i−2,nr(X,Z(i))
H2i−1(X,Z(i))

−→
F i−1H2i−1

j−1,nr(X,Z(i))
H2i−1(X,Z(i))

−→ 0,

and one can check directly that this sequence remains exact. By Theorem 1.6, this sequence
identifies to an exact sequence

lim−→Griffi−j(Z) ι∗−→ Griffi(X) −→
F i−1H2i−1

j−1,nr(X,Z(i))
H2i−1(X,Z(i))

−→ 0.

It follows from the functoriality of the Gysin sequence with respect to proper pushforwards (see
(P2)) that the first map above agrees with the pushforward of cycles induced by Z ↪→ X. This
concludes the proof of the corollary. �
Remark 10.4. Theorem 1.8 together with Corollary 5.9 implies analogues of Corollary 10.3 over
arbitrary fields. We leave it to the reader to formulate and prove those results.

10.6 Applications of Theorem 1.6
If X is an integral scheme over C, we write in this section

H i(C(X), A) := H i(F0X,A) = lim−→
∅�=U⊂X

H i(U,A),

which is consistent with some of the notation used in the literature (see, e.g., [CV12, Voi12]). The
above group is the cohomology of the generic point of X as defined in (4.2). If A = Z/�r or A =
Q/Z, this group coincides by [Mil80, p. 88, III.1.16] with the corresponding Galois cohomology
group of the field C(X).

We need the following result that is proven with methods from [Sch19].

Proposition 10.5. For any positive integer n, there is a smooth projective unirational variety
Y of dimension 3n over C such that the composition

H2i(Y,Z/2) −→ H2i(C(Y ),Z/2) −→ H2i(C(Y ),Q/Z)

is non-zero for all i = 1, . . . , n.

Proof. By the proof of [Sch19, Theorem 1.5], there is a unirational smooth complex projective
threefold T together with a morphism f : T → P2 whose generic fiber is a conic, such that the
following hold:

– the class α = (x1/x0, x2/x0) ∈ H2(C(P2),Z/2) has the property that f∗α ∈ H2
nr(T,Z/2) is

unramified and non-trivial;
– there is a specialization T0 of T such that the specialization f0 : T0 → P2 of f has the property

that its generic fiber has a C(P2)-rational point in its smooth locus.

Let us now consider Y := Tn, which is a smooth complex projective variety of dimension 3n
that is unirational. Let prj : Y → T denote the projection onto the jth factor and consider the
class

γi := pr∗1 f
∗α ∪ pr∗2 f

∗α ∪ · · · ∪ pr∗i f
∗α ∈ H2i(C(Y ),Z/2).

As α is of degree two, the unramified class f∗α admits a lift to a class in H2(T,Z/2), see
Corollary 5.10. Hence, γi admits a lift to a class in H2i(Y,Z/2) and so

γi ∈ F iH2i
nr(Y,Z/2).
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It remains to show that the image γ′i of γi in H2i(C(Y ),Q/Z) is non-zero for all i = 1, . . . , n. By
construction of the class γi, it suffices to prove that γ′n is non-zero and our argument is similar
to the proofs of [Sch19, Proposition 6.1] and [Sch21, Theorem 5.3(3)].

Assume for a contradiction that γ′ := γ′n is zero in H2n(C(Y ),Q/Z). Then let us specialize T
to T0. Then Y specializes to a projective variety Y0 together with a morphism Y0 → (P2)n whose
generic fiber admits a rational point in its smooth locus. The specialization γ′0 of γ′ vanishes,
because γ′ vanishes by assumption. It follows that the restriction of γ′0 to the rational point in
the smooth locus of the generic fiber of Y0 → (P2)n is zero. This restriction, in turn, is computed
explicitly as the image of

pr∗1 α ∪ pr∗2 α ∪ · · · ∪ pr∗n α ∈ H2n
(
C

(
(P2)n

)
,Z/2

)
in H2n(C((P2)n),Q/Z). However, this class is non-zero, as one can check by computing successive
residues. This is a contradiction, which concludes the proof. �

10.6.1 Integral Hodge conjecture for uniruled varieties. Recall that for any algebraic scheme
X of dimension d over C, there is a cycle class map cliX : CHi(X)→ H2i(X,Z), whereH i(X,A) :=
HBM

2d−i(Xan, A). We denote its cokernel by Zi(X) := coker(cliX).

Theorem 10.6. For any n � 1, there is a smooth complex projective unirational variety Y of
dimension 3n and an elliptic curve E such that X := E × Y satisfies

coker
(
lim−→ Zi−1(D)tors −→ Zi(X)tors

)
	= 0 for all 2 � i � n+ 1, (10.3)

where D runs through all closed reduced subvarieties D ⊂ X of codimension one.

Note that for any closed subscheme Z � X of codimension c � 1, the pushforward Zi−c(Z)→
Zi(X) factors through Zi−1(D) for any divisor D ⊂ X that contains Z, and so the non-trivial
class in the cokernel of the above corollary is not hit by Zi−c(Z)tors and, hence, in particular
not by the torsion in H2i−2c(Z,Z) = HBM

2dX−2i(Z,Z), where dX = dimX. In particular, the above
theorem implies Corollary 1.7 stated in the introduction.

Proof of Theorem 10.6. By Proposition 10.5, there is a unirational smooth complex projective
variety Y of dimension 3n such that H2i(Y,Q/Z) −→ H2i(C(Y ),Q/Z) is non-zero for all i =
1, . . . , n. It thus follows from a theorem of Colliot-Thélène [Col19, Theorem 1.1] that there is an
elliptic curve E such that the product X = Y × E has the property that

H2i+1(X,Q/Z) −→ H2i+1(C(X),Q/Z)

is non-zero for all i = 1, . . . , n. As the Chow group of zero cycles of X is supported on a curve
(i.e. CH0({pt.} × E)→ CH0(Y × E) is surjective), the rational unramified cohomology groups of
X above degree one vanish by a simple Bloch–Srinivas decomposition of the diagonal argument,
see, e.g., [CV12, Proposition 3.3.(i)].1 The result thus follows from Corollary 10.3. �

10.6.2 Applications to the Artin–Mumford invariant. In [AM72], Artin and Mumford showed
that for any smooth complex projective variety X, the torsion subgroup of H3(X,Z) is a bira-
tional invariant and used this to construct unirational threefolds that are not rational. For
i > 3, the torsion subgroup of H i(X,Z) is not a birational invariant. However, Voisin observed
(see [Voi12, Remark 2.4]) that the Bloch–Kato conjecture proven by Voevodsky implies that the

1 This step uses the existence of an action of algebraic cycles on unramified cohomology, hence [BO74] or [Sch22],
but it does not use the Bloch–Kato conjectures, as we are only concerned about the vanishing of unramified
cohomology with rational coefficients and so torsion-freeness of Hi

nr(X, Z) is not needed.
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torsion subgroup of H5(X,Z)/N2H5(X,Z) is a birational invariant. By Proposition 7.32, there
is a canonical surjection

ϕ : Tors
(

H i(X,Z)
N2H i(X,Z)

)
�� ��
G�i/2�H i−1

nr (X,Q/Z)
H i−1

nr (X,Q)
.

(It follows from the Bloch–Kato conjecture, proven by Voevodsky, that this surjection is, in fact,
an isomorphism, see Remark 7.33, but we do not use this.)

As an application, we prove that Voisin’s generalization of the Artin–Mumford invariant is
non-trivial in any odd degree.

Corollary 10.7. For any positive integer i, there is a unirational smooth complex projective
variety X with a torsion class in H2i+1(X,Z) that is non-zero in the quotient

H2i+1(X,Z)/N2H2i+1(X,Z).

Proof. Rationally connected varieties have no rational unramified cohomology in positive degrees,
see, e.g., [CV12, Proposition 3.3(i)]. The claim in Corollary 10.7 follows therefore directly from
Propositions 6.9, 7.32, and 10.5. �
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