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1. In trod action. One of the authors discussed finite dimensional appro-

ximations to a white noise and a periodic Brownian motion with period 2 π on

the projective limit space of spheres ([2]K The group of unitary operators

derived from the periodic white noise has a pure point spectrum which consists

of all integers with countably infinite multiplicity. We also have much interest

in the investigation of a band limited white noise which is another typical

example having quite different spectral type. Indeed, the corresponding group

of unitary operators has a continuous spectrum with countably infinite multiplicity.

A band limited white noise to the band from 0 to W is, as is well known,

a Gaussian stationary stochastic process Xw (t, ω), - ° ° < / < < » ) ( ΰ £ Ω(P)f which

has the following spectral representation:

(1) XwKt) = Γ eindZ(λ),

where dZiλ) is a complex Gaussian random measure defined on JB(L - πW} πW]),

the smallest Borel field generated by all open subsets of [ - πW, πW\ satisfying

(2) EZ(Δ) = 0, E\Z(J) I2 = I J | (the Lebesgue measure of Δ)

and

The covariance function of Xvr(t) is given by the formula

(3) r(h) = E(XAt 4 hYXwϊt)) = - |ysin τr|A! flK

For simplicity we always assume that W~\ throughout this note.

In order to obtain a finite dimensional approximation to the process Xw{i),
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we shall begin with the construction of a random measure Z{m(λ) which ap-

proximates dZ(λ) appeared in the expression (l). Our method is quite similar

to what was used in the course of approximation to the periodic white noise

(cf. [2, §3]).

Having got the Fourier transform of Z(n)(λ)

X(m(t) = Γ eίnZ{n){λ)dλt

we shall show that the stochastic process X{n)(t) approches to a band limited white

noise required to be approximated in the sense to be prescribed as follows:

The process X[n)(t) determines a probability measure μn on the space of all

continuous functions on Rι with compact uniform topology. Appealing to

Prokhorov's theorem [3], we shall prove that there exists a probability measure

tx which is the weak limit of μn. This measure μ will turn out to be the same

measure as the one derived from a band limited white noise to the band from

0 to 1.

2, The complex white noise with circular parameter

We shall first list some results obtained in [1] and [2] which will be needed

for our present purpose.

Let Sn be the n-dimensional sphere with radius yV+1 and let r n f l ) =

Uί r t + 1 ), . . . , *(,Vil)) be a point of Sn. Then x{n*l) can be expressed in the form

xiM + I >= Vn+1 Πsintf/,

n

cos θk-iH sindiy 2<k<n,

where 0<^<2τr, 0<^<τr, ί = 2, 3, . . . , « . Let Ωn be a subset of Sn defined

by

Ω» = {x{n+ι) x(n*l)<=Sn, 0<θi<πi ι>2>

and let Pn be the restriction to J%n = <J$(Ωn) of the uniform probability measure

over Sn. Then we obtain a probability space (Ω, rjg, P) as the projective

limit of measure spaces (Ω2n, <-^zn, Ptn), n = 1, 2, . . . (see Π]).

Now we can introduce a flow {Tχn) λ real} on (^2«, c^2«, fi») defined

by
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(4)

where

Aι(λ)

0

are given by

- I " c ιCOS i

sin /

- sin kλ

cos
= l, 2,

Since the flows {T[2n)}, n = 1, 2, . . . , form a system of consistent flows, we

can uniquely determine a flow {Tλ λ real/ (see [2]). The flow {Tλ} is

obviously a periodic flow with period 2 π.

We are now in a position to define a finite dimensional approximation

Z{2n){l, #' 2 r t + 1 )) to the complex white noise dZ(λ, x). "Let us define unitary

groups {Ux λ real} and {ί/L2fl) i Λ real} by

(5) Uχf(x)=f(Txx), for f&L\Ω, J g , P ) , - o o < ; < o o ,

and

\Ό / LJ X J \ λ> ) [2n+1)xι

respectively. Then it can be proved that Ux and Uχ2n) are strongly continuous

in λ9 λ real, and that both of them are periodic:

ΓT TT rr(2») ττ(2n)
C / λ + 2 π = C 7 λ , C / λ + 2 π = t / λ

Since T1 2 Π ) Λ: ( 2 M + 1 ) together with ,r(2M+1) may be regarded as (2« + l)-

dimensional vectors, we may consider scalar products such as ( # ( 2 n + 1 ) , a),

(Tχn)x{2nj'1\ b)t etc., where a and & are (2 nΛ l)-dernensional vectors. Now

let us take a particular (2 nΛ 1)-dimensional vector a such as

β - ( i 1. o,-!.
V 2 7τ 7Γ r

A functional / β U ί 2 n + 1 ) ) defined by

o. -1-. o).

belongs to L2(Ω2ns

Z{2n)(λ) by

%n, An). We can therefore apply U[2n) to / β . Define
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(6) Z{*n\λ)

Then we have the following simple expression

( a t \ 7 - ( 2 « ) / j \ 1 ( 2 Λ + 1 ) i ^ C O S j W ( 2 « + i ) _ - ^ i S i n W ( 2 n + l )
I 0 / Λ> \λ> — ~Q X\ i f f <*2 k *> ̂ _J Xl k + 1

Aft k=l 7Γ k * l 7Γ

= ZS2/1)(A) - ί Z ^ U ) , Zί l n ) U), Zί I Λ )U) real.

Note that Z(2n)(λ) and Zγn)(λ)y i = 1, 2, can be regarded as random variables

not only on (An, ^ 2 n , Pin) but also on (5, JB, P).

PROPOSITION 1. i) For any / G L 2 ( [ ~ π, πl)

7('2n)( f ) — l 7 ( 2 n ) ( ) ) f( ) ) s f ) i—Λ 9
J-75

belong to real L2(Ω, J@!, P) , <̂ ŵ  Â̂ y converge to Gaussian random variables which

we denote by Zi(f)9 ί = 1, 2, m L2(i?, ^ , P).

it) For almost all X<E Ω, both ZΊiφ, x) and Z2(^, *), ψe ( J ^ ) [ - « , Λ J , αr^ co»-

tinuous linear functional^ on {3)\~^,^\.

This proposition can be proved in a similar way to the discussions in C2, § 3]

and the proof is omited.

Define Z ( 2 n ) (J) = \ Zi2n){λ)dλ, then

(7) EZ{2n\Δ) = 0

and

3. Approximation to a band limited white noise

Consider the Fourier transform of Zί2n)(λ)y -π<λ<π'-

(8) X{2n\t, x"n+l)) = Γ eitxZ{tni(λ, x{tn+l))dλ, - «> < ί < oo.

Since the relation (7) holds, {Z ι 2 Λ )(0 / real} is a real valued second order

stochastic process defined on (Ω2n> <^2n>Pzn) (hence, on (42, JBy P)).

PROPOSITION 2. For any t, Xl2n}(t) approaches to a random variable 'X(t) of

a band limited white noise in the sense of both mean square in L2(Ωy J8y P) and

almost sure {P) convergence.

Proof. As was proved in [1], we can show that
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(9) limykn+1) =*C*, -y^n+1) =XkΛ+-}t k = 1, 2f . . . .

exists almost surely. The collection {Ck) forms a system of independent Gaussian
sin(t + k)π 2

random variables with mean 0 and variance 1. Since Σ j _
t+k

for every /, we can also prove that

(10) lim X. \t, x ) = J ĵ iTi, ~**kt 3. β. (r^/,

in a similar manner to [2, §41

We denote by X(t) the right hand side of (10). Then X(t), - «> < ί < °°,

is obviously a Gaussian process. On the other hand, the band limited white

noise X^t) ( W = l ) introduced by the formula (l) can be expressed in the form

vll) AiU) — - - 2LΔ —

where {£*} is a system of independent standard Gaussian random variables.

This shows that {XΛt)} and {Xit)} are the same process. Consequently, almost

sure convergence is proved.

The fact that X{2mU) converges to X(t) strongly in L2(Ω, JB, P) follows

easily from Proposition 1, i).

COROLLARY. Any finite dimensional distribution of the stochastic process

{X[2n\t)} converges to the finite dimensional distribution of {Xι(t)}.

Under these preparations we shall finally show much stronger convergence

of X{n\t) to XM). By the expression (8) we see that X{2n){t, # ( 2"*1 )) is con-

tinuous in t for all χ(2n+l) e j?2Λ, which means X{2n){t) determines a probability

measure μn on the measurable space (C, J8c)i where C is the space of all

continuous functions on Rι and JSc is the topological Borel field. The situation

is the same for Xiit) and we denote by μ the derived probability measure from

Xiit). Now we can state

THEOREM. The measure μn converges to μ weakly.

Proof We have already proved that μn(E) tends to μ(E), as #-> oo, for

any cylinder set E of C (Corollary of Proposition 2). We shall now apply

Prokhorov's theorem [3, Chapt. 2] to our discussions. We have

£|A"s"(i)-X'f"'(s)r= 1
"7Γ

sin
t+k ~s+k
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since the system {y(kn+1) \ -n<k<n) forms an orthonormal basis of (Ωzn,

JBttf, Pzn). Observing the Fourier coefficients of eitx-etsλ

t we obtain

E\Xizn)(t)-Xί2n)(s)\'z<cV \eitx-eisX\2dλ<C'\t~s\\
J —Λ

where C and C are constants being independent of n, t. and s. Thus the

assumptions of Prokhorov's theorem are satisfied, and henCe our theorem is

proved.
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