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Abstract

We introduce some generalisations of the Euler–Kronecker constant of a number field and study their
arithmetic nature.
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1. Introduction and preliminaries

In 1740, Euler [2] introduced the Euler–Mascheroni constant, which is defined as

γ = lim
x→∞

(∑
n≤x

1
n
− log x

)
. (1.1)

This constant has been extensively studied (see [4]), but many questions about its
behaviour are unanswered. For example, it is not known if γ is rational or irrational.
Diamond and Ford [1] introduced a generalisation of Euler’s constant as follows. For
a nonempty finite set of distinct primes Ω, let PΩ denote the product of the elements
of Ω and δΩ =

∏
p∈Ω(1 − 1/p). Then the generalised Euler constant is defined as

γ(Ω) = lim
x→∞

( ∑
n≤x

(n,PΩ)=1

1
n
− δΩ log x

)
.

Note that when Ω = ∅, we have PΩ = 1 = δΩ and γ(Ω) = γ. In this context, Murty and
Zaytseva proved the following theorem.

THEOREM 1.1 (Murty and Zaytseva, [8]). At most one number in the infinite list
{γ(Ω)}, as Ω varies over all finite subsets of distinct primes, is algebraic.
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[2] Generalised Euler–Kronecker constants 465

We note that γ appears as the constant term in the Laurent series expansion of ζ(s)
around s = 1. This observation led Ihara [3] to define the Euler–Kronecker constant
associated to a number field as follows.

Let K be a number field of degree n and let OK denote its ring of integers. The
Dedekind zeta function of K is given by

ζK(s) =
∑

(0)�a⊆OK

1
N(a)s , �(s) > 1.

It has a meromorphic continuation to the entire complex plane with only a simple pole
at the point s = 1. Its Laurent series expansion around s = 1 is given by

ζK(s) =
ρK

s − 1
+ cK + O(s − 1),

where ρK � 0 is the residue of ζK at s = 1. Ihara defined the ratio

γK := cK/ρK

as the Euler–Kronecker constant of K. In the next section, an expression analogous to
(1.1) is given for γK.

The aim of this article is to study the arithmetic nature of generalisations of
Euler–Kronecker constants. To do so, we introduce some notation. Let PK denote the
set of nonzero prime ideals p of OK and let Ω be a nonempty subset of PK (possibly
infinite) such that

∑
p∈Ω

logN(p)
N(p) − 1

< ∞. (1.2)

For K = Q, the set of Pjateckii–Šapiro primes is an example of such an infinite subset.
Let NΩ = {p ∩ Z | p ∈ Ω}. We set

P(Ω(x)) =
∏
p∈Ω(x)

p and δK(Ω(x)) =
∏
p∈Ω(x)

(
1 − 1
N(p)

)
,

where Ω(x) = {p ∈ Ω | N(p) ≤ x}. Then by (1.2), limx→∞ δK(Ω(x)) exists and equals

δK(Ω) =
∏
p∈Ω

(
1 − 1
N(p)

)
.

Note that δK(Ω) = 1 for Ω = ∅. The generalised Euler–Kronecker constant associated
to Ω is denoted by γK(Ω) and is defined as

lim
x→∞

( 1
ρK

∑
0�a⊂OK
N(a)≤x

(a,P(Ω(x))=1

1
N(a)

− δK(Ω(x)) log x
)
.

In Section 3, we will show that this limit exists. We note that γK(Ω) = γK whenΩ = ∅.
With this set up, we have the following theorem.
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THEOREM 1.2. Let {Ωi}i∈I be a family of subsets of PK satisfying (1.2). Further,
suppose that NΩi\NΩj is nonempty and finite for all i, j ∈ I and i � j. Then at most
one number from the infinite list

{
γK(Ωi)
δK(Ωi)

∣∣∣∣ i ∈ I
}

is algebraic.

We digress here a little to make an interesting observation. For K = Q, it is known
by Merten’s theorem that as x→ ∞,

δQ(Ω(x)) ∼ e−γ

log x
.

This makes one wonder if γK appears as an exponent in the expression for K � Q.
A result of Rosen [9] shows that this is not true in general. More precisely, he showed
that as x→ ∞,

δK(Ω(x)) ∼ e−γ

ρK log x
.

2. Preliminaries and lemmas

Let K be a number field of degree n. Throughout this section, p denotes a nonzero
prime ideal of OK. We recall the following result on counting the number of integral
ideals of OK.

LEMMA 2.1 [7, Ch. 11]. Let am be the number of integral ideals of OK with norm m.
Then, as x tends to infinity,

x∑
m=1

am = ρKx + O(x1−1/n).

Using this result, we find the following expression for γK, analogous to (1.1).

LEMMA 2.2. For any number field K, the limit

lim
x→∞

( 1
ρK

∑
0�a⊂OK
N(a)≤x

1
N(a)

− log x
)

exists and equals γK.

PROOF. Applying partial summation and Lemma 2.1, the result follows. �

The Möbius function μK and the von Mangoldt function ΛK are defined on OK as
follows:
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μK(a) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1 if a = OK,
(−1)r if a is a product of r distinct prime ideals,
0 otherwise;

ΛK(a) =

⎧⎪⎪⎨⎪⎪⎩
logN(p) if a = pm for some p and some integer m ≥ 1,
0 otherwise.

We record the following identities satisfied by these functions which can be derived
using techniques similar to [6, Exercises 1.1.2, 1.1.4, 1.1.6].

∑
J|I

μK(J)
N(J)

=
∏
p|I

(
1 − 1
N(p)

)
,

μK(I) logN(I) = −
∑
J|I
ΛK(J)μK(IJ−1).

We end this section by stating the key ingredient in the proof of Theorem 1.2.

LEMMA 2.3 (Lindemann, [5]). If α � 0, 1 is an algebraic number, then logα is
transcendental, where log denotes any branch of the logarithm.

3. Generalised Euler–Kronecker constants

Let PK denote the set of nonzero prime ideals of OK. For any nonempty finite set
Ω f ⊂ PK, we set

P(Ω f ) =
∏
p∈Ω f

p and δK(Ω f ) =
∏
p∈Ω f

(
1 − 1
N(p)

)
,

with the convention that P(Ω f ) = 1 = δK(Ω f ), when Ω f = ∅. Since OK is a Dedekind
domain, every integral ideal can be uniquely expressed as a product of prime ideals.
For ideals

a =
∏
p∈PK

pvp(a), b =
∏
p∈PK

pvp(b),

where all but finitely many vp(a), vp(b) are zero, we define the greatest common divisor
(gcd) of a and b by

(a, b) = gcd(a, b) =
∏
p∈PK

pmin(vp(a),vp(b)),

where we have denoted p0 by OK. Hence, if the prime factors of a and b are all distinct,
(a, b) = OK. We notice that (a, b) = a + b as vp(a + b) = min(vp(a), vp(b)). From now
on, OK will be denoted by 1.
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LEMMA 3.1. For a number field K and a finite set Ω f , the limit

lim
x→∞

( 1
ρK

∑
0�I⊂OK
N(I)≤x

(I,P(Ω f ))=1

1
N(I)

− δK(Ω f ) log x
)

exists and is denoted by γK(Ω f ).

PROOF. Let Ω f ⊂ PK and p ∈ PK be a prime ideal not in Ω f . Using
∑

0�I⊆OK
N(I)≤x

(I,pP(Ω f ))=1

1
N(I)

=
∑

0�I⊆OK
N(I)≤x

(I,P(Ω f ))=1

1
N(I)

− 1
N(p)

∑
0�I⊆OK
N(I)≤x/N(p)
(I,P(Ω f ))=1

1
N(I)

,

the result follows by induction on the cardinality of Ω f . �

LEMMA 3.2. Let Ω f be a finite set of nonzero prime ideals. Then,

γK(Ω f ) = δK(Ω f )
(
γK +

∑
p∈Ω f

logN(p)
N(p) − 1

)
.

PROOF. We have∑
0�I⊂OK
N(I)≤x

(I,P(Ω f ))=1

1
N(I)

=
∑

0�I⊂OK
N(I)≤x

1
N(I)

∑
J|(I,P(Ω f ))

μ(J)

=
∑

J|P(Ω f )

μ(J)
N(J)

∑
0�J0⊂OK
N(J0)≤x/N(J)

1
N(J0)

=
∑

J|P(Ω f )

μ(J)
N(J)

{
ρK log

x
N(J)

+ ρKγK + o(1)
}

= δK(Ω f )
(
ρK log x + ρKγK + o(1)

) − ρK

∑
J|P(Ω f )

μ(J)
N(J)

logN(J).

We now consider the last term:

−
∑

J|P(Ω f )

μ(J)
N(J)

logN(J) =
∑

J|P(Ω f )

1
N(J)

∑
J0 |J
Λ(J0)μ(JJ−1

0 )

=
∑

J0 |P(Ω f )

Λ(J0)
N(J0)

∑
J1 |P(Ω f )J−1

0

μ(J1)
N(J1)

=
∑
p′∈Ω f

Λ(p′)
N(p′)

∑
J1 |P(Ω f )p′−1

μ(J1)
N(J1)
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=
∑
p′∈Ω f

logN(p′)
N(p′)

( δK(Ω f )
1 − 1/N(p′)

)

= δK(Ω f )
∑
p∈Ω f

logN(p)
N(p) − 1

.

Thus,

lim
x→∞

( 1
ρK

∑
0�I⊂OK
N(I)≤x

(I,P(Ω f ))=1

1
N(I)

− δK(Ω f ) log x
)
= δK(Ω f )

(
γK +

∑
p∈Ω f

logN(p)
N(p) − 1

)
. �

COROLLARY 3.3. For a number field K and any set Ω ⊂ PK satisfying (1.2), the limit

lim
x→∞

( 1
ρK

∑
0�I⊂OK
N(I)≤x

(I,P(Ω(x)))=1

1
N(I)

− δK(Ω(x)) log x
)

exists and equals

δK(Ω)
(
γK +

∑
p∈Ω

logN(p)
N(p) − 1

)
.

We denote this limit by γK(Ω).

PROOF. Follows from Lemma 3.2 since Ω(x) is a finite set. �

4. Proof of Theorem 1.2

Suppose there exist i, j ∈ I such that

γK(Ωi)
δK(Ωi)

and
γK(Ωj)
δK(Ωj)

are algebraic. Using Corollary 3.3,

γK(Ωi)
δK(Ωi)

−
γK(Ωj)
δK(Ωj)

=
∑
p∈Ωi

logN(p)
N(p) − 1

−
∑
p∈Ωj

logN(p)
N(p) − 1

, (4.1)

which is also an algebraic number. Since the sets NΩi\NΩj and NΩi\NΩj are nonempty
and finite, the sets Ωi\Ωj and Ωj\Ωi are also finite. Let

Ωi\Ωj = {p1, p2, . . . , pn}, Ωj\Ωi = {q1, q2, . . . , qm}.
Then (4.1) implies

∑
p∈Ωi

logN(p)
N(p) − 1

−
∑
p∈Ωj

logN(p)
N(p) − 1

=

n∑
s=1

log p fs
s

p fs
s − 1

−
m∑

t=1

log qgt
t

qgt
t − 1

= log
(∏n

s=1 p( fs/p
fs
s −1)

s∏m
t=1 q(gt/q

gt
t −1)

t

)
,

(4.2)
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where N(ps) = p fs
s and N(qt) = qgt

t . Using Lemma 2.3 and unique prime factorisation
of natural numbers, the expression in (4.2) becomes a transcendental number, which
gives a contradiction.
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