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Abstract. In this paper solutions of the mean field induction equation in a spherical geometry are 
discussed. In particular, the 22-year solar magnetic cycle is considered to be governed by an axisymmetric, 
periodic solution which is antisymmetric with respect to the equatorial plane. This solution essentially 
describes flux tubes travelling as waves from mid-latitudes towards the equator. In a layer of infinite 
extent the period of such dynamo waves solely depends on the strength of the two induction effects, 
differential rotation and a-effect (cyclonic turbulence). In a spherical shell, however, mean flux must be 
destroyed by turbulent diffusion, so the latter process might actually control the time scale of the solar 
cycle. 

A special discussion is devoted to the question of whether the angular velocity increases with increasing 
depth, as the dynamo waves seem to require, or whether it decreases, as many theoretical models 
concerned with the Sun's differential rotation predict. Finally, theories for the sector structure of the large 
scale photospheric field are reviewed. These describe magnetic sectors as a consequence of the sectoral 
pattern in the underlying large scale convection, as non-axisymmetric solutions of the mean field induction 
equation, or as hydromagnetic waves, modified by rotational effects. 

1. Introduction 

The subject of 'mean field electrodynamics', which was discussed during this morn­
ing's session, has led us to a mean-field induction equation. In the present lecture I 
intend to demonstrate and discuss solutions of this mean-field induction equation. In 
a spherical geometry, in particular, there is an axisymmetric solution, which is 
periodic in time and antisymmetric with respect to the equatorial plane; the cyclic 
behaviour of the large scale magnetic field of the Sun usually is ascribed to this 
solution. I shall discuss mean fields of this type in Section 2. Before doing so, 
however, let us recall some of the conditions which should be satisfied for the mean 
field induction equation to be a good approximation. 

One of these conditions has to do with the neglect of all terms in the induction 
equation for the fluctuating part of the magnetic field which contain products of 
fluctuations. As compared to the linear terms, these second order terms are small if 
either the magnetic Reynolds number is small or if the fluctuating velocity is 'slow' in 
the sense that 

vr«l, (1) 

where u, r and / are rms velocity, correlation time and correlation length of the 
turbulent convection. Both these condjtions are not satisfied in the solar convection 
zone. It is usually assumed that vr^l (and observations of granules and super-
granules confirm this assumption); and the magnetic Reynolds number is very large 
indeed. As shown in Figure 1, it increases from « 1 0 3 in the photosphere to « 1 0 1 0 at 
a depth of 105 km. Now the magnetic Reynolds number is the ratio of the free decay 
time, iurl2, of a magnetic field fluctuation to the lifetime of the convective eddy which 
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Fig. 1. The magnetic Reynolds number, /AOVI, as a function of depth, z, in the solar convection zone. The 
conductivity, <r, is taken from Kopecky and Soyturk (1971) for the four values closest to the surface, and 
computed from a = 0.003 x T3/2 mho m _ 1 (Spitzer, 1962; Piddington, 1975), where the temperature, T, 
is taken from the table of Baker and Temesvary (1966). The convection velocity, u, is taken from the same 

table, and / = z/2 is assumed. For the three photospheric values I used u = l k m s _ 1 and / = 100 km. 

created that fluctuation. Since this ratio is large, more magnetic field fluctuations will 
be created before the old ones can decay, so that, in an equilibrium state, the rms 
magnetic field will be large as compared to the mean field. It therefore appears that in 
the solar case the above-mentioned second-order terms should not be neglected. I 
think that this is essentially the point where the criticism of Piddington (1971,1972, 
1973, 1975) of the solar dynamo theory becomes relevant. 

How is the 'mean field' defined? In the mean field electrodynamics, as it is 
developed by Steenbeck etal. (1966), Krause (1968), Radler (1968a, b) and Krause 
and Radler (1971), mean values originally are understood as ensemble averages. As 
the authors point out, they may be replaced by averages over space or time. Such 
averages are of course required for comparison of observations with predictions of 
the theory. But what is an appropriate volume or an appropriate time span of 
integration? On the Sun, there is no length scale which is large compared to all 
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convection cells but still small compared to the solar radius. This problem appears to 
be particularly intriguing since it is the largest convection cells which contribute most 
to the a-effect which is so essential for the regeneration of the mean field (Stix, 
1974). 

After these somewhat pessimistic introductory remarks concerning but two of 
many problems related to the solar dynamo (see e.g. Stix, 1974) I shall nevertheless 
proceed to illustrate the properties of the mean-field induction equation. The 
capability of this equation to explain the solar cycle will be demonstrated in the 
following section, and some problems related to special forms of differential rotation 
will be discussed in Section 3. Section 4 will contain some remarks concerning the 
sector structure of the large scale solar field. Whenever it is convenient, I shall 
comment on the above-mentioned problems and, at least in some cases, speculate 
how they might eventually be solved. 

2. The Axisymmetric Periodic Mean Field 

The induction equation for the mean magnetic field, B (with the overbar omitted 
since only mean fields will be discussed), was first, in a simplified form, given by 
Parker (1955), and subsequently derived under more general circumstances by 
Steenbeck et al. (1966), Krause (1968), Radler (1968a, b; 1969), Iroshnikov 
(1970a), Parker (1970), Moffat (1970a, b), Yoshimura (1972), Gubbins (1974a), and 
Deinzer and Stix (1975). In its most often used form it is 

dB 
— = curl (vxB + aB) — T J curl curl B , (2) 
dt 

where v is the mean velocity field, aB the additional electric field caused by the 
helicity of the fluctuating velocity field, and 17 the turbulent electro-magnetic 
diffusivity. The 'semi-empirical' equation derived by Leighton (1969) can be written 
essentially in the same form (Yoshimura, 1972; Stix, 1974). The large magnetic 
Reynolds number dynamos of Braginskii (1964; see also Soward, 1971, 1972; 
Gubbins, 1973a) also lead to equations of the form (2). 

Let us suppose that the mean velocity is a pure rotation, and is symmetric with 
respect to the equatorial plane, i.e., in spherical polar co-ordinates (r, 0, <£), 

v = (0,0, rco(r, 0)sin0), (3) 

where o>(r, IT — 0) = <w(r, 0). Let us further suppose that a(r, 0) is antisymmetric with 
respect to the equatorial plane, i.e. a(r, TT — 0) = - a(r, 0). This is plausible since the 
helicity of the convection, which causes the a-effect and is itself caused by the 
Coriolis force, is also antisymmetric; and all explicit expressions for a indeed have 
this antisymmetry. Whenever the induction effects have these symmetries the 
solutions of Equation (2) can be divided into two uncoupled sets of solutions, namely 
the 'antisymmetric' (dipole-type, odd) and the 'symmetric' (quadrupole-type, even) 
sets. In general, both sets contain steady and time-dependent modes, which can be 
axially symmetric or </> -dependent. Only the axisymmetric modes will be considered 
in this section. 
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In order to proceed further I introduce the two magnetic Reynolds numbers 

K . - = 4 ; (4) 

a0 is a typical value of a in the northern hemisphere, r 0 is the radius of the Sun and 
Ao) is a characteristic value of differences in the angular velocity. The condition 

\R*\«\RJ (5) 

then defines the so-called aw-dynamo, where, in the ^-component of Equation (2), 
the a-effect can be neglected in comparison to the effect of differential rotation. The 
ratio of the poloidal and toroidal field components is then ~ | J R a / J R j 1 / 2 (Steenbeck 
and Krause, 1969). In the solar case we have Bpcx/B^ — OA (Yoshimura, 1975c)*, 
and may therefore use the limit (5). In this limit, the frequencies and growth rates of 
the magnetic field solutions depend on the product, P, of the two magnetic Reynolds 
numbers defined by Equations (4); P is called the dynamo number. 

In order to find solutions of Equation (2) in a spherical geometry a number of 
numerical models have been described in recent years. In these, Equation (2) is 
either reduced to an eigenvalue problem (Steenbeck and Krause, 1969; Deinzer. and 
Stix, 1971; Roberts and Stix, 1972; Levy, 1972; Kohler, 1973; Stix, 1973; Deinzer et 
al, 1974) or it is solved as an initial value problem (Leighton, 1969; Jepps, 1975; 
Yoshimura, 1975a). Although different functions co(r, 0) and a(r, 0) have been 
employed in these models, some general properties are common to them. These are: 
// a • da)/dr is negative in the northern and positive in the southern hemisphere (i.e. 
P<0) the most preferred mode has dipole-type symmetry and is oscillatory. With most 
preferred I mean that the growth rate of the mode becomes positive at the smallest 
\P\. Moreover, for the same sign of a • d<o/dr the oscillatory modes of both symmetries, 
dipolar and quadrupolar, travel from higher latitudes toward the equatorial plane. For 
the opposite sign of a • dco/dr the travel direction is reversed and the quadrupolar 
oscillatory mode is preferred. Exceptions to the first of these rules occur sometimes, in 
particular if the spatial distribution of the induction effects is such that high order 
harmonics play only a minor role in the magnetic field. The preferred modes would 
then be steady and quadrupolar for P<0 and steady and dipolar for P>0 (Stix, 
1973; Deinzer etal., 1974). However, these cases have a very large spatial separation 
of the inducing effects and are thus very probably irrelevant to the Sun where the 
dynamo is believed to be confined to the convection zone (see below, in part. Figure 
5). Another possibility to make steady modes preferred is by means of a sufficiently 
strong large scale meridional circulation (Roberts, 1972), but this is not observed on 
the Sun. 

The migration of the oscillatory magnetic fields can be understood in terms of a 
propagating wave ('dynamo wave', 'Parker wave'). This becomes particularly clear if 
local cartesian co-ordinates are introduced. In this way the latitude migration of the 
mean solar field was first explained by Parker (1955). More recently, Yoshimura 
(1975b) pointed out that the dynamo waves generally propagate along the surfaces of 

* This value is an upper limit; higher spatial resolution of the magnetograph would probably lead to a 
smaller ratio. 
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isorotation. The direction of propagation is given by the vector 
a-VcoXe^,, (6) 

where e^ is the unit vector in the azimuthal direction. Thus, if a > 0 in the northern 
hemisphere and the angular velocity increases with increasing depth, the migration is 
equatorwards, in agreement with the numerical results mentioned before. 

A schematic illustration of an antisymmetric oscillatory a<o -dynamo is given in 
Figure 2. Consider an antisymmetric toroidal mean field as shown in Figure 2a. The 
a-effect, with a north > 0 and a S Outh < 0, will cause a symmetric toroidal mean current, 
craB, and an associated poloidal field as indicated in Figure 2b. This poloidal field is 
subject to the differential rotation. For d<o/dr <0 the toroidal field pattern shown in 
Figure 2c will result. Add this to the original field of Figure 2a; the result is an 
enhancement of the original toroidal flux tubes on their equatorial side, and a 
destruction on their polar side, with the net effect that the tubes are moved closer to 
the equatorial plane (Figure 2d). At the same time weak flux tubes of opposite 
polarity are formed at higher latitudes, indicating the advent of the next cycle. The 
argument is now repeated: symmetric currents are again caused by the a-effect and 
again they generate a poloidal field (Figure 2e). From this, differential rotation winds 
up the toroidal field shown in Figure 2f, which resembles the original one, but is 
reversed in sign. 

c 3 cJ3 c 3 

a b c 

ci3> 

I® ©y 
\ ® 

Fig. 2. Oscillatory dynamo action, with a n o r t h > 0 , a s o u t h < 0 , and d<o/dr<0. The toroidal field (a), 
together with the a-effect, sets up toroidal currents and so generates a poloidal field (b). This is wound up 
by differential rotation (c), with the result that the original field is moved equatorwards (d). Again, toroidal 
currents and associated poloidal fields are caused by the a-effect (e), so that differential rotation finally can 
reverse the field (f). An encircled dot (cross) indicates a vector pointing out of (into) the plane of the figure. 
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The scheme outlined in Figure 2 differs from the schemes described by Steenbeck 
and Krause (1969, Figure 2) and Krause and Radler (1971a, Figure 4). There the 
field reversal depended on a phase lag caused by diffusion and a spatial separation of 
the two induction effects, a-effect and differential rotation. The numerical models 
show however that such a spatial separation is not necessary in order to obtain 
oscillatory modes (Roberts, 1972). On the contrary, as already mentioned, it seems 
to favour the steady modes (Deinzer et al, 1974). 

It is illustrative to show oscillatory magnetic fields in form of a movie, and 12 
frames of such a movie are shown in Figure 3. The field is a numerical solution of the 

Fig. 3. A numerical solution of an antisymmetric, oscillatory ao> -dynamo. The shear is radial, with 
dcj/dr < 0, and a ~ cos 0. Each frame is a meridional cross-section through the solar model. The contours 
of constant toroidal field strength are on the left and the poloidal lines of force are on the right. The levels 
of the curves are ±0.1, ± 0 . 3 , . . . ±0.9 times the maximum values (over the whole cycle) of the toroidal 
field and the poloidal flux function respectively. Positive values (solid curves) indicate toroidal fields 
pointing out of the figure, and clockwise poloidal field lines; negative values (dahsed curves) indicate the 
opposite. The direction and magnitude of the field at the poles is indicated by vertical arrows. The time 

scale is adjusted so that 11 years cover one half-cycle. 

model described by Deinzer and Stix (1971). I would like to emphasize two features 
of this solution. First, the toroidal mean field, which is shown on the lefthand side of 
each frame in the form of isogauss contours, migrates towards the equatorial plane, 
and two flux tubes are visible during most of the time interval shown. This, of course, 
means that two consecutive cycles overlap. How much of this effect would be visible 
on the solar surface in form of overlapping butterfly wings cannot however be 
predicted by this model; the process of field eruption depends on the magnitude of 
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the field which cannot be obtained from a linear theory. The second feature to which 
I would like to draw your attention is the harmonic structure of the field, in particular 
of the poloidal field which is shown on the righthand side of each frame in form of its 
lines of force. The octupole harmonic is clearly discernible during the entire cycle so 
that the mean poloidal field never looks like a pure dipole. Moreover, the poloidal 
field, at least at low latitude, participates in the equatorward migration of the toroidal 
field, as it should do according to the scheme of Figure 2. The harmonic structure of 
the field seems to be essential for the oscillatory (or 'migratory') nature of the 
aco-dynamo. This is confirmed by a model of Steenbeck and Krause (1966) which 
had steady solutions when the field expansion was truncated after the first poloidal 
and toroidal harmonics, but yielded oscillatory fields without such a truncation 
(Krause and Radler, 1971b; Roberts, 1972). For the field shown in Figure 3 6 
poloidal and as many toroidal harmonics were retained, and no changes occurred at 
higher truncation levels. 

There is observational evidence that the solar mean poloidal field does migrate 
towards the equator. Figure 4a shows contours of the radial field component in a 
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Fig. 4. Contours of the radial magnetic field component, 1959-1973. The total field (a) and the 
antisymmetric part (b) are shown. The contour levels are ±0.1 , ± 0 . 3 , . . . ±0.9 times the maximum 
values, which are 1.65 (a) and 1.19 (b) G. Solid curves indicate positive levels, dashed curves indicate 
negative levels. The smoothing constant in time is 1 yr, and the smoothing in latitude is determined by the 

truncation of the expansion (7) after the 9th harmonic. 

time-latitude diagram, computed according to 

Brit, 6)= I (n + l)g°n(t)Pn(0), (7) 
n = \ 

where Pn(6) are zonal surface harmonics and the g° are zonal expansion coefficients. 
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The latter were obtained by Altschuler etal. (1974) from the photospheric magnetic 
field data, measured by the Mtf Wilson magnetograph. Such a 'butterfly diagram' of 
the poloidal field was also computed by Stenflo (1972), but his data extended only 
through 1969. For this reason and because of too little smoothing in time his diagram 
did not show the features relevant to the solar cycle as clearly as Figure 4a. These 
features are even more pronounced in Figure 4b where only the odd harmonics of the 
sum (7) were retained; this figure is antisymmetric and therefore the exact observa­
tional counterpart of the antisymmetric theoretical poloidal field, as shown on the 
right of the frames of Figure 3. The butterfly wings in the latitude range ± 35° during 
1965-1973 almost exactly coincide with the wings of the classical sunspot butterfly 
diagram of cycle 20 (Yoshimura, 1975c), which represents the subsurface toroidal 
field. As shown in Figure 3, this coincidence is also present in the theoretical model. 

I would like to add here a remark concerning the averaging problem mentioned in 
the introduction: At least as long as we are not interested in -dependent mean fields 
we may simply average over all longitudes and over a sufficiently long period of time; 
the time smoothing constant in Figure 4 is 1 yr. 

Several features of the solar cycle are not well resembled by the field shown in 
Figure 3. For example, the field penetrates too far into the interior of the Sun. This is, 
of course, a consequence of the constant magnetic diffusivity used in the model. Since 
this diffusivity is the turbulent diffusivity, it should be replaced by a much smaller 
value in the radiative core. The skin effect would then prevent the oscillatory field 
from entering the core. A model of this type was computed by Roberts and Stix 
(1972), and Figure 5 shows four phases of the resulting field. The field expulsion from 
the solar core can alternatively be simulated by an inner boundary condition, as in the 
models of Kohler (1973) and Yoshimura (1975a). 

Another difference of the field shown in Figure 3 and the real solar cycle is that the 
field is, on the average, located at too high latitudes. Also, the poloidal field at high 
latitudes virtually does not migrate towards the poles, as it should do in order to 
resemble the observed poloidal field (Figure 4a) and to reproduce the poleward rush 
of the high latitude prominence zones. Both these defficiencies do not however occur 
in more sophisticated models. For example, a concentration of the a-effect and shear 
regions to lower lattitudes brings the butterfly wings closer to the equator and at the 
same time allows the polar field to diffuse freely towards the poles (Stix, 1974; 
Yoshimura 1975a). Figure 6 shows how the neutral line of the radial field takes 
longer to drift towards the poles as the shear is more concentrated to low latitudes. 
This result is obtained from the model of Kohler (1973; see also Stix, 1974); the 
radial shear is proportional to sinn0. A very similar result was found earlier by 
Leighton (1969, Figure 4). 

Let us finally discuss the most important question concerning the oscillatory 
aa)-dynamo, namely the question how the period is defined. According to the 
scheme outlined in Figure 2 non-uniform rotation and a-effect are responsible for 
the destruction and amplification of mean toroidal flux tubes. The strength of these 
two induction effects should therefore decide how long it would take these flux tubes 
to travel from midlatitudes toward the equator. And, indeed, the dynamo waves 
discussed in rectangular co-ordinates by Parker (1955), Iroshnikov (1970b), and 
Yoshimura (1975b) have periods which depend only on this strength (and the wave 
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Fig. 5. Field expulsion from the radiative solar interior. The diffusivity decreases from its turbulent value 
in the convection zone to the very small molecular diffusivity in the core, where the field cannot penetrate 

due to the skin effect (after Roberts and Stix, 1972). 
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Fig. 6. The poleward drift of the neutral line of the radial field component (dashed curves) and the 50% 
level of the toroidal fields (solid curve). The latter is drawn only for the case n = 6 in order to avoid 

confusion. The radial shear is ~ sin"0. 

number, fc). The frequency is 

(Parker, 1955), where H is the shear and r ( = a) measures the strength of the 
cyclones causing the a-effect. Using k = 2/ro (i.e. one flux tube in each hemisphere) 
and H^r0 d<o/dr we see that (8) is equivalent to 

n = 
da) a— dr 

1 / 2 

(9) 

in a spherical geometry with radial shear. Unfortunately, it is difficult to estimate the 
values of a and d<o/dr in the solar convection zone. If we assume that the total 
variation of the angular velocity in depth is about the same as its total variation in 
latitude, and if we assume 2 x 108 m as the depth of the convection zone we obtain 
\d(o/dr\«5 x 10" 1 5 m _ 1 s~\ For the a-effect Steenbeck and Krause (1969) made an 
estimate of 0.26 m s - 1 ; the values of Yoshimura (1972) and Leighton (1969) are 0.5 
and 0.7 m s - 1 respectively (see Yoshimura, 1972). With a = 0.5 m s - 1 we obtain a 
frequency of 5 x 10~8 s - 1 which is somewhat larger than the frequency of the real 
solar cycle (9xl0~ 9 s _ 1 ) . The frequency becomes still larger if we directly apply 
Krause's (1968) formula for a and data obtained from the mixing-length theory 
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(Kohler, 1973), even if we correct for the effect of rotation angles larger than TT/2 
which occur in convection cells in the case of a small Rossby number (Stix, 1974). We 
obtain a «50 m s - 1 (see Figure 7) and, accordingly, a frequency of 5 x 10~7 s - 1 . On 
the other hand we may use an a-posteriori argument, namely that the ratio of the 
poloidal and toroidal field strengths should match the observed ratio of, say, 0.01 and 
so obtain an a between 0.01 and 0.05 m s - 1 (Kohler, 1973). The frequency (9) would 
then agree with the observed one. 

" i — i — i — i — | — i — i — i — i — | — i — i — i — i — | — i — i — i — r 

200 150 100 50 
D E P T H ( I 0 6 m ) 

Fig. 7. Alpha-effect (a, solid) and turbulent diffusivity (tj,, dashed) in the solar convection zone, a is 
computed according to an expression derived by Krause (1968; see Steenbeck and Krause, 1969, 
Equation (23)), but is multiplied by the Rossby number, Ro, in the case Ro < 1. For the diffusivity I used 
rj, = \vl, where v and / are velocity and size of convection cells. Data of Baker and Temesvary (1966) were 

used to compute a and rjt. 

Turbulent diffusion plays no role in the foregoing interpretation of the solar cycle 
period. Only the growth rate depends on the diffusivity. This interpretation, which 
has been strongly emphasized by Yoshimura (1975a, b), contrasts with earlier work 
where the period of the cycle had been identified essentially with the time the mean 
field needs to diffuse over a characteristic distance, d, in latitude (Leighton, 1969) or 
depth (Steenbeck and Krause, 1969). According to this picture, the frequency is 

n = 2ir/— (10) 

where TJ, is the turbulent magnetic diffusivity and the factor 2 appears in the diffusion 
time since fields of both polarities must diffuse in order to complete a full cycle. 

Using 7]t = 109 m 2 s"1 (Figure 7) and d = 2 x 108 m we find Q = 8 x 10~8 s , which 
again is somewhat larger than the frequency of the real solar cycle. The value of 17, 
used here might however be too large by an order of magnitude (Stix, 1974). 

Is the period of the solar cycle a wave period or a diffusion time? We have already 
seen (Figure 2) that it is the wave character of the aw -dynamo which causes the 
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latitude migration of the mean toroidal fields. And we have also seen that this is 
confirmed by the predicted (Figure 3) and observed (Figure 4) participation of the 
poloidal field in this latitude migration. But on the other hand, there is also no doubt 
that turbulent diffusion plays an important role in the numerical models mentioned 
earlier in this section: without diffusivity, such models fail altogether to produce 
reasonable results (e.g. Yoshimura, 1975a, b). At least partially, this might be a 
consequence of the geometry of the models. In a slab of infinite extent the dynamo 
waves may easily propagate, but in a spherical geometry tubes of mean flux must 
dissipate as they reach the boundaries or the equatorial plane. This process of 
turbulent dissipation might well be so slow that it dictates the time behaviour of the 
entire dynamo. 

I shoud like to emphasize once more that the diffusion discussed here is turbulent 
diffusion; it is relevant to the mean field, or the small wave number end of the 
magnetic spectrum (Krause, 1968; Radler, 1968b; Parker, 1971). Thus, since I 
consider the solar cycle to be governed by a periodic mean field, I disagree with Dr 
Piddington who argued that turbulent diffusion is irrelevant to the solar cycle 
(Piddington, 1971,1972,1973,1975). The difficult question, then, is of course what 
happens at small scales, i.e. at the large wave number end of the spectrum. Does the 
drift across the spectrum proceed to sufficiently large wave numbers so that ohmic 
dissipation can destroy the magnetic fluctuations? The large magnetic Reynolds 
number mentioned in the introduction seems to indicate that this is not the case. 
Possible solutions of this problem are that convective motions of smaller, so far 
unresolved, scale exist on the Sun, or (and) that dynamic mechanisms accelerate the 
dissipation of magnetic flux (e.g. Sweet, 1958; Petschek, 1964; Parker, 1972), or that 
the small scale magnetic flux is simply lost by eruption through the solar surface (e.g. 
Parker, 1973, 1975; Stix, 1974). The 'ephemeral active regions' recently described 
by Harvey et al (1975) make the latter idea particularly attractive. 

3. The Role of the Angular Velocity 

One of the main facts discussed in the preceding section was that the dynamo waves 
propagate along surfaces of isorotation. Now some of the theoretical work on solar 
differential rotation - for a review see Gilman (1974) - suggests that in the convec­
tion zone these surfaces are cylinders, and that the angular velocity increases with 
increasing distance from the axis of rotation. With a n o r t h > 0 and a S outh<0 the 
direction of wave propagation (expression (6)) is then such as depicted in Figure 8a, 
away from the equatorial plane. Of course, mean toroidal flux propagating in this 
way can never produce the observed butterfly diagram as it errupts to the solar 
surface. 

We may consider three possible answers to this puzzle. Firstly, the Sun might not 
be an aa> -dynamo, so that the toroidal flux would not necessarily propagate in the 
direction given by the vector product (6). Secondly, we may accept the concept of a 
solar ot<o -dynamo but question the use of a positive a in the northern and negative a 
in the southern hemisphere. The propagation of the dynamo waves would then be 
opposite to the arrows of Figure 8a, and butterfly wings like the observed ones would 
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result. Thirdly, the theory of the Sun's differential rotation might be insufficient. The 
puzzle would then simply not exist. 

Let me first discuss the second possibility. The only case where a negative a in the 
northern hemisphere (and a positive a in the southern) has been reported is the work 
of Yoshimura (1972). Using the Boussinesq approximation he solved the linearized 
equations of motion and induction explicitly and found that a should be positive in 
the outer part of the convection zone in the northern hemisphere, and negative in the 
inner part, and should have the opposite signs in the southern hemisphere. Along 
cylindrical isorotation surfaces the dynamo waves would then travel in the directions 
indicated in Figure 8b. This possibility will also be discussed in a forthcoming paper 
by Durney (1976). The flux producing the butterfly diagram should, according to this 
model, erupt from the deeper part of the convection zone. This idea is consistent with 
recent estimates of Parker (1975) of the time of rise of the magnetic flux tubes. Only 
in the deeper part of the convection zone would these tubes stay long enough so that 
the dynamo could operate. 

There are two arguments against this type of solar dynamo. Firstly, the a-effect 
used here depends on the special type of averaging. If Yoshimura (1972) had 
computed his mean quantities not only as longitudinal averages, but also as depth 
averages, the result would have been a = 0. The contributions from the upper layer 
would have cancelled those from the lower layer. The only way to obtain a non-zero 
a-effect when averaging over a volume is to make use of anisotropics in addition to 
the one introduced by rotation. Steenbeck etal (1966) and Krause (1968) essentially 
used the density gradient and thus obtained their a which is positive in the entire 
northern and negative in the entire southern hemisphere. Secondly, there is a definite 
phase relation between the poloidal and toroidal field components. Only the case 
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dco/dr < 0 and a n o r t h > 0, a s o u t h < 0 seems to be consistent with a negative (positive) 
radial field in the region of the northern (southern) butterfly wing of cycle 20 (see 
Figure 4 and Stix, 1976). 

Since the a-effect is caused by the helicity, v • curl v, of the convective flow, v, we 
may wonder whether it is possible to obtain the helicity from numerical models of the 
convection zone and then compute a according to 

1 
a = —-v • curl v T, (11) 

where r is the correlation time of the velocity field (Steenbeck and Krause, 1969). 
For example, Gilman (1972) has simulated the convection zone in a rotating annulus, 
and Figure 9 shows the helicity which he obtained for Taylor numbers between 102 

and 106. We see that, for all Taylor numbers, left-handed helicity dominates in the 
northern hemisphere, i.e. a n o r t h > 0, according to Equation (11). If at all a change in 
sign occurs within a hemisphere, the helicity tends to be right-handed in the upper 
and left-handed in the lower part of the northern hemisphere, so that the structure of 
a would be opposite to that obtained by Yoshimura (1972). This difference must be 
caused by the different approximations used by the two authors (although both used 
the Boussinesq approximation and longitudinal averaging, and considered linear 
modes characterized by a single azimuthal wave number): e.g., Yoshimura used a 
thin shell with hydrostatic equilibrium in the vertical direction, which Gilman did 
not, and his model was spherical whereas Gilman's was an annulus. Before we can 
use Equation (11) to compute a we probably have to wait for more numerical 
models.* These models most desirably should include such features as the nonlinear 
superposition of different modes and a variation of the boundary conditions. And, 
after all, they should be non-Boussinesq since, as we know, the density gradient plays 
such an important role in the determination of the a-effect. 

Let me now discuss the first of the possibilities mentioned above. Mean field 
dynamo action without helicity, i.e. without a-effect, was first proposed by Radler 
(1969a). He found that an additional mean electric field of the form 

j S c o x j (12) 

should exist in turbulent flows under the influence of rotation, where co is the rotation 
vector and j is the mean current density. However, numerical results of Radler 
(1969b, 1970) and Roberts (1972) and an analytical treatment in cartesian co­
ordinates by Gubbins (1974) indicate that only steady dynamo action can be 
obtained from the use of expression (12). For oscillatory modes the convergence was 
only 'suggestive, but not convincing' (Roberts, 1972). I have extended Roberts' 
search for oscillatory modes to higher truncation levels in the spherical harmonic 
expansion, but was still unable to find satisfactory convergence! (Stix, 1976). This 
was particularly so when cylindrical surfaces of isorotation were considered. 

* P. A. Gilman has recently informed me that his new spherical shell model essentially leads to the same 
helicity as the annulus model. 
t As reported by Dr Radler at this Symposium, oscillatory w x j-dynamos can be obtained from a slightly 
different model. 
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Fig. 9. Normalized helicity of the most unstable linear convection modes, according to the rotating 
annulus model of Gilman (1972). T9 R and k denote the Taylor number, the Rayleigh number, and the 
azimuthal wave number. Solid contours indicate positive (right-handed) helicity; dotted contours indicate 
negative (left-handed) helicity. The upper (lower) edge of each box is the top (bottom) of the convection 

zone, and north is to the right, south to the left (courtesy P. A. Gilman). 

https://doi.org/10.1017/S0074180900008317 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900008317


382 M. S T I X 

Thus, the prospects of a solar co x j-dynamo are not very promising, and we must 
conclude that either a completely different (i.e. not mean-field-electrodynamics 
type) theory of the solar cycle has to be developed or we have to revert to the 
aco-dynamo. I prefer the latter; after all, the Sun does rotate and there is therefore 
helicity in the solar convection zone, giving rise to an a-effect. 

The unsuccessful attempts to solve our puzzle by means of the first two possibilities 
leave us with the third. Are the surfaces of isorotation really cylinders? I think we 
should very carefully reconsider all assumptions and models which lead to such a law 
of rotation. I will however not do so in this lecture which is on solar dynamo theory 
and not on solar differential rotation. 

4. Magnetic Sectors 
In a recent paper (Stix, 1974) I have discussed possible theories of the sector 
structure of the large scale photospheric magnetic field. I will, therefore, spend only a 
small portion of this lecture on solar sectors. In particular, I shall not review all the 
observational evidence. I shall, however, discuss one observational fact in some 
detail, namely the fact that large-scale features on the Sun apparently do not, or at 
least not completely, participate in the differential rotation of the solar plasma. This 
is true for the photospheric magnetic field itself (Wilcox and Howard, 1970) but also 
for related features such as the electron corona (Hansen et al, 1969), the coronal 
green line emission (Antonucci and Svalgaard, 1974) and coronal holes (Wagner, 
1975; Timothy etal, 1975). 

A behaviour like this can probably most easily be explained as a wave phenome­
non, and the three theoretical approaches which I will consider in this section have 
this interpretation in common. 

There are first the models which ascribe the magnetic sectors to a corresponding 
pattern in the large scale velocity field. For example, models of the solar convection 
zone by Busse (1970, 1973), Durney (1970, 1971), Yoshimura and Kato (1971), 
Gilman (1972,1975) and Yoshimura (1974) predict large scale motions in the form 
of rolls aligned parallel to the axis of rotation. These rolls are not destroyed by the 
mean differential rotation. In fact, they produce the differential rotation as they 
transport angular momentum towards the equatorial plane. At the same time, these 
rolls are damped on one of their sides (in longitude) and built up on the other, which 
is typical for a wave phenomenon. How such a velocity field can cause a similar, i.e. 
sectorial, structure in the magnetic field has been discussed e.g., by Yoshimura 
(1971, 1972). The longitudinal wave number, m, obtained from this theory is 
comparatively large: For a convection zone thickness of 0.2 r 0 , Durney (1970) 
found that m = 10 marked the most unstable mode, and Gilman (1975) obtained 
9 < m ̂  21 for Taylor numbers between 0 and 106. The resulting magnetic features 
should, therefore, be narrow and elongated. Perhaps the elongated coronal hole 
reported by Timothy et al (1975) is a prominent example for such a feature (Figure 
10).* 

* Magnetic neutral lines derived from Ha observations indicate however that the magnetic sector 
underlying this coronal hole covered a longitude interval of approx 45°, at least twice as wide as the hole 
itself (Mcintosh et a/., 1975). The longitudinal wave number, m, was therefore only 4. 
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Fig. 10. An elongated coronal hole. This coronal image covers the wave-length intervals 3-32 A and 
44-54 A ; it was obtained on 1 June 1973 by the AS&E X-ray telescope on the Apollo Telescope Mount 

(courtesy A. S. Krieger, American Science and Engineering, Inc.). 

In the observed photospheric magnetic field the dominant longitudinal wave 
number is usually much smaller than 10. This is particularly conspicuous in the 
spherical harmonic analysis of the Mt. Wilson data of Altschuler et al (1974), who 
found that harmonics with m = 1 and m = 2 were dominant during most of the period 
from 1959 to 1972. The theoretical approach leading to such small longitudinal wave 
numbers is to consider the magnetic sectors as <£>-dependent solutions of the mean 
field induction equation. These solutions are proportional to 

exp(/(/2f + m<£)), (13) 
and have been described by Stix (1971,1974), Krause (1971) and Roberts and Stix 
(1972). Again, they are essentially waves, and their longitudinal propagation veloc­
ity, as computed by Stix (1974), is of the order 10 deg of longitude per year. This is 
about as fast as the sector structure inferred by Svalgaard and Wilcox (1975) 
propagates. According to these authors, a four-sector pattern persisted during the 
past five sunspot cycles, drifting slowly westwards during the first half and eastwards 
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during the second half of each cycle. Since only linear modes have been considered so 
far in theory, such a dependence of the drift on the phase of the cycle has not yet been 
predicted. It could only be obtained from a non-linear coupling of the sectoral modes 
(13) with the axisymmetric periodic mean field described in Section 2. Little is 
however known about the nature of this non-linear coupling. At this time I can only 
say that both eastwards and westwards propagating linear modes exist, i.e. the real 
part of il in (13) can be either positive or negative (Stix, 1974). 

As for the axisymmetric mean fields, the mean fields with m > 0 can be either 
symmetric or antisymmetric with respect to the equatorial plane. It appears that the 
symmetric fields are slightly preferred, i.e. excited at slightly smaller absolute 
dynamo numbers (Stix, 1971, 1974; Krause, 1971), a result which seems to be 
observationally confirmed by Wilcox and Howard (1968) who found that sector 
boundaries generally cross the solar equator rather than being parallel to it. An 
analogous symmetry rule is, incidentally, valid for the convection pattern described 
above: antisymmetric convection generally requires a larger critical Rayleigh number 
than symmetric convection (Gilman, 1975). 

As long as the non-linear coupling between different modes is negligible, the 
sector boundaries maintain their shape as they propagate in longitude (Stix, 1974), 
which is a quite natural behaviour for a wave. 

Finally, I would like to mention that the linear mean field modes described here 
may drift relatively to the mean plasma flow not only because they are waves, but also 
because they are mean fields. As such, they are subject to the turbulent magnetic 
diffusivity, i.e. they are not frozen-in fields. 

Of course, linear modes with m^O could also be obtained from the exact 
induction equation, i.e. without the a-effect. Contrary to the axisymmetric modes 
they are not in conflict with Cowling's theorem (Cowling, 1934). Examples of such 
modes have been presented by G. O. Roberts (see P. H. Roberts, 1971) and Gubbins 
(1972, 1973b). However, the point here is that we need the mean field approach in 
order to explain the mean axisymmetric field, so I think it is only natural to use the 
same equation, namely the mean field induction equation, for all modes, m = 0 and 
m > 0. In order to compute the m > 0 modes described above I have indeed used the 
same forms of differential rotation and a-effect which led to the axisymmetric 
solution of Section 2 (Figure 3). 

The third theoretical explanation that has been proposed for the origin of solar 
magnetic sectors is that they are a manifestation of hydromagnetic waves travelling in 
the azimuthal direction along a subsurface toroidal field (Kato and Nakagawa, 1970; 
Suess, 1971,1975; Roberts and Stix, 1972). The angular velocity of these waves is of 
the order Romv/ro, where v is the Alfven velocity corresponding to the mean 
toroidal field and Rom is the magneto-hydrodynamic Rossby number, Rom ~ v/rO(0 
(Roberts and Stix, 1972; Suess, 1975). Reasonable propagation velocities (~ 1 deg 
of longitude per year) can be obtained in this way, but the estimate is very uncertain 
since v is uncertain; we do not know exactly the magnitude of the mean toroidal field, 
nor do we know the depth (i.e. density) we should use in order to compute v. Also, 
important effects, such as shear, stratification and the geometry of the spherical shell, 
have not been taken into account. We may therefore consider the hydromagnetic 
wave theory as the most speculative of the three theories offered in this section. 
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DISCUSSION 
Roxburgh: Our picture of the formation of the Sun suggests that at an early stage it was completely 
convective and therefore probably a dynamo operated throughout the whole Sun producing a magnetic 
field in the central regions. What do you think, is the connection between the present central field and the 
present dynamo field produced in the solar convective zone? 

Stix: I think if the central field exists it is not connected to the dynamo field because the time scale of the 
central field is much longer. 

Gilman: Suppose that the bottom of the convection zone is rotating solidly at nearly the equatorial 
rate, as one interpretation of sector and coronal hole rotation indicates. Then the radial shear is much 
stronger near the pole than the equator. What sort of a-effect dynamo would then occur, and would it be in 
agreement with the important observations? 

Stix: I would expect toroidal fields generated at too high latitudes. 
Yoshimura: I would like to comment about two questions. One is about the determination of the sign of 

a and gradient of a>. You said that it is possible to determine them by determining the phase shift between 
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the poloidal and toroidal field observed at the surface. However, this is possible only if the radial gradient 
of (o is dominant. According to the diagrams of the fields of myself, there is virtually no phase shift 
observed. So that it is rather questionable that the determination is possible. Moreover, if the radial 
gradient of <o is dominant, there is no branching of the two wings in each hemisphere in the diagram of the 
poloidal field which has been observed and presented in this symposium. The other question is about the 
interpretation of the sector structure of the magnetic field. You said the interpretation by the global-scale 
nonaxisymmetric velocity fields has some drawbacks, i.e. the theories predict wave numbers of 10 to 20. 
However, the theories sofar studied have used many approximations. So, it is safe to say that the correct 
determination of a wave number has not yet been done. Moreover, I would like to make one more 
comment about Dr Busse's fluid mechanical convection experiment. He obtained some interesting results 
even in the experiment of plane parallel case. That is, besides the ordinary Benard cell convection, he 
observed some coherent laminar flow cells whose scale is much larger than the Benard cells and also larger 
than the depth of the system. In the case of the Sun also, it is possible that similar kind of larger scale 
coherent convective flow exists whose wave number may be as well as 2 or 3, or 5 or 6 besides the 
supergranular or granular convection. So we should be very careful about objecting to the existence of the 
global convection. If it exists, it surely can explain the sector structure of the magnetic field. 

Weiss: It is difficult to predict the horizontal scale of plane form of convection. The azimuthal 
wavenumber of 10 or 11 was originally put forward on the assumption that the horizontal width would be 
comparable with the depth of the convecting layer in a Boussinesq fluid. 

Gilman: Dr Yoshimura comments that current spherical shell convection models are not good enough 
to give reliable prediction of the longitudinal wave! numbers. I am inclined to agree, and point out that 
strong enough shear in the differential rotation could significantly reduce the wave number predicted by 
current models, which are Boussinesq and based on initial states of solid rotation. Induced j x B forces will 
also tend to reduce the longitudinal wave number. Compressibility should also contribute. 

Stix: I am looking forward to seeing convection models with smaller longitudinal wave number. 
Stenflo: I would like to comment on the sector structure of solar magnetic fields and the modes in 

longitude. Power spectra of the observed variations of magnetic fields with longitude show that the power 
is quite high out to wave numbers of 20 or even more. 

Wilcox: The term 'magnetic sector' was first used in the description of a large-scale structure observed 
in the interplanetary magnetic field. These sectors were then found in the photospheric field observed with 
Babcock magnetographs, and are seen with particular clarity in observations of the mean solar magnetic 
field (the Sun seen as a star). If defined in this way there are nearly always either four or two sectors. It is 
these sectors that have been shown to have the rigid rotation properties discussed by Stix and other 
theorists. 

Deinzer: It still seems that an angular velocity increasing inwards is required to produce the desired sort 
of butterfly diagrams. Imagine you drive the solar dynamo by differential rotation increasing inwards and 
being constant on spheres. 

Is it entirely inconceivable that the electromagnetic (Lorentz) forces could drive the observed equatorial 
acceleration? Maybe this is more a question to Dr Gilman. 

Gilman: Dr Deinzer asks whether the presence of j x B forces could produce an equatorial acceleration 
when they are induced by a dynamo with rotation increasing with depth. This is conceivable, but I would 
suspect it would produce a fairly large dependence of the differential rotation on the magnetic cycle. 
Observations indicate this occurs weakly, if at all. 

Roxburgh: If the central regions of the Sun are magnetically isolated from the surface convective zone 
then just beneath the convective zone there will be a region where the angular velocity increases inwards. 
As the surface regions are slowed down by the angular momentum loss in the solar wind there will be an 
angular velocity gradient between the more rapidly spining core and the envelope. This region is probably 
weakly turbulent due to Goldreich-Schubert-Fricke instabilities and could be the site of the solar dynamo. 

Stix: The dynamo could operate there only if this weak turbulence still provides sufficient turbulent 
diffusivity so that the mean field can diffuse down into the shear region. Perhaps convective overshooting 
would also help to do this. 

Mestel: I would like to take up Dr Deinzer's query. If a dynamo does operate, then presumably the field 
amplifies until magnetic forces are strong enough to react back in at least one essential part of the motion. 
This morning we heard some ideas and preliminary results on magnetic back-reaction on the a-term; 
maybe there is also an effect on the non-uniform rotation which drives the whole process. There is in fact 
one simple model - in which angular momentum is transported by magnetic stresses and large-scale 
meridian circulation only, but not by turbulence - which can give both equatorial acceleration and O 
increasing inwards. This result is no more than a hint: one needs to include turbulence, and the circulation 
field should emerge from the theory, instead of being postulated. But perhaps the possibility should be 
borne in mind, especially if the purely hydrodynamic models of differential rotation continue to give 
trouble. Dr Gilman's point about a non-observed cycle-dependent Q is of course very important: to be 
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acceptable the theory would need to show that the time of redistribution of angular momentum when the 
field changes is long compared with the solar cycle. 

Durney: I think that we all agree that the mixing length theory is logically highly unsatisfactory. 
However, it could well give results that are not too bad. It gives good results for the Sun because the 
parameters are adjusted to do so. Nevertheless it also predicts accurately the spectral type separating stars 
with fast and slow rotations, that is it predicts accurately the spectral type of stars having appreciable 
surface convection zones. 
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