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On homologies in finite

combinatorial geometries

P.B. Kirkpatrick

Any subset II* of the set of a l l planes through a line in a

finite projective space PG(m, q) determines a subgeometry

G(R*) of the combinatorial geometry associated with PG(/n, 17) .

In this paper the geometries (7(11*) of rank greater than three

in which every line contains at least four points, are

characterized in terms of the existence of a certain set of

automorphism groups T(C, X) ; where X is a copoint and C a

point not in X , and each non-trivial element of T(C, X) fixes

X and every copoint through C and fixes C and every point in

X , but no other point; and where T(C, X) acts transitively on

the points distinct from C and not in X of some line through

C . As a corollary of the main theorem we obtain a

characterization of the finite projective spaces PG(m, q) with

m 2: 3 and q 2 3 .

1 . Introduction

The Lenz-Barlottl classification of projective planes (see Lenz [6]

and Barlotti [2], or Dembowski [4]) in terms of "(C, a)-transitivity",

where C is a point and a is a line, has been extremely useful and much

studied. In this paper we illustrate the fact that some results along

similar lines can be obtained for finite combinatorial geometries (of which

finite projective planes are a special case) or, equivalently, finite

geometric lattices. We shall conduct our main discussion in terms of

lattices, for reasons of economy.
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One difficulty which arises immediately when we generalize the notion

of a central collineation to combinatorial geometries is that an

automorphism of a combinatorial geometry may be central and yet not axial,

or axial and yet not central. Another difficulty is that-a non-trivial

automorphism with a centre and an axis may fix a point which is distinct

from the centre and does not l ie on the axis. This leads us to use, rather

than the concept of (C, X)-transitivity, the narrower one of "(C, X)-

regularity" (X here denotes a copoint). In Theorem 1 we give a sufficient

condition, in terms of the existence of certain transversal lines, for

(C, X)-transitivity to imply (C, X)-regularity.

The main Theorem 2, proved in §4, yields a characterization of the

geometry determined by a subset of the set of all planes passing through a

l ine , in a finite projective space PG(m, q) . As a corollary, we deduce

in §5 a new characterization for finite projective spaces PG(m, q) with

m 2 3 , ? i 3 •

2. Definitions

A finite lat t ice is geometric if i t is semi-modular (x and y cover

x A y implies x V y covers a; and y ) and if every non-zero element is

a join of points (elements which cover zero). Every geometric lattice has

a semi-modular rank function (see Crapo and Rota [3]).

We shall use geometric language quite freely. Thus, if L is a

geometric lat t ice of rank n > 3 , we refer to the elements of rank 1, 2,

3 , M - 3 » w - 2 or n - 1 i n L̂  a s 'points, lines, planes, coplanes,

oolines, or oopoints, respectively. Points and copoints we denote by

upper case Roman le t ters , lines and colines by lower case Roman let ters ,

and planes and coplanes by lower case Greek le t ters .

A point C is a centre for the automorphism 0 of L. if 8 fixes

every copoint above (through, containing) C ; and a copoint X is an

axis for 0 if 9 fixes every point below (in, on, of, and so on) X .

An automorphism may have a centre but no axis, or an axis but no centre.

If the automorphism 0 has centre C and axis X we shall call 8 a

(C, X)-automorphism; or a (C, X)-homology i f C { X ; or a (C, X)-

elation if C < X .

We say that L^ is (C, X)-transitive if the group F(C, X) of all
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(C, X)-automorphisms acts transitively on the points distinct from C and
not in X of some line, ^ X , through C ; and that ^ is (C, X)-
regular if i t is (C, X)-transitive and no non-trivial (C, X)-automorphism
fixes any point A such that A + C and A \ X .

That a geometric lattice may fee (C, AT)-transitive and yet not
(C, 3T)-regular may be seen by considering the lat t ice of rank 3 whose
points and copoints are the points and lines of a 3-dimensional projective
space PG(3, F) • The rank h latt ice usually associated with PG(3, F)
i s , as is well known, (C, X)-regular for all point - copoint pairs
(C, X) •

Since a {C, X)-automorphism 6 automatically fixes C and a l l the
points of X , we shall call any other fixed point of 9 an extra fixed
point. If ^ is (C, AT)-transitive then L^ is (C, X)-regular if and
only if no non-trivial (C, X)-automorphism has extra fixed points.

Let X and Y be copoints such that X A Y is a coline, and let A
be a point with A \ X , A { Y . Then by a proper transversal for
(A, X, Y) we shall mean a line d through A such that d A X and
d A Y are distinct points.

Finally, two lattice elements (flats) x and y are said to meet if
x A y f 0 , that is if there is at least one point which is contained in
both a; and y .

We assume implicitly the elementary theories of geometric latt ices and
combinatorial geometries (see Crapo and Rota [3]), of projective planes,
projective spaces, tactical configurations and block designs (see Dembowski
[4]), and of finite permutation groups (see Wielandt [7]).

3. Homologies and e l a t i o n s i n geome t r i c l a t t i c e s

The following theorem describes a sufficient condition for the non-

existence of extra fixed points of homologies and elations.

THEOREM 1. Suppose that 8 is a non-trivial (C, X)-automorphism of
a finite geometric lattice L̂  of rank n > 3 3 and that:

(i) every triple {A, Y, Z) with Y and Z copoints of L̂  t

Y A Z a coline of ^ , and A a point of L, such that
A ^ Y and A { Z , has a proper transversal in L̂  ;
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(ii) every line of L̂  contains at least three points of .L .

Then 6 has no extra fixed points in L^ .

Proof. Suppose that 9 has an extra fixed point F . Choose a

col ine y with C \ y < X , and consider the copoint Y = y V F . If

C { X and C ^ Y then there i s a proper transversal d for (C, X, Y)

and d A Y i s an extra fixed point, since Y i s an axis (being a fixed

copoint which does not contain the centre C ) .

If C •): X , C < Y , and the l ine C v F does not meet X , choose

any point A in X t>ut not in Y , and consider a point F' on the l ine

F V A , with F' t F, A . Then C { (y v JF7') and so t y the argiment above

there i s a l i n e , joining C to a point of X , which contains an extra

fixed point .

Now l e t F* be any extra fixed point such that (C V F*) A X i s a

poin t , say B . ( I f 9 i s an elation then B = C .) Choose a coplane a

with B \ o < X ; choose d is t inc t colines x.. and x« with B { x. and

a < x^< X (i = 1, 2) ; and l e t X± = xx v F* and * 2 = x2 v F* . Then

Jf. and A- are fixed copoints not containing C , and so they are axes.

If D i s a non-fixed point then, since C V D i s a fixed l ine and any

proper t ransversal for [D, X, , XS] i s a fixed l i n e , C v D i s a proper

t ransversal for [D, X. , X^) • But C v F* i s not a proper t ransversal ,

so F* { (C V 0) . Thus every point of C V F* i s fixed.

There ex i s t s a non-fixed point Z> . As above, C V D i s a proper

t ransversal for (D, X. , X ) . The point (C v D) A X2 i s an extra fixed

point for 9 when 6 i s considered as a [C, X. )-homology, and the l ine

C V {(CVD) A X ) = C V D meets X in a point . So every point of C v D

i s fixed, in par t icu la r D i s fixed. This contradiction completes the

proof.

4 . A c l a s s i f i c a t i o n theorem

Let II* denote a subset of the set of a l l planes through a fixed l ine

a* in PG(m, q) . Then II* determines a geometric l a t t i c e JL(II*) whose

elements are the in tersect ions of the f l a t s of PG(m, q) with the set of
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all those points of PG(m, q) which l ie in at least one of the planes in

II* . The following theorem will yield a characterization of the latt ices

1̂ (11*) corresponding to sets II* which are "non-degenerate" in a fairly

mild sense.

THEOREM 2. Let ^ be a finite geometric lattice of rank n 2 h

satisfying:

(i) there exists a line c in L^ such that, whenever C is a

•point on c and x is a coline with C { i , L̂  is

(C, X)-regular for some copoint X containing x but not

C ; and

(ii) every line of Jj contains at least four points.

Then L_ is isomorphic to a lattice L ÎI*) for some set II* of planes

through a line c* in a protective geometry PG(n-l, q) , q 5 3 .

The "non-degenerate" sets II* referred to above are those which

determine a lattice L̂ (II*) of rank m + 1 in which every line contains at

least four points. For such a II* , LjII*) clearly satisfies the

hypotheses of the theorem.

We prepare for the proof of the theorem with a sequence of seven

lemmas; L. and c are assumed throughout to satisfy the hypotheses of the

theorem. The automorphism group of L_ generated by all the automorphisms

those existence is asserted in hypothesis (i) is denoted by JJ .

LEMMA 1. Every line which meets c contains at least as many points

as c .

Proof. The number of points in a f la t x , or "length" of x , shall

be denoted by |x | .

Choose a l ine a meeting c with \a\ as small as possible , and

suppose \a\ < \a\ . Let C = a A c ; choose a point A # C on a ; and

le t A be the set of a l l l ines f a which pass through A and meet c .

If a. (. h then a = (a v c) Ax , for some coline x . So

|T(C, X)\ = \a\ - 2 for some copoint X with (a V c) A X = a, . Also,

no non-tr ivial element of T(C, X) fixes a l ine in AXja,} . Thus, i f p

i s a prime dividing | a | - 2 , each l ine in A i s fixed by an automorphism
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of order p in Y(C)A which fixes no other l ine in A , where ?(C)A i s

the group of a l l automorphisms with centre C which fix A . So A i s a

complete l ine orbi t of t h i s group (Gleason [5 ] , Lemma 1.7).

Let C = a. A a and choose a point A # A, C on a. . There

ex i s t s a copoint Y with (a V a) A Y = A v C' such that L i s [c , Y)-

regular . I f <J) € T[C , l) and c|> + 1 , then A' = 4<j> + A . Now

\A' V C| > | e | since;

r(C). ac t s t r ans i t i ve ly on the points # C of e ;

fixes A, A' v C , and e ; and

a is a t ransversal l i n e for (.A, A'vC, a) .

So \a\ = \A' v C| 2 | c | , contradicting \a\ < \o\ .

LEMMA 2. Every plane through e is a desarguesian protective plane.

Proof. Let a be a plane containing a . By Gleason [ 5 ] , Lemma 1.7

again, F(C) i s t r ans i t i ve on the l ines in a which meet a but do not

contain C > for any point C on a . Thus a l l l ines # c in a which

meet o have the same length, say q + 1 .

If a, and a2 are l i nes in a with a A o = f ^ C = a . A c ,

and yip is a point # C_ on a ? , then a (or rather the l a t t i c e

in terval [0, a] ) i s [c , a ?) -regular and FfC,, a2) acts semi-regularly

on the non-fixed points of both a, and C, v A . . Since

\a-A - Ic, v i42| , a. must contain a second fixed point , that i s a,

must meet a ? .

Consider the t a c t i c a l configuration whose points are the points of a

not on a , and whose blocks are the l ines # c of a which meet a . In

the standard notat ion,

v = q , b = \o\q , k = q , r = \o\ •

There are q blocks through each point of a .

ASSUMPTION. Suppose there exists a l ine d in a which does not
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meet

By Lemma 1, | e | - q + 1 . Choose a point C on a , and le t

T(C, d) denote the group of automorphisms of [0, a] induced by a group

T(C, X) , where a A X = d and L i s (C, X)-regular. Then V(C, d)

acts semi-regularly on the non-fixed points of any l ine in a through C ,

and so we have \T(C, d)\ divides both q - 1 and \o\ - 1 . This shows

that \o\ * q + 1 and so |r(C, d)\ = | e | - 1 and ( | e | - l ) | (<?-l) .

Since a l l the blocks through a point C on c have the same length,

and some of them meet d , they must a l l meet d (consider the action of

r(C, d) ) . So \d\ = q . If D i s a point on d then the blocks through

D contain altogether |c?| (q—1) + 1 points of the configuration; that i s

the number of l ines in a through D which do not meet a i s

r 1 = q + 1 - \a\ .

Now consider the tactical configuration consisting of the points of a
p

not on a and the l ines of a which do not meet a . We have V = q ,

k = q , r = q + 1 - \c\ , and so b = q(<7+l-|e|) . Adding the blocks of

t h i s configuration to those of the previous one, we form a 2-design whose

points are the points of a not on a , whose blocks are the l ines # a

of a , and whose parameters are v = q , b = q(q+l) , k = q ,

r = q + 1 , X = 1 . This 2-design is an affine plane of order q . We

can form i t s protective completion 5 by adding <7 + 1 - \c\ points to

the l ine a to form a new l ine c .

Every automorphism of the l a t t i c e [0, a] extends to an automorphism

(collineation) of a . If C and C are dis t inct points on c and a'. ,

( i = 1, . . . , q) , are l ines in a with a'- A a = C , then there exis ts a

non-tr ivial [C, a 0 -homology of [0, a] which extends to a [c, a'.)-

homology of 5 , for each i . If i # j then (by Andre [7]) there exis ts

a (C, Cv (a lAa'.l)-elation in <V[c, a'.), V[c, a'.)) which maps a', to
t- J 1> J V

a'. . It follows that |F(C, 3) | = q . Since this is true for all (and
o

therefore at least two) points C on a , 5 is a translation plane with

respect to a . It follows that q = p for some prime p and positive

integer r .
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If C , C , C are dis t inct points of a , and a , , a are l ines in

a with a^ A c = C. , a^ A a = C , and a h a = A (a po in t ) , then by

Andre" [?] (again) there ex i s t s a n o n - t r i v i a l [c , C v4)-elation ()) of Si

in (T[c , a . ) , r ( c , a) > . This elation <J> must have order p , since

the t rans la t ions of a have order p . But <|> induces a (Co' C vM)-

e la t ion in [0, a] . So p | ( | e | - l ) , which contradicts ( | e | - l ) | ( q - l ) .

Our assumption was therefore false, and so a i s a projective plane. From

the elementary r e s u l t s on the Lenz-Barlotti c lass i f icat ion of projective

planes (see Dembowski [ 4 ] , Chapter 3) i t readily follows that a i s

desarguesian.

DEFINITION. We ca l l the copoint X of L̂  a special aopoint i f h

i s (C, X)-regular for some point C on a but not in X .

LEMMA 3. Every special copoint meets every line, including c ,

which meets c .

Proof. With C, X as in the defini t ion, we know that a l l l ines

through C have the same length q + 1 , and some of them meet X . So,

by (C, X)-regulari ty, a l l l i nes through C meet X . I t follows tha t , i f

C' i s any point on a ,

\x\ = the number of l ines through C

= (l-l)q~ , where I i s the number of points in 1J

= the number of l ines through C' ,

and so every l ine through C' meets X .

LEMMA 4. L_ is (C, X)-regular for all C, X such that C is a

point on a and X is a copoint not containing C .

Proof. We f i r s t show that every copoint not containing a i s

spec ia l . Any such copoint contains a coline y which does not meet a .

Choose a point C on c ; then ^ i s (C , Y) -regular for some special

copoint Y containing y but not C-^ . Let C^ = Y A c and l e t Z be a

special copoint determined by C?, y . If Z A c ? C. then

<r(C , y) , r(C , Z] > i s t r ans i t ive on the points * C^ of c and so, in

t h i s case, every copoint which joins a point of c to y i s special . If,
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for all possible selections of C on o , we always get Z A c = C, ,

then again every copoint which joins a point of a to y is special.

A simple counting argument, based on Lemma 3, shows that the q + 1

special copoints which contain y and meet a are all the copoints

containing y . Thus all copoints not containing a are special.

Now, with C, X as in the statement of the lemma, there exists a

point C. on a such that C. { X and L_ is (C , XJ-regular. Let

Cp = X A c and choose a coline U meeting c in a point ? C, C., C^ ;

C and u determine a copoint W such that V A c = u A a and IJ is

(C , W) -regular. Some element of T[c , V) maps C to C , while fixing

X , so L. is (C, ̂ )-regular.

COROLLARY. £ induces on the points of c a group which is

permutation isomorphio to the standard representation of PGL(2, q) .

LEMMA 5. Every coline in .L meets every plane containing c .

Proof. Let x be a coline not meeting c . Then it is easily seen

that

|x| = {l-l)q - q~ , where I is the number of points in L̂  .

No plane containing a meets x in more than one point, since if it did

the line joining two intersection points would be contained in x and

would meet c (as every plane through c is a projective plane). So

the planes joining a to points of x account for Ixl^ + q + 1 = I

points of L̂  .

LEMMA 6. Let A , ..., A be n points of ^ such that

A, v ... v 4 = 1 , A < c and A < a ; and let a. = a v A .

{i = 3, ..., n) . Then £ is faithfully represented by its action on the

set of all points of jL which lie in at least one a. , and the induced
— 1*

permutation group G? is uniquely determined (to within permutation group

isomorphism) by q + 1 = | c \ and n = rank L̂  .

Proof. We note before beginning that A , , A is a basis for the

combinatorial geometry associated with L_ , and that a basis with A. < c
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and A < a can certainly tie chosen (see Crapo and Rota [3]).

Suppose that <f> € G. fixes every point of every plane a. . If i is

any coline not meeting e , and B. - x A a. , then
% %

e v B_ v . . . v B 2 a , V . . . V a = 1 , a n d s o B _ , . . . , B a r e
5 n 5 n i n

independent; that is B_ v . . . v B = x . I t follows that 4> fixes every

coline not meeting a and so, since <j> fixes every point of e , <j>
fixes every copoint not containing a .

Let Z be a copoint containing a . Choose a coplane a such that
o V a = Z and a A e = 0 , and distinct points A and B such that a
{A V B) A a is a point tut (A V B) { Z . Then a v A and a V B are
distinct colines which do not meet c , So if fixes
( a V i 4 ) A ( a v B ) = a , and therefore <j> fixes Z = a v a . We have now
siown that <j> fixes every copoint, and hence that <j> = 1 .

To prove the assertion about jG* , we first coordinatize the
desarguesian projective planes a. so that the coordinates of the points

of a "match". In each a. the coordinate system is chosen so that <?

is the line at infinity and the same three points of o are labelled
(0), ( l ) , (°°) . By virtue of the Corollary to Lemma k, the coordinates
(m.) of the remaining points of a (considered as points of a. ) can be

described in terms of the group induced by (J on the points of a ,
uniquely to within a field automorphism of GF(q') . After suitable choices
for the field automorphisms, each point of o will have the same
coordinate (m) in a l l n - 2 coordinate systems.

How the permutation group G* is generated by those transformations
<j> = ()>(c, a.~, . . . , a ; C , C ) such that <$> acts in each a. as does the

[C, a.)-homology mapping C to Co ; where C, C , C are points on

a , a. is a line ? c in a. , a . A e = C' does not depend on i ,

and C, C , C , C are distinct. Thus £* depends only on q and n .

LEMMA 7. The pointwise stabilizer ^ of a in £ acts faithfully

as a Fvobenius group of order q (q-l) on the q ~ colines of L̂
which do not meet a .
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Proof. I t suffices (Gleason [5 ] , Lemma 1.7) to show tha t , for any

coline x which does not meet a , the group H has order q - 1 and

fixes no other colines not meeting a . By Lemmas 5 and 6 there i s no loss

of generality in supposing that the planes a . are n - 2 planes in
Is

PG(n-l, q) which a l l pass through a line e in PG(w-l, q) and which

span PG(n-l, q) , and that the points and lines of L_ which l i e in a.

are the points and lines of PG(w-l, q) which l i e in O. . The colines of

L^ not meeting a may be thought of as («-2)-tuples (s , . . . , B ) , each

B. being a point in a. not on a ; and the copoints of L_ not

containing a may be thought of as («-2)-tuples (fc._, . . . , b ) , where

each b. i s a l ine t o in a. and the b . ' s a l l meet o in the same

point.

The proof of Lemma 7 now reduces to a simple exercise on the geometry

of PG(M-1, q) .

Proof of Theorem 2. We apply the preceding lemmas to complete the

proof of our theorem. From Lemma 7 and the corollary of Lemma k i t follows

that

| G | = | H | . | P G L ( 2 , q)\

Our method of proof is to show that the points and copoints of L. and the

incidence (order) relation between them, can be described in terms of the

permutation group (J* (of Lemma 6) and the n - 2 desarguesian projective

planes a. ("joined together" along a in the appropriate way).

The elements of G* which are induced by the homologies of L. which

generate G. may also be thought of as being induced by homologies of

PG(w-l, q) , when the planes a. are embedded in P G ( M - 1 , q) , as

described in the proof of Lemma 7« Then G* is the group induced

(faithfully) on a u — u a by a certain subgroup £** of

PGL(n-l, q) .

To avoid confusion, we shall denote a. by a*, and a by c* when

considered as elements of PG(w-l, q) . Now the copoints of .L which do
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not contain a may be identified with (n-2)-tuples (fc,, ..., b ) of

l i n e s b. in a*, which a l l meet a*1 in the same point. With what shall

ve associate the copoints of T^ which contain e ?

Consider the subset S.* of G* consisting of those transformations

(J> in G* which induce an elation (j>. in each a*, and are such that the

<t>.'s a l l have a common centre on a* and the common axis a* . (Some of

the <J>.'s may be t r i v i a l . ) For a given point C* on a* there are at

vi—2most q - 1 non- t r iv ia l <J> € §? with centre C* , since the group

F(C*, a*) for any plane a*, has order q , and so

|£*| £ {qn-2-l){q+l) + 1 .

We shal l l a t e r see that t h i s inequality can be replaced by equality.

Let C. be a point on o , Z a copoint containing a ; choose a

col ine z < Z meeting a in a point # C ; and choose two copoints

X, Y with X A y = s and Z * X, Y . Then 1^ = < V (c±, x) , T (c , Y) >

ac t s fa i thfu l ly and sharply 2- t ransi t ively on the q copoints # Z

through s , and induces a group of order q - 1 on the q - 1 points

* C , 3 A e of c . The Frobenius kernel of K is F(c , z) and so

Now l e t C2 be a point ± C , z A c on e . The Frobenius kernel

of Hg = <T(C2, * ) , r(<72, Y)) is r (C £ , Z) . We assert that

|u = < T[c , Z) , T[C , Z) > , which (by the geometry of the desarguesian
o

planes containing a ) i s c lear ly elementary abelian of order q ,

cons i s t s ent i re ly of e la t ions with axis Z and centre on c . Tr iv ia l ly ,

a l l elements of Z have axis Z . I f <j> € Z_ induces <j>. in ex. , then

by considering the subgroup of £** corresponding to JZ we see that the

<J>.'s a l l have the same centre C on c . If b i s a l ine * e through

C and a = £ v a , then Z> = a A V for some copoint V , and V meets

every a. in a l ine through C . Since <j> fixes a l l the l ines a . A V ,

i t also fixes V and therefore fixes b = a A V . Thus <j> has centre C ,
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We have shown that if Z is a copoint of L. containing e then the

elations with axis Z and centre on e form a subgroup Z_ of (± having

2
order q . Obviously Z is a normal subgroup of G_ , and corresponds to

2
a normal subgroup Z* of G* contained in S.* and having order q

The same argument applied to PG(n-l, q) and G** shows that the

[q -lj(q-l) copoints of PG(n-l, 17) containing a* give rise to

[q -lj(q-l)~ "elation subgroups" (normal in G* ) of order q

contained in S* . Since any two of these have trivial intersection,

|S*| = [qn-Z-l)(q+l) + 1 ,

as was asserted earlier.

That these [q -lj(q-l) subgroups include all of the subgroups Z_

follows from the fact that Ŝ * contains no other normal subgroups of G*

2
having order q , which is easily verified by showing that each non-

2
trivial element of S* has at least q - 1 conjugates in G* . We have

now answered the question: with what shall we associate the copoints of L_

which contain 0 1

In order to describe the points A of IJ not on a , we consider the

Frobenius kernel IC of the group 13 (see Lemma 7). Now |KJ = q n~ and

the orbit A~ clearly consists of the q points of a = a V A not on

a , that is \A=\ = q2 and so 1^1 = c?2""6 . It follows that K^ acts

transitively on the set of all colines of L_ which contain A but do not

meet a . So the point A may be associated with a coline orbit of the

group k^ = K, . Recall that colines (not meeting c ) are easily described

in terms of a_, ..., a . The subgroup A* of G* corresponding to A_

is the group generated by the elation subgroups corresponding to the

various copoints containing a = o v A . Any subgroup of (>* having order

PM ft
q ~ which is generated by elation subgroups corresponds to a plane in

PG(n-l, q) containing a* . The orbits of colines (not meeting c* )

under this subgroup correspond to the points (not on a* ) of that plane.

When the subgroup can be generated by elation subgroups which correspond to
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copoints of L, , then the plane in PG(«-1, q) also corresponds to a plane

in L, .

The description of the incidence relation between points and copoints

of L̂  in terms of G* and a,., ..., a is now obvious. For example, a

point A not on o lies in a copoint Z containing a if and only if

the elation subgroup Z_* is contained in A* . The point A lies in a

copoint Y = [b-, ..., b ) not containing a if and only if one of the

colines (̂ o' •••» & ) ^n ^ e orbit corresponding to A is contained in

Y ; that is B• < b. , i = 3, ..., n .

We have completed the proof of Theorem 2.

5. A characterization of f i n i t e projective spaces

Let L te a finite geometric lat t ice of rank n 5 h satisfying the
hypotheses (i) and (ii) of Theorem 2. Then by Lemma 5 every coline of ^
meets every plane containing o . So, if x is a coline not meeting a ,
then

|x| = the number of planes through a .

Now, in PG(n-l, q) , the number of planes through a line is

(<7 -l)(<7-l) . Consequently, we deduce from Theorem 2 the following
characterization of finite projective spaces PG(n-l, q) with n-1 > 3
and ^ 2 3 .

THEOREM 3. Let ^ be a finite geometric lattice of rank n > h .
Then L̂  is isomorphic to the lattice of a projective space PG(w-l, q)
with q > 3 if and only if

(i) there exists a line c in L_ such that, whenever C is
a point on c and x is a coline with C ^ x > h^ is
(C, X)-regular for some copoint X containing x but not
C ;

(ii) every line of L, contains at least four points; and

(Hi) there exists a coline y in L̂  such that y does not

meet c and \y\ 2 [qn -\)(q-±)~ , where q + 1 = \a\ .
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