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§0. Introduction

Given a semilocal 1-dimensional Cohen-Macauly ring A, J. Lipman
in [10] gives an algorithm to obtain the integral closure A of A, in terms
of prime ideals of A. More precisely, he shows that there exists a
sequence of rings A=A, C A C---C A, C---, where, for each i, i >0,
A,., is the ring obtained from A, by “blowing-up’ the Jacobson radical
A, of A, ie. A,,= U,@:Z&). It turns out that U{4;;i>0}=A
(cf. [10, proof of Theorem 4.6]) and, if A is a finitely generated A-module,
the sequence {A,; i > 0} is stationary for some m and A4, = A, so that

(+) A=A GA S --SA, =A.

In [15] G. Tamone studies when in the Lipman’s sequence (+) A, is
a “glueing of primary ideals of A;,, over a prime ideal of A” (see [14]
for definition). She shows in particular that A, is not always a glueing
of primary ideals of A,,,.

In this paper we give an algorithmic construction, for a Noetherian
domain A of any dimension, such that A is a finitely generated A-module,
defining a new sequence {A,; i> 0} of overrings of A; A,,, is obtained
from A,, taking the dual of a distinguished radical ideal of A;,. We show
that such a sequence is stationary for soms m, A, = A (cf. Theorem 1.8),
and A, is always a glueing of primary ideals of A,,, (cf. Proposition 2.7
and Remark 2.2, a)).

A similar sequence was considered in [17] by K. Yoshida in the case
of a Noetherian ring satisfying the S,-condition. As a matter of fact, the
intermediate rings of the Yoshida sequence are defined in a rather differ-
ent way, but the prime ideals occuring in their definition are linked to
those that we use in our sequence (cf. for more details Remark 1.7).
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However our result holds in a more general situation which turns
out to be its natural context, that is A is just a Mori domain. We recall
that a Mori domain is a domain such that the ascending chain condition
holds for integral divisorial ideals (e.g. Noetherian and Krull domains are
Mori; for other examples and further properties of these domains cf. [11,
12,13, 2,4]). In this case the sequence of overrings of A is stationary
at A*, the complete integral closure of A (for a Noetherian domain, it
coincides with A, the integral closure of A).

In Section 2 we study the general procedure in order to descend
along the sequence {A,; i> 0} constructed above. This procedure con-
sists in a “‘contraction of ideals of A,,, over prime ideals of A,” (cf.
Definition 2.1), that, in the Noetherian case, coincides with the glueing
of primary ideals, as defined by G. Tamone in [14].

With the additional hypothesis that in our sequence {A4,; i > 0} the
conductor of A, in A,,, is a radical ideal of A,,,, for each i (cf. Section
3), we show that the “contraction” coincides exactly with the glueing
(of prime ideals), as defined by F. Ischebeck in [9]. Under this particular
hypothesis, in the Noetherian case, we get a new characterization of
seminormal domains (cf. Theorem 3.8); an analogous characterization,
involving conductor ideals, was given by K. Yoshida, using his sequence
(cf. [17, Theorem 2.2]). On the other hand, if the domain A is not
Noetherian, but Mori, we obtain a natural extension of the notion of
seminormal domain (not in the integral closure but) in its complete
integral closure: similarly to Traverso’s result for Noetherian seminormal
rings, (cf. [16, Theorem 2.1]) such a domain A is obtained from its com-
plete integral closure A* (that is a Krull domain) with a finite number
of glueings over prime ideals of A of a certain type (cf. Corollary 3.7).
The paper ends with some examples of Mori, non-Noetherian domains of
this kind.

Throughout the paper, if § is an ideal of an integral domain A, we
denote, as usual, A: (A: ) by J,- An ideal § is called divisorial if
X =, strong if (A:J) = (I: ) (cf. [3]), strongly divisorial if it is strong
and divisorial (cf. [11]).

§1. The algorithmic construction

We begin by showing that any non-zero intersection of strongly divi-
sorial prime ideals is a strongly divisorial ideal. We need the following:
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LemMA 1.1. Let B be a prime ideal containing a radical ideal § of
an integral domain A. Then (B:P) C (J: J).

Proof. Let 3 = N{P,; 2 € 4}, where, for each 1, B, is a minimal prime
of §. Since JC P, we have J(P: P) < L. But, for each L, we have
I(B: V) < Pu(B: V) < LA B) < (B,: V). Notice that, for each P, with
B =B, we have (P;: P)NA = B,, because if xe A and xP C B, then,
since ® Z P, xeP,. Thus we have J(P:P) S PN{EB.: PB); P # P}
BO{R:; By # B} = 3, that is (P: P) < (I: J).

ProposITION 1.2. Let § = N{P,; 2 € A}, where for each 2e 4, R, is a
strongly divisorial prime ideal of an integral domain A. If § =+ (0), thzn

3 is a strongly divisorial ideal of A.

Proof. It is enough to show that J = A: (J:J) (cf. [3, Proposition
6]). It is obvious that J C A: (§: J). For the opposite inclusion, since,
by Lemma 1.1, ($;: L) C (3: ) for each 1e 4, we have B, = A: (4: B)
=A: PP DA (F: ). Thus N{P; e =JDA:(:J).

For a Mori domain, a “converse” for Proposition 1.2 holds:

ProposiTioN 1.3. Let A be a Mori domain and let § be a strongly
divisorial ideal of A. If B is a prime ideal minimal over , then B is
strongly divisorial.

Proof. Consider the localization A;. Since (J4y), = IJ Az = JAg
and (Ag: JAp) = Ag(A: ) = Ax(F: ) = ([A44: JAg) (cf. for example [11],
proof of Theorem 2), JAy is a strongly divisorial ideal of A,. Therefore
YAy is contained in at least one strong maximal divisorial ideal of A,
(cf. [5, Proposition (1.7)]), that is PBA, is strongly divisorial. By [11,
Lemma 4], we conclude that ¥ is a strongly divisorial ideal of A.

As usual, we denote by A* the complete integral closure of A. We
consider in the following results mainly the case where the conductor
of A in A*, (A: A*) is different from (0). This hypothesis is equivalent
for a Noetherian domain A to suppose that the integral closure of A,
A = A¥* is a finitely generated A-module.

LEmMMA 1.4. Let A be a Mori domain such that (A: A¥) 0. Then
any decreasing chain of strongly divisorial ideals of A is stationary.

Proof. Let {J,; n> 0} be a strictly decreasing chain of strongly divi-
sorial ideals of A. Since A is a Mori domain, N{J,; n > 0} = (0) (cf. [12,
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I, Theorem 1]). On the other hand, since (A: A*) = (0), N{J.; n > 0} + (0)
(cf. [3, Proposition 16]), a contradiction.

We denote, as in [4] by D,(A) the set of maximal divisorial ideals
of a Mori domain A. The elements of D,(A) are prime ideals of A and,
if B e D, (A), either Ay is a DVR or § is strong, i.e. strongly divisorial
(cf. [4, Proposition (2.1) and Theorem (2.5)]). The set #(A) = {$ € D,.(A)|B
is strong} is nearly related to A*, as we shall see later. At the moment
we prove:

ProposiTioN 1.5. Let A be a Mori domain such that (A: A*) # (0).
Then %(A) is empty or finite.

Proof. The first case, #(A) = @, occurs if and only if A is a Krull
domain. In fact, if A is a Krull domain, it is well known that Ay is a
DVR, for each e D,(A) and, conversely, if ¥£(A) =@, A is a Krull
domain (cf. [4, Theorem (3.3)]). Suppose that #(A) is non empty. If #(A)
is not finite, consider a countable set {§,, --- %,, ---} of elements of
F(A), with B, + B, for i #j. We can consider the decreasing chain
{J.; n=>1}, where J, = N{¥,;; 1< i< n}. For each n, J, is a strongly
divisorial ideal by Proposition 1.2. Moreover the chain {J,; n > 1} is
strictly decreasing because, if §, = IJn.1, then B, - PLL C I = Jnw: S Passs
thus B, C$B,,, for some i, 1< i< n, which is clearly impossible. By
Lemma 1.4 we get a contradiction.

COROLLARY 1.6. Let A be a Mori domain such that (A: A*) = (0).
Then the set of strongly divisorial prime ideals of A is empty or finite.

Proof. Let & be the set of strongly divisorial prime ideals of A.
P =@ if and only if A is a Krull domain (cf. [3, Corollary 14]). If
P + @, notice that the set of the maximal elements of & is exactly S(A).
In fact, trivially, if 8 e #(A), B is a maximal element of #. Conversely,
let ¥ be a maximal element of #. Since P is divisorial, § < I for some
Me D,(A). But BAy is a strongly divisorial ideal of Ay, thus Ay is not
a DVR and Me F(A) C #. For the maximality of B, B = Me F(A).
Therefore, by Proposition 1.5, the maximal elements of & are a finite
number: §,, - - -, B,. Arguing as in the proof of Proposition 1.5, we can
show that 2\{$, ---,PB,} has a finite number of maximal elements
5 oo+, B, and trivially, for each 7, 1< i< ¢, B; & B, for some j, 1 < j

Iy

< s. To conclude the proof it is enough to observe that any decreasing
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chain of elements of & is finitz (cf. Lemma 1.4).

REMARK 1.7. Let A be a Noetherian ring satisfying the S;-condition
and let R, RC A, be a finite overring of A. In this case K. Yoshida
[17] considers a sequence of intermediate rings between A and R (related
to a sequence that we are going to introduce) and a set of distinguishad
prime ideals of A, D(A, R) (cf. [17, Proposition-Definition 1.1]). We notice
that, if A is a Noetherian domain and R = A, the set D(A, A) of [17]
coincides with the set of strongly divisorial prime ideals of A.

In fact, if 8 e Spec A and ht P = 1, then R e D(A, A) if only if A,
is not integrally closed (cf. [17, p.54]), i.e. if and only if PBA, is not
principal (cf. for example [1, Proposition 9.2]). It is easy to prove that
the previous statement is equivalent to assume that P is a strong ideal
of A. Since in this case (ht § = 1) *f is always divisorial (cf. for example
[11, Proposition 1]), we have that P e D(A, A) if and only if P is strongly
divisorial. On the other hand, if fe€Spec A and ht L > 1, then Pe
D(A, A) if and only if P is divisorial (cf. [17, Proposition 1.10, (vi) & (xi)]).
Since in this case (ht f > 1) P is always strong (if not LA, would be a
principal ideal of the Mori domain Ay, a contradiction with [11, Lemma
3]), we have that R e D(A, A) if and only if P is strongly divisorial.

We notice in particular that Corollary 1.6 generalizes Yoshida’s result
on the finiteness of the set {f € Spec A|ht £ > 1 and depth Ay = 1} (cf.
[17, Proposition 1.10 and Corollary 1.12]).

We recall that if A is a Mori domain and § is a strongly divisorial
ideal of A, then (A:J) = (J: ) is a Mori overring of A (cf. [13, p. 11]
or [3, Corollary 11]). If, moreover, A is a Mori domain such that (A: A*)
+ (0), then also (A: ) has the sams property, that is ((4: J): (4: J)*)
#+ (0), because (A: J)* = A*. Thus, under the preceding hypothesis, we
can construct a sequence of Mori overrings of A

A=A CAC---CA,C---

setting for each i>0, A,,, = (A;: #,), where Z;, = N{P; Pe FL(A)}, if
F(A)+D and A,,, = A, if L(A) = @.

Notice that, in the first case, #, + (0), by Proposition 1.5, and that
Z; is a strongly divisorial ideal of A;, by Proposition 1.2; thus, if $(A;)
+ @, A; & A,,,. Conversely, if #(A,)) =@, A, = A,, for each j > i.

THEOREM 1.8. Let A be a Mori domain such that (A: A,) # (0). Then
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the sequence of overrings of A considered above is stationary for some
m>0 and A, = A*,

Proof. For any i, t >0 it is easy to see that A, is an overring of
the type ;' for some ideal ; of A, that is A, is a (fractional) divisorial
ideal of A. In correspondence with the sequence {A4;; i > 0} of overrings
of A, we get the decreasing sequence of strongly divisorial ideals of A,
{(A: A)); i > 0}. This is stationary by Lemma 1.4, thus the sequence of
overrings {A;; i > 0} is stationary too (cf. [3, Corollary 8]).

Therefore there exists an m > 0 such that A, = A,,,,. Thus %(4,)
= ¢ i.e. A, is a Krull domain (cf. [4, Theorem (3.3)]). However A* =
(A,)*, because (A: A,)+ (0) i.e. A and A, have a nonzero ideal in
common. On the other hand A, is completely integrally closed, that is
(A)* = A, thus A* = A,

ExampLEs 1.9. a) Let A = k[t t*], where & is a field. A is a 1-dimen-
sional Noetherian (in particular Mori) local domain and its maximal ideal
M = (£, 1*) is strongly divisorial. In this case #, = M and A, = (A: &,
= k[, & t]; &=, 1) and A, = (A,: &) = k[, ¢*]; &, = (&, ') and
A, = (A;: X)) = k[t].

Observe that in this example our sequence of overrings of A is
different from the sequence constructed by J. Lipman (cf. [10, p. 661]).
As a matter of fact, in this case the steps in the Lipman sequence are
k[, ] C k[, ¢°] C E[2].

b) Let A =k + XKI[X] 4+ YKI[X, Y, Z], where k£ & K are fields. A is
a Mori (possibly non-Noetherian) domain, because A = K[X, Y, ZINB,N B,
where B, =k + (X, Y, Z)K[X, Y, Z]x,v,» and B, = K(X) + YK[X, Y, Z],
are Mori domains (cf. [12, I, Theorem 2] and [2, Proposition 3.4]). In this
case %, = XK[X]+ YK[X, Y, Z], A =(A: %)= K[X]+ YK[X, Y, Z],
R, = YK[X, Y,Z] and finally A, = (A;: %,) = K[X, Y, Z].

We recall that if A is a domain, J is a strongly divisorial ideal of
A and C=(A: ), then Spec A and Spec C are closely related. More
precisely the canonical map associated to the inclusion i: A — C, ®i: Spec C
— Spec A gives a one-to-one correspondence between {Q e Spec C|Q 7 J}
and {8 € Spec A| 2 J}; moreover, if QeSpec C, L2 J and P = QN A,
then Cy, = A, (cf. for instance [7, Theorem 1.4, c)]). We notice also that
for any B e Spec A, P 2 I, the unique Qe Spec C above P is (P: J).
Actually (B: ) is a prime ideal of C, because if abe (: J) and a ¢ (P: J),
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with a,be C = (A: ), then abe (B: Y) ie. aJbI C P, so, since a C A,
bIC A and aJZ B, we have bIC P, that is be(P: ). Moreover
B: NN A =B, because if xe A is such that xJ C B, then, since F ¢ B,
xe P, and, on the other hand, it is trivial that P < (F: J)N A.

We want to show that, if A is a Mori domain, in the previous one-
to-one correspondence, strongly divisorial primes of C correspond to
strongly divisorial primes of A.

ProposiTioN 1.10. Let A be a Mori domain, § a strongly divisorial
ideal of A and C=(A:3). If PeSpec A, P2 J and Q= R:J) (e
QNA =), then B is a strongly divisorial ideal of A if and only if Q is
a strongly divisorial ideal of C. Moreover if f € F(A), then Qe F(C).

Proof. We know that C is a Mori domain and that, if B e Spec A,
B 2 S, is a strongly divisorial ideal of A, then Q = (: J) is a divisorial
ideal of C (cf. [13, p. 11]). We want to prove that Q is strong.

Denote by F the quotient field of A (and of C). If Q is not strong,
there exists x ¢ F such that xQ C C and xQ ¢ Q. Thus xQC, = C, and
QC, = x7'Cy is principal. But C, is a Mori domain (cf. [11, Corollary 3])
and so if ht Q > 2, we have a contradiction with [11, Lemma 2]. On the
other hand, if ht Q = 1, Cy = Ay is a DVR (cf. [13, Theorem A-4]). This
also is a contradiction because § (and consequently $A,) is strong.

Conversely, let Q = (R: ) be a strongly divisorial ideal of C, with
ReSpec A, B 2 J. As noted before, P = QNA, thus it is easy to see
that 9 is a divisorial ideal of A. In fact, since Q = N{xC; x¢ F and
xCOQ}, P=N{xA:J); xeF and xCODL}NA is an intersection of
divisorial ideals of A. We want to prove now that P is strong, i.e. that
(A: B) = (B: P). Actually we have (A:P) C (4A:JQ) =((4:F): Q) =
(C: Q)= (Q:2). Thus if xe(A: %), 2 PCcxQ Q. From xP A and
APCQ, we get XPCANQ =R, so xe(P: P).

For the last part of Proposition notice that if 8 ¢ D,(A) and Q = (R: )
c MeD,(C), then MN A is a divisorial ideal of A. Thus MNA =
and, for the one-to-one correspondence, Q = M.

Given a Mori domain A such that (A: A*) # (0), we have associated
to A a sequence of Mori overrings:

*) A=AGAGE - FA, =A%

From the previous Proposition we get the following:
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CoroLLARY 1.11. Let A be a Mori domain such that (A: A*) % (0)
and let (*) be the associated sequence. Then m > sup {lengths of chains
of strongly divisorial primes of A}.

Proof. Let I, = sup {lengths of chains of strongly divisorial primes of
A} and let By C P, < -+ < P, be a chain of strongly divisorial primes of
A,. Then necessarily ,,e #(A,) and B,, - - -, B,,., 2 Z, = N{P; Pe FL(A).
So, by Proposition 1.10, there exists in A,,, = (4;: #Z,) a chain of strongly
divisorial primes of length at least I, — 1. Recalling that A, is the only
ring in the sequence (*) which does not have strongly divisorial primes,
the conclusion follows easily.

Other informations about the relationship between strongly divisorial
primes of two consecutive rings of the sequence (*) are given in the
following:

PropositioN 1.12. Let A be a Mori domain such that (A: A*) =+ (0)
and let B, C = (B: #) be consecutive (Mori) domains of the associated
sequence (*), where Z = £, N .- NP, and {L, -, L.} =FB). If Qisa
strongly divisorial prime ideal of C such that Q D %, then QN B =%, for
some j, j=1,---,n.

Proof. As in the proof of Proposition 1.10 it is easy to see that
£ N B is a divisorial ideal of B. But, since Q D Zand BD %, f = QNB
ODAZ=PN---NPE DL, ---PB,. Since P is a prime ideal, P O P, for
some j, j=1,---,n. Thus P =P, becasue P is divisorial and P, is
maximal divisorial in B.

For an example of the situation described in Proposition 1.12, look at
Example 1.9 a). A, (resp. 4;) has a strongly divisorial prime, £, (resp. %),
above Z%,c F(A) (resp. #, € L(A)).

Clearly in this case, if (*) is the associated sequence of overrings of
A, m > sup {lengths of chains of strongly divisorial primes of A}.

PropositioN 1.13. Let A be a Mori domain and let %, - - -, B, € #(A).
If Z=%0N---NB, and C= (A: &), then A = CNAyN---NAg,.

Proof. The inclusion A © CN Ay, N ---N Ay, is trivial. For the oppo-
site inclusion we recall that if A is a Mori domain, A = N{Ay; ¥ € D,(A)}
(cf. [4, Proposition (2.2) b)]). Thus it is enough to show that C C A,, for
any maximal divisorial ideal 8 of A, B = L, -+, B,.. Actually for such
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maximal divisorial ideal  of A, BAZ = P,N---NP,, thus there is
exactly one £ eSpec C above P and Ay = Cy (cf. [7, Theorem 1.4, c)}).
Therefore it is clear that C C A,.

Next we study in greater detail the generic step A, C A,,, in the
sequence (*). Putting A, = B and A,,, = C and using the notation of
Proposition 1.12, we describe the extension B C C in n steps, in corre-
spondence with the n prime ideals %, -- ., R,.

We shall denote by 2(A) the set of divisorial ideals of a domain A.

Let B, = B and «,: 2(B) — 2(B) the identity map. Define, for 1 < j
< n, the pair (B,, «;) in the following way:

B] = Bj_li (Ct'j—1° cee °ao(§Bj))
ol Q(Bj_l)——‘)g(Bj)
H-— H: (a;_;0 - - o ()

Denote, for simplicity, the map (a;_,0 - - - oay): 2(B) = 2(B,;.,) by ¥,_,.

Observe that, for each j, j=1,---,n, ¥,_($,) e #(B,.,). In fact, if
j=1, T(RB) =P,e #(B,). If j> 2, applying Proposition 1.10, we get that
wk(s’Bj)e &L(B,) and ¥ (B,) 7 T(P,,) for any k, k=0,1,..-,j —2. So,
again by Proposition 1.10, ¥, (,) € #(B,_).

Therefore we have a sequence of Mori overrings of B, B = B, C B,
C.--C B, (cf. again [13, p. 11]). We can prove:

ProposiTiON 1.14. Preserving the notation introduced above, the inte-
gral domain B, coincides with C.

Proof. Observe first that for each j, j =1, ---,n, ¥, ($,) is a frac-
tional ideal of B and that

Bn = (Bn—l: w‘n—-l(%n)) = (Bn—2: wn—Z(%n—l)): (wn—l(gﬁn))
= B2 (oo Bu-)¥ou(B0)) = - = B: (To(B) - - o s(B0)).

Observe secondly that, since for each j, j =1, -- -, n, $,By, = ($,By),
= (P, -+ - B.By),, wehave PN - - NP, = [, By, N - - - NP, By, N B = B, By, N
NP, By, N{By; Pe Du(B), B # PBj} = B, - - - BoBy)o N -+ - N, - - - BBy, ),
N{(B, - - - B.By)o; B e Du(B), R # B} = (B, - - - B,), (cf. [4, Proposition (2.2),
D)2
Thus we have C = (B: B, N---NPBP,) = B: (B, - - B)) = (B: B, - - - B).
Now, since for each j,j =1, ---,n, %, C ¥, ,(B,), we have B, .- - B, < F,(B)
- ¥,_(B,) and so C D B,. For the opposite inclusion it is enough to
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show by induction that ¥ (B,) --- ¥,.,(B,) BN ---NP,. Trivially F(PL)
=P, CP,. Suppose that F(B,)--- ¥, B, ) PN---NP,.x (> 2).
Since ¥,_,(R,) < B,_, and ¥,_,($,.,) is an ideal of B,_;, we have that
Vo oBr )V i (B) C ¥ o(Brm), thus Ty(B) - - Ts(B) THN -+ - NPese

Moreover, since by definition ¥,_,(8,) = (T ._o(B.): ¥._(B..)), it is
clear that ¥,_,(B)¥»oBr-) T TolBr). So T(B) -« - T i(B) T oB)N
B = SBn and wo(s’Bl) Tt wn—l(s’Bn) cC %10 tr nﬁBn-xnéBn-

§2. Contraction of ideals and glueings

To descend in the sequence (*) associated to a Mori domain, defined
in Section 1, we need some further definitions.

DerFINITION 2.1. Let A C B be two rings and let J be an integral
ideal of B such that N A = peSpec A. Let S = A\p. S is a multipli-
cative set of A and of B. Denote by ¢ the composition of canonical
maps B — S'B — S-'B/S-'J and by k(p) the residue field A,/pA, Let
k(p) — S'B/S-'% be the canonical immersion. Then the ring obtained
from B by contracting 3 over p is the pullback ¢ '(k(p)) = B X s-1p/5-15 R(D).

Remark 2.2. a) In Definition 2.1, if ¥ is an intersection of a family
{Q,;;2€ 4} of primary ideals of B, such that Q,NA =p, for each 1¢ 4,
then the ring obtained from B by contracting § over p coincides with
the ring obtained from B by glueing the primary ideals {Q,; 2¢ 4} over
p, as defined in [14] (cf. [14, Proposition 1.5]).

b) If we suppose that § = 4/ pB, that is if  is an intersection of
a family {§5;; 1€ 4} of prime ideals of B, then the ring obtained from B
by contracting § over p, defined in 2.1, coincides with the ring obtained
from B by glueing over p, as defined in [9]. In particular, if B is in-
tegral and finite over A (and J = + pB), then the family {§;;1¢ 4} is
finite and, locally, for each 2, S-',; is a maximal ideal of S-'B. Thus,
in this case, the pullback diagram is of the following form:

¢~ '(k(p)) —> k(p)

B — R(B,) X -+ - X k(R,)

and we obtain the “‘classical” definition of the ring obtained from B by
glueing over p, as defined in [16].
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¢) Notice that to define properly the ring obtained from B by glue-
ing over peSpec A (i.e. by contracting J =+ pB over p) or the ring
obtained from B by contracting § = pB over p, it is necessary that one
of the following equivalent conditions holds:

1) the canonical map A/p -— B/pB is injective (cf. Iscebeck’s defini-
tion);

i) pB is over p, that is pBNA = p;

i) pS-'B = S-'B (with S = A\Y);

iv) there exists a prime ideal £ of B over p;

Using the hypotheses and notation of Definition 2.1, we can show that:

PrcrositioN 2.3. The ring obtained from B by contracting 3 over P
is the largest subring A’ of B such that

1) I =19 is a prime ideal of A’;

ii) the canonical homomorphism k(p) — k(Y’) is an isomorphism.

Proof. Notice that in our hypotheses, we have the following com-
mutative diagram:

A > A
S S-1A Br; \ k()
!
B 1h >BIS
e S-'B T \i S-'B/S'Y

Observe moreover that S'B/S-'Y = S-'(B/Y), where S = A(S) =
{s +J; se S} is a multiplicative part of B/J. Since in S there are not
zero-divisors (in fact (s, + J)(s, + J) = F, with s, 8,€ .5, implies s5,€p
and so s;ep (and (s, + J) = ) or s, ep (and (s, + J) = J)) the homomor-
phism g is injective.

Let C be the ring obtained from B by contracting J over p. By
definition C = ¢~(k(p)), where ¢ = hog = goh. Thus, considering the in-
jection g as an inclusion, C is the pullback of the diagram
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C = h((B[J) N k(p)) -—> BII N k(p)

.

B— > BIY

where the intersection is in S-'B/S-'S.

Since C/I = B/J N k(p) is an integral domain, § = §’ is a prime ideal
of C. Therefore C is a ring that contains A and has a prime ideal p’
over p and hence we have the canonical monomorphism k&(p) — k(p’).
However k(p’) is the quotient field of Cfp’ = B/J N k(p), thus it is con-
tained in k(p) and so k(p) = k().

Now, we want to show that C is maximal with respect to the prop-
erties i) and ii). A subring of B with properties i) and ii) is in fact a
pullback of the type B X 5,4 D where D is a domain contained in B/J and
containing A/p and with quotient field isomorphic to k(p). The largest
ring of this kind is clearly C, constructed in correspondence with the
largest D = B/ N k(p) with the described properties.

Remark 2.4. Observe that if C is the ring obtained from B by con-
tracting § over p e Spec A, then:

a) C may have also other primes over p (cf. [14, Oss. 1, p. 5]).

b) A+ I C and, with an analogous argument to [14, Proposition
1.7], it can be shown that A + J = C if and only if A/p = C/I (= B/ N
k(p)).

The following example shows that it may be A & A + J & C.

ExampLE 2.5. Let A = D 4 ZK[Z], where D is a domain, K its quo-
tient field. Let B = K[Y,Z] and J = ZK[Y,Z]. Clearly JNA ==
ZK[Z]. In this case the ring obtained from B by contracting § over p
is the pullback of the diagram:

K

1

B = K|Y, Z] — K|[Y]

Thus it is C= K + ZK[Y,Z] and A=D+ ZK[Z] G A+ J3=D +
ZK|Y,Z]1 < C.
We extend Definition 2.1 to finitely many prime ideals:

DEFINITION 2.6. Let A C B be two rings and let I, ---, S, be
integral ideals of B such that J;N A =p,eSpecA,j=1,---,n We call
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the ring B,N---N B, the ring obtained from B by contracting , over
Py, -+, 3. over p,, where for each j, j =1, .-, n, B, is the ring obtained
from B by contracting J; over p,.

ProprosiTION 2.7. Let A be a Mori domain and let B, - -, R, € L(A).
If Z2=L.N---N%P, and C = (A: X), then A is the ring obtained from C
by contracting B,C over B, B,C over B,, - - -, B, C over B,.

Proof. By Proposition 1.13, we have A = CN Ay N---NAg,. Thus
it is enough to show that for each j, j =1, ---,n, CN Ay, is the ring ob-
tained from C by contracting B,C over B,. If S, = A\, first observe that
S;'C = S;A:$,N---NB,) = (S7PA: (S7*E,.N---NS7'H, N ---NS;B,)
(cf. for example [11, proof of Theorem 2] for the first equality and [1,
Proposition 3.11 v),] for the second). Thus S;'C = (S;'4: S;'§,) =
S7Y(A: ;). Using this equality, it is not difficult to see that the follow-
ing diagram

Ay, ——> k() = Ay,[B,Aq,
S;'C—> S;'C[S;7'B,

is a pullback. Recalling now that C is a domain and so the canonical
map g: C — S;'C is injective, we can see that CN Ay, coincides with the
pullback of the diagram

k()

1

C—-> S;7'C[S7'g; .
That is, CN Ay, is the ring obtained from C contracting $,C over ;.

COROLLARY 2.8. Let A be a Mori domain such that (A: A¥) + (0)
and let B, C = (B: %) be two consecutive (Mori) domains of the associated
sequence (*) of Section 1, where Z = $,N---NP, and B, - -+, B, are the
strong maximal divisorial ideals of B. Then B is exactly the ring obtained
from C by contracting B,C over $,, LB,C over L, - - -, B,C over §,.

§3. The ‘“‘seminormal” case

Let A be a Mori domain such that (A: A*) # (0). Let
(*) A=AGAG - S A, = A
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be the sequence of overrings of A constructed in Section 1.

Section 3 is devoted to study the particular case where %, =
(A;: A,,) is a radical ideal of A,,,, for each i, i=0,-..,m — 1. As we
shall see, this case is closely related to Traverso’s seminormalization.

It is convenient to define the strong dimension of an integral domain
A, dim, A, to be the supremum of the lengths of all chains of strongly
divisorial prime ideals in A. If A contains no proper strongly divisorial
prime ideal, we say that A has strong dimension — 1; thus, if A is com-
pletely integrally closed, then dim, A = — 1 (cf. for example [3, Corollary
13)).

In our hypothesis, by Corollary 1.6, dim, A is finite and, by [3, Cor-
ollary 14], A is completely integrally closed if and only if dim, A = — 1.

LemMa 3.1. Let I be a strongly divisorial ideal of a domain A and
let B=(A:). If § is a radical ideal of B and if § < Q e Spec B, then
&) is not a strongly divisorial ideal of B.

Proof. Let § C QeSpec B. Restrict © to a minimal prime $ of J.
By Lemma 1.1 (B:%) C (I: ) and, by [8, Lemma 3.7] (Q:L) C (R: R).
Since (:J) = (A:J) = B, we have (Q:Q) = B. If £ is strong, then
(B:Q) =(£0:9) = B and O, = B, thus Q is not divisorial.

ProrosiTioN 3.2. Let A be a Mori domain such that (A:A*) + (0)
and let (*) be the associated sequence. If, for each i, i=20,.--,m — 1,
X, = (A;: A;,) is a radical ideal of A,,,, then:

1) no strongly divisorial prime ideal of A,,, contains &, for each i,
i:()’ cee,m— 1

2) dim,A;=m —i~—1, for each i, i=0,...,m. In particular
dim, A =m — 1;

3) (A:A) is a radical ideal of A, for each i, i =1, ---, m.

Proof. Recall that by construction A,,, =(4,:%,), for i =0, ...,
m — 1, and Z; is a strongly divisorial ideal of A;,. Thus to prove 1) it
is enough to apply Lemma 3.1. To prove 2) observe that, by 1) and Prop-
osition 1.10, dim, A;,; =dim, A, — 1, for each i, i =0, --.,m — 1. Re-
calling moreover that A, does not have strongly divisorial prime ideals,
ie. dim,A,=—1 we get dm A, = ~1+(m—-)=m—i—1 In
particular dim, A = dim, A, = m — 1. To prove 3), we show that A con-
tains the radical of (A: A,) in A, for each i, i=1,.--.,m. Let xe A,
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and x"e(A: A,), for some nec N. We want to prove that xe A. It is
enough to prove that xe¢ A,_;, and x" e (A:4,.,). We have (4:4) C
(A,_;: A) = Z,_,, thus, since %, is a radical ideal of A,, xe %, ,C A,_,.
Moreover, trivially, x" € (A: A,)) C (A: A,_).

If A is a Noetherian domain such that A = A* is an A-module of
finite type (i.e. (A:A) # (0)), we shall prove that the particular case
considered above (i.e. #,; radical ideal of A;,, in the sequence (*)) corre-
sponds to seminormal case.

Recall that, given two rings A C B, B integral over A, the semi-
normalization of A in B is the ring

Aj = {be B|b/le Ay + Rad (S-'B), V B e Spec A}

where S = A\'B and Rad (S-'B) is the Jacobson radical of S-'B (cf. [186]).
It is well known that A7 is the largest subring A’ of B such that
1) for each P e Spec A, there is exactly one { ¢ Spec A’ above %;
ii) the canoncal homomorphism k() — A(Q) is an isomorphism. (cf.

[16, (1.1)]).

ProposiTiON 3.3. Let A be a Mori domain and let B, - -+, %, € L(A).
If Z=%,N---NP, and C= (A: %), then the following conditions are
equivalent:

1) 4 is a radical ideal of C;

2) S;B; = PB;Aq, is a radical ideal of S;'C (where S; = A\%,), for
each j, j=1,---,n;

3) A is the ring obtained from C by glueing over L, - - -, B,.

Moreover, if A is Noetherian, then the following are equivalent to
each other and to the above conditions:

4) A is seminormal in C;

5) S;'A = Ay, is seminormal in S;'C (where S; = A\%;), for each j,
j=1 -, m

Proof. 1) = 2): since #Z is an ideal of C, S;7'Z = S;(B.N---NP,)
=SB, N---NSR, = S;*B, is an ideal of S;'C; since Z is radical in
C, S71B, is a radical ideal of S;'C. 2)=>1): Z=F,N---N B, = P.14s,N
-++NP,Az, N A. By Proposition 1.13, A = CN Ay, N ---N Ay, thus Z =
RiAg, N - NP,Ag, N C. Since S;7*B; is a radical ideal of S;7'C, S;7*B,NC
is a radical ideal of C for each j, j =1, - --, n, therefore # is a radical
ideal of C. 2) & 3): by Proposition 2.7, A is the ring obtained from C
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contracting ,C over %,, B,C over LB, ---,B,C over P®,. Thus A is ob-
tained by glueing over %, - - -, R, if and only if $,C, - .., R,C are radical
ideals of C. This happens if and only if for each j, j =1, ---, n, S;'§,C
= S;"; is a radical ideal of S;'C. 2)=5): if S;™B; is a radical ideal
of S;'C, necessarily S;'B; = Rad (S;'C), the Jacobson radical of S;'C,
thus S;'A 4+ Rad (S;'C) = S;'A and S;'A is seminormal in S;'C. 5) =
4): observe that for each j, j =1, ---,n, the seminormalization of A in
C is contained in the seminormalization of S;'A in S;'C, as it follows by
definition. Therefore we have Aj € CN Ay, N ---N Ag,. By Proposition
113, CNAg N---NAg, = A, thus A is seminormal in C. 4)=1): by
[16, Lemma 1.3], because Z is the conductor of A in C.

Remark 3.4. Let A be a Noetherian domain such that A is an A-
module of finite type and let B, C be two consecutive (Noetherian)
domains of the associated sequence (*). Proposition 3.3 gives, in par-
ticular, equivalent conditions in order that B is seminormal in C.

LEmmA 3.5. Let A, C A, C B be domains and let A, = (A,: ), where
I is a strongly divisorial ideal of A,. If BeSpec A, P2 I, p=BVN A,
T, = A\p and T, = A\, then T{*B = T;'B and the ring obtained from
B by glueing over p e Spec A, coincides with the ring obtained from B by
glueing over P e Spec A,.

Proof. Let’s prove first that T7'B = T;'B. Let x = bs~'e T;'B, with
beB, seT,, If 0£icI\B, bs! = (ib)(is)*e T 'B, because ib e B, ise
SC A, and i€ A\, s€ A\ so isePNA =p. Thus T7'B D T;'B.
The opposite inclusion is trivial. Let’s prove now that T*%B = T;"EB.
Let x = gbs™, with ge®, be B, seT,. Pick as before an element ie
S\B. We have x = bqi(si)~* € Tr'pB because qiep and sie A\p. Thus
T:pB D T;*$B. The opposite inclusion is trivial. Therefore T/ pB =
VT7%9B = v T;"8B = T;'W BB . Recalling now that (A4)), = (A)y (cf.
[7, 1.4, ¢)]), we have that k(p) = R(B) and, by definition of glueing, the

conclusion.

ProposITION 3.6. Let A be a Mori domain such that (A: A*) = (0)
and let (*) be the associated sequence. If, for each i, i =0, ..--,m — 1,
R, = (A;: A,,) s a radical ideal of A,., and if F(A;) = {Biu -+ Binwy)s
then A, is the ring obtained from A, by glueing over p,, = L, NA, - -,
Vincty = gBin(i) naA.
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Proof. We already know according to Proposition 3.3, 1) = 3), that
A, is the ring obtained from A,,, by glueing over R, ---, Biny. Ob-
serving that for each j, j =1, - - -, n(d), B, 2 (A: 4)) (cf. Lemma 3.1), and
applying Lemma 3.5 we arrive at the conclusion.

COROLLARY 3.7. Let A be a Mori domain such that (A: A¥) + (0) and
let (*) be the associated sequence. If, for each i, i=0,---,m —1, &, =
(A;: A,,) is a radical ideal of A,,, then A is obtained from A* by a
finite number of glueings over all the strongly divisorial primz ideals of A.

Proof. The Corollary follows immediately from Proposition 3.6. We
have just to prove that ths set {peSpec A|p = LN A for some i, i =
0,---,m—1, and some Pe F(A,)} is the set of the strongly divisorial
prime ideals of A. If R e F(A,) for some i, by Proposition 3.2, 3), (A: A,)
is a radical ideal of A; and so, by Lemma 3.1, 8 7 (A: A;). Thus we
can apply Proposition 1.10 and conclude that p = LN A is a strongly
divisorial ideal of A. On the other hand, let p be a strongly divisorial
prime ideal of A. If pe #(A), then p ¥ Z, = N{Q; Ve F(A)} = (A: A)
and thus, again by Proposition 1.10 there exists in A, a strongly divi-
sorial prime ideal p, over p. If p, 2 FP(A), then p, D Z, = (A, 4,), thus
there exists in A, a strongly divisorial prime ideal p, over p, (therefore
over p) and so on. Since in A, there are not strongly divisorial prime
ideals at all, there exist i and e S(A4;) such that TN A = p.

THEOREM 3.8. Let A be a Noetherian domain such that A is an A-
module of finite type and let (*) be the associated sequence. Then A is
seminormal if and only if %, = (A;: A;,) is a radical idzal of A,,,, for
each i,1=0,---,m— 1.

Proof. If #, is a radical ideal of A,,, for each i, i=0,---,m — 1,
then, by Proposition 3.3 and Remark 3.4. A, is seminormal in A,,,. Thus,
by [16, Lemma 1.2], we have that A = A, is seminormal in A = A,,.

Conversely, let A be seminormal (in A, = A). We want to prove
that A, _, is seminormal in A,. By Proposition 3.3 (and Remark 3.4), it
is enough to show that, if Pe F(A,.), then B(A, )y is a radical ideal
of S'A,, (where S = A,,_\%). Since, trivially, A is seminormal in A4, _,,
(A: A,_) is a radical ideal of A, _, (cf. [16, Lemma 1.3]), so, by Lzmma
3.1, ¥ B (A A,_). Therefore we can apply Lemma 3.5 and, if p =L N A
and T = A\p, we have T'A, = S~'A,. Moreover A, = (A, _,)y and so
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pA, = B(A,_)s. Thus we have to show that pA, is a radical ideal of
T-*A,. Observe now that, if J=(A:A4,), since PO(A4,_:4,) DO,
p DO J. We claim that p is a minimal over J. If not, we have T q < b,
where q is a strongly divisorial prime of A (cf. Proposition 1.3). If this
is the case, since q 7 (A: A, _,), by Proposition 1.10, there is in A,_, a
strongly divisorial prime ideal £ & B and this is a contradiction, because
dim, A,,_, = 0 (cf. Proposition 3.2, 2)). Thus T-'J = T-'p. Since  is a
radical ideal of A, (cf. again [16, Lemma 1.3]), T°'J = T 'p = pA, is a
radical ideal of T-'A,,.

Remark 3.9. As we recalled, if A is seminormal, (A: A) is a radical
ideal of A (cf. [16, Lemma 1.3]). Observe that Theorem 3.8 provides, for
a Noetherian domain A such that A is an A-module of finite type, a
kind of converse of this result. In order that A is seminormal, it is not
sufficient in general that the conductor (A: A) is radical in A, but it is
sufficient (and necessary) that all the conductors £; = (A;: A;,,), i =
0,---,m — 1, of our sequence are radical in A,,;. Trivially, if m =1 in
the sequence (*), the two conditions ((A: A) radical in A and %, radical
in A,,, for each ¢) are equivalent. A more general result in this spirit
is the following:

ProrosiTioN 3.10. Let A be a Mori domain such that (A: A*) = (0)
and let (¥) be the associated sequence. If (A: A*) is a radical ideal of A
and if dim, A = 0, then m = 1, i.e. the sequence (*) is simply A= A, C
A, = A%

Proof. Since (A: A¥) is radical, (A: A*) = N {$;; 2 € 4}, where taking
only the minimal primes over (A: A*), we can assume, by Proposition
1.3, that all the %, are strongly divisorial primes of A. Since (A: A*) is
the minimum strongly divisorial ideal of A (cf. [3. Proposition 16]) and
any intersection of strongly divisorial primes is a strongly divisorial ideal
(cf. Proposition 1.2), it turns out that (A: A*) is the intersection of all
the strongly divisorial primes of A. However, since by hypothesis there
are not in A non trivial chains of strongly divisorial primes, the set
{B;; 2€ 4} coincides with the set of all the strong maximal divisorial
ideals of A, #(A) which, by Corollary 1.5 and since dim; A = 0, is finite:
By, -+, B} Thus (A:A) =P, N---NP, =%, and A, =(A4:%) = A*.

Remark 3.11. a) Notice that in Proposition 3.10 the hypothesis that
(A: A*) is radical in A is necessary, as Example 1.9, a) shows.
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b) If A is a Mori domain such that (A: A*) £ 0, if (¥) is the as-
sociated sequence, and if dim, A = 0, we deduce easily from Proposition
3.10 that the following conditions are equivalent: '

1) #,=(A;:A,,,) is a radical ideal of A,,,, for each i, i=0, ---
m—1;

i) (A:A*) is a radical ideal of A*.

In fact i) = ii) is an easy consequence of Proposition 3.2, 3) (recalling
that A, = A¥) and ii) = i) is an easy consequence of Proposition 3.10,
noticing that, if (A: A¥) is radical in A*, it is radical in A.

¢) If A is Noetherian, the equivalence of conditions i) and ii) above
gives in particular the following known result: if A is a Nozthsrian
domain (with A = (A: A) # (0)) which satisfies condition (S,) (depth Ay >
inf (2, ht ), for all P e Spec A), then A is seminormal if and only if
(A: A) is a radical ideal of A (cf. [6 Proposition 7.12]). In fact (S,) holds
in the Noetherian domain A if and only if each (0) # 8 e Spec A, such
that depth A, = 1, is of height 1, i.e., by [17, Proposition 1.10, i) & vi)],
if and only if each divisorial prime of A is of height 1. However there
is in A at least one strongly divisorial prime, because A (s A) is not a
Krull domain (cf. [3, Corollary 14]), thus, if (S,) holds in A, dim, A = 0.
Moreover, if A is Noetherian, condition i) above means that A is semi-
normal (cf. Theorem 3.8).

Finally we point out that in the Mori, non-Noetherian case, the
glueings over the strongly divisorial prime ideals of A (of Corollary 3.7)
do not request any algebraic or finiteness condition on the extension k(p)
c S-'B/S-'§ (cf. Definition 2.1), as the simple following examples show:

Exampies 3.12. a) Let A =k -+ Xk[X, Y] where k is a field and
X, Y indeterminates over k, then A is a Mori domain (cf. [4, Example
(4.6), b)]). The associated sequence (*) is simply A = 4, C A, = A* = k[X, Y]
and (4,: A) = Xk[X, Y] is a radical (in fact prime) ideal of A*. A is
obtained from A* by glueing over p = Xk[X, Y]. The transcendence
degree 1 of the extension k C k[Y] in the diagram

A=g(k) —>k

I

A* = E[X, Y] —¢> kY]

corresponds to the contraction of the affine line of generic point XE[X, Y]
€ Spec A* to the point p = XE[X, Y] € Spec A. Outside of p, in the
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complement open set, Spec A and Spec A* are scheme theoretically iso-
morphic.

b) Let A = k[Z] + XYk[X, Y, Z], where k is a field and X, Y, Z in-
determinates over k. Then A is a Mori domain, because A = CN B, N B,,
where C = k[X, Y, Z], B, = k(Z) + Xk[X, Y, Z]x, and B, = k(Z) +
YE[X, Y, Z] .y, are Mori domains (cf. [12, I, Theorem 2] and [2, Proposition
3.4]). The associated sequence (*) is simply A=A, C A, = A* =
k[X, Y, Z] and (A,: A) = XYk[X, Y, Z] is a radical (non prime) ideal of
A* (in fact XYR[X, Y, Z] = Xk[X, Y, ZINYK[X, Y, Z]). The domain A is
obtained from A* by glueing over p = XYk[X, Y, Z].

The two affine planes of generic points P, = Xk[X, Y, Z] and §, =
YE[X, Y, Z] of Spec A* are identified in Spec A in the affine line of
generic point p. Outside of p, in the complement open set, Spsc A and
Spec A* are scheme theoretically isomorphic.

c¢) Let A =k + XR[X] + XYER[X, Y, Z], where &k is a field and X, Y, Z
indeterminates over k. Then A is a Mori domain, because it is not
difficult to show that A = CN B, N B,, where C = k[X, Y, Z], B, = k(Z) +
Xk[X, Y, Z]x, and B, = K(X) + YR[X, Y, Z]+, are Mori domains (cf. [12, 1,
Theorem 2] and [2, Proposition 3.4]). Since p, = Xk[X, Y, Z]x NA =
Xk[X] + XYR[X, Y, Z]1Dp, = YE[X, Y, Z]», N A = XYE[X, Y, Z], by [4,
Theorem (4.3)], {p,} = F(A), and the associated sequence (*) is A = A, C
A = RX] + YR[X, Y, Z] ¢ A, = A* = R[X, Y, Z]. (A,;:A) = Xk[X] +
XYR[X, Y, Z] is a prime ideal of A, and (A,: A,) = Yk[X, Y, Z] is a prime
ideal of A*, Thus A is obtained from A* by glueing over the strongly
divisorial prime ideals of A, p, and p,. The affine plane of generic point
B, = Xk[X, Y, Z] of Spec A* is contracted in Spec A into the point p;;
the affine plane of generic point 8, = YR[X, Y, Z] of Spec A* is contracted
in Spec A into the affine line of generic point p,. Since (A:A*) = p,,
outside of p,, in the complement open set, Spec A and Spec A* are
scheme theoretically isomorphic.
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