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THE MONODROMY REPRESENTATION AND
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To Professor Kyoichi Takano on his seventieth birthday

Abstract. We consider the system F4(a, b, c) of differential equations annihilat-
ing Appell’s hypergeometric series F4(a, b, c;x). We find the integral represen-
tations for four linearly independent solutions expressed by the hypergeometric
series F4. By using the intersection forms of twisted (co)homology groups asso-
ciated with them, we provide the monodromy representation of F4(a, b, c) and
the twisted period relations for the fundamental systems of solutions of F4.

§1. Introduction

Appell’s hypergeometric series F4(a, b, c;x) of variables x= (x1, x2) with

complex parameters a, b, c= (c1, c2) is defined by

F4(a, b, c;x) =
∑

(n1,n2)∈N2

(a,n1 + n2)(b,n1 + n2)

(c1, n1)(c2, n2)(1, n1)(1, n2)
xn1
1 xn2

2 ,

where c1, c2 /∈−N= {0,−1,−2, . . .} and (c1, n1) = c1(c1+1) · · · (c1+n−1) =

Γ (c1 + n1)/Γ (c1). This series converges in the set

D=
{
x ∈C

2
∣∣ √|x1|+

√
|x2|< 1

}
,

satisfies

F4(a, b, c;x) = F4(b, a, c;x),

and admits the integral representations (2.3), (2.4), and (2.5) (see Sec-

tion 2). The system F4(a, b, c) of differential equations annihilating Appell’s

hypergeometric series F4(a, b, c;x) is a holonomic system of rank 4 with

the singular locus S given in (2.1). A fundamental system of solutions of
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F4(a, b, c) in a simply connected domain U in D− S is expressed in terms

of Appell’s hypergeometric series F4 with different parameters (see (2.2) for

their explicit forms).

In this paper, we find the twisted cycles associated with the integrand in

(2.3) which correspond to the solutions (2.2). We evaluate the intersection

numbers of several twisted cycles. By using the intersection numbers, as in

[15] and [17], we provide the monodromy representation of F4(a, b, c) (see

Theorem 4.1). We provide a basis for the twisted cohomology group associ-

ated with the integrand in (2.3), and we evaluate the intersection matrix for

this basis (see Theorem 5.1). By the compatibility of the pairings of twisted

(co)homology groups, we have the identity (6.1) for the intersection matrices

and the period matrices for our bases of twisted (co)homology groups (for

details, refer to Theorem 6.1). This identity implies twisted period relations,

which are quadratic relations between a fundamental system of solutions of

F4 and those of F4 with different parameters. We present some examples

in Corollary 6.1.

There have been several studies of monodromy representations of the

system F4(a, b, c) under the condition

c1, c2, a, a− c1, a− c2, a− c1 − c2, b, b− c1, b− c2, b− c1 − c2 /∈ Z

(see [9], [10], [19]). It is determined in [11] that representation matrices are

valid even when c1, c2 are positive integers and that the system F4(a, b, c)

is irreducible if and only if c1, c2 /∈ Z are removed from the above. Our

expression of the monodromy representation is independent of the choice

of fundamental systems of solutions of F4(a, b, c), and it is valid even in

the case c1, c2 ∈ Z. We represent circuit transforms as matrices by assign-

ing fundamental systems of solutions of F4(a, b, c) (see Corollary 4.1 and

Remark 4.4).

Twisted period relations for Lauricella’s system FD and Appell’s system

F2, F3 are studied in [5] and [14]. We can obtain an explicit form of that

for F4 by evaluating the intersection matrix for the basis of the twisted

cohomology group. We show that the intersection matrix H of twisted

cycles corresponding to the fundamental system of solutions of F4(a, b, c)

in U is diagonal. This fact is key to obtaining several simple formulas for

F4(a, b, c;x) that arise from the identity (6.1). There is another application

of the intersection form of twisted cohomology groups. We have a Pfaffian

system of F4(a, b, c) using it as in [16]. For this, we refer the reader to the

forthcoming paper [8].
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Appell’s system F4(a, b, c) is generalized to Lauricella’s system FC(a, b, c)

of rank 2m withm-variables. A fundamental system of solutions of FC(a, b, c)

near the origin is expressed in terms of Lauricella’s hypergeometric series

FC(a, b, c;x). Their integral representations have been given in [6]; here, 2m

twisted cycles corresponding to them are constructed, and the intersection

numbers of these twisted cycles are evaluated. These results together with

some intersection numbers of twisted closed m-forms imply that there are

twisted period relations for the fundamental systems of FC . Similar results

for Lauricella’s system FA(a, b, c) have been obtained in [7].

§2. Appell’s system F4(a, b, c)

In this section, we collect some facts about Appell’s system F4(a, b, c) of

hypergeometric differential equations annihilating F4(a, b, c;x). (For more

details, see [2].)

Let ∂i (i = 1,2) be the partial differential operator with respect to xi.

The function F4(a, b, c;x) satisfies differential equations[
x1(1− x1)∂

2
1 − x22∂

2
2 − 2x1x2∂1∂2

+
{
c1 − (a+ b+ 1)x1

}
∂1 − (a+ b+ 1)x2∂2 − ab

]
f(x) = 0,[

x2(1− x2)∂
2
2 − x21∂

2
1 − 2x1x2∂1∂2

+
{
c2 − (a+ b+ 1)x2

}
∂2 − (a+ b+ 1)x1∂1 − ab

]
f(x) = 0.

The system generated by them is called Appell’s hypergeometric system

F4(a, b, c) of differential equations. Though the function F4(a, b, c;x) is not

defined for the case c1, c2 ∈−N, the system F4(a, b, c) is defined in this case,

and it is a holonomic system of rank 4 with the singular locus

S =
{
(x1, x2) ∈C

2
∣∣ x1x2R(x) = 0

}
∪L∞,

(2.1)
R(x) = x21 + x22 − 2x1x2 − 2x1 − 2x2 + 1,

where L∞ is the line at infinity in the projective plane P2. We setX = P
2−S.

We denote by F4(a, b, c;U) the vector space of solutions of F4(a, b, c) in a

simply connected domain U ⊂X ∩D.

If c1, c2 /∈ Z, then F4(a, b, c;U) is spanned by

F4(a, b, c;x),

x1−c1
1 F4(a+ 1− c1, b+ 1− c1,2− c1, c2;x),(2.2)
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x1−c2
2 F4(a+ 1− c2, b+ 1− c2, c1,2− c2;x),

x1−c1
1 x1−c2

2 F4(a+ 2− c1 − c2, b+ 2− c1 − c2,2− c1,2− c2;x).

Note that x1−c1
1 and x1−c2

2 are single-valued holomorphic functions in U .

For sufficiently small positive real numbers x1 and x2, F4(a, b, c;x) admits

the following integral representations:

G1

∫
Δ1

t−c1
1 t−c2

2 (1− t1 − t2)
c1+c2−a−2

(
1− x1

t1
− x2

t2

)−b
dt1 ∧ dt2,

(2.3)
c1, c2, a− c1 − c2 /∈ Z,

G2

∫
√
−1R2

x

t−c1
1 t−c2

2 (1− t1 − t2)
c1+c2−a−2

(
1− x1

t1
− x2

t2

)−b
dt1 ∧ dt2,

(2.4)
Re(c1 − a)< 1,Re(c2 − a)< 1,

G3

∫
D
ta−1
1 tb−1

2 (1− t1 + t1t2x2)
c1−a−1(1− t2 + t1t2x1)

c2−b−1 dt1 ∧ dt2,

(2.5)
Re(c1)>Re(a)> 0,Re(c2)>Re(b)> 0.

Here

G1 =
Γ (1− a)

Γ (1− c1)Γ (1− c2)Γ (c1 + c2 − a− 1)
,

G2 =
Γ (c1)Γ (c2)Γ (a− c1 − c2 + 2)

(2π
√
−1)2Γ (a)

,

G3 =
Γ (c1)Γ (c2)

Γ (a)Γ (b)Γ (c1 − a)Γ (c2 − b)
.

In addition, Δ1 is the formal sum

Δ1 =�+
(�1 ×I1)

1− γ−1
1

+
(�2 ×I2)

1− γ−1
2

+
(�3 ×I3)

1− γ1γ2α−1

+
(�1 ×�2)

(1− γ−1
1 )(1− γ−1

2 )
+

(�2 ×�3)

(1− γ−1
2 )(1− γ1γ2α−1)

+
(�3 ×�1)

(1− γ1γ2α−1)(1− γ−1
1 )

of 2-dimensional real surfaces �, with boundary components Ii (i= 1,2,3)

given in Figure 1, where �i (i = 1,2) is a positively oriented circle in the
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Figure 1: Domains of integrals.

ti-space starting from the projection of Ii to this space and surrounding

the divisors ti = 0 and Q(t, x) = t1t2 − t1x2 − t2x1 = 0 for t ∈ Ii, �3 is a

positively oriented circle with a small radius in the orthogonal complement

of the divisor L(t) = 1− t1− t2 = 0 starting from the projection of I3 to this

space and surrounding the divisor, α= e2π
√
−1a, β = e2π

√
−1b, γi = e2π

√
−1ci

(i= 1,2),
√
−1R2

x =
{
(
√
x1,

√
x2) + (s1, s2)

√
−1

∣∣ s1, s2 ∈R
}
⊂C

2, (
√
x1,

√
x2) ∈�,

and D is the bounded connected component of{
(t1, t2) ∈R

2
∣∣ t1, t2,1− t1 + t1t2x2,1− t2 + t1t2x1 > 0

}
(see Figure 1). The argument of each factor of the integrand of (2.3) at any

point t = (t1, t2) ∈ � is 0, that of (2.3) at the starting point of the circle

�i (i = 1,2,3) is 0, that of (2.4) at (t1, t2) = (
√
x1,

√
x2) is 0, and that of

(2.5) at any point t= (t1, t2) ∈D is 0. For these integral representations of

F4(a, b, c;x), we refer the reader to [1], [18], and [3].

For x ∈ U , we set

fi(x) =

∫
Δi

t−c1
1 t−c2

2 (1− t1 − t2)
c1+c2−a−2

(
1− x1

t1
− x2

t2

)−b
dt1 ∧ dt2,

(i= 1, . . . ,5),

(2.6)
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Figure 2: Domains of integrals.

Table 1: Convergence conditions.

f1 c1, c2, a− c1 − c2 /∈ Z

f2 Re(b− c1 + 1), Re(c1 + c2 − a− 1), Re(1− b), Re(a− c1 + 1)> 0

f3 Re(b− c2 + 1), Re(c1 + c2 − a− 1), Re(1− b), Re(a− c2 + 1)> 0

f4 c1, c2, b− c1 − c2 /∈ Z

f5 Re(c1 + c2 − a− 1), Re(1− b)> 0

where Δ2, Δ3, and Δ5 are given in Figure 2, and Δ4 is the image of Δ1

under the involution

ı : (t1, t2) 	→
(x1
t1

,
x2
t2

)
,

on

C
2
x =

{
(t1, t2) ∈C

2
∣∣ t1t2(1− t1 − t2)(t1t2 − t1x2 − t2x1) �= 0

}
.

The conditions for their convergence are as follows in Table 1.

Lemma 2.1. We have

f1(x) =
Γ (1− c1)Γ (1− c2)Γ (c1 + c2 − a− 1)

Γ (1− a)
F4(a, b, c1, c2;x),
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f2(x) =
Γ (a+ 1− c1)Γ (b+ 1− c1)Γ (1− b)Γ (c1 + c2 − a− 1)

Γ (2− c1)Γ (c2)

× e−π
√
−1(c1+c2−a−b)x1−c1

1 F4(a+ 1− c1, b+ 1− c1,2− c1, c2;x),

f3(x) =
Γ (a+ 1− c2)Γ (b+ 1− c2)Γ (1− b)Γ (c1 + c2 − a− 1)

Γ (c1)Γ (2− c2)

× e−π
√
−1(c1+c2−a−b)x1−c2

2 F4(a+ 1− c2, b+ 1− c2, c1,2− c2;x),

f4(x) =
Γ (c1 − 1)Γ (c2 − 1)Γ (1− b)

Γ (c1 + c2 − b− 1)

× x1−c1
1 x1−c2

2 F4(a+ 2− c1 − c2, b+ 2− c1 − c2,2− c1,2− c2;x).

Proof. Note that the first equality is nothing but the integral represen-

tation (2.3). We will show the last equality. The transformation ı satisfies

ı= ı−1, and it implies that

f4 = x1−c1
1 x1−c2

2

×
∫
Δ1

tc1−2
1 tc2−2

2

(
1− x1

t1
− x2

t2

)c1+c2−a−2
(1− t1 − t2)

−b dt1 ∧ dt2

= x1−c1
1 x1−c2

2

Γ (c1 − 1)Γ (c2 − 1)Γ (1− b)

Γ (c1 + c2 − b− 1)

× F4(b+ 2− c1 − c2, a+ 2− c1 − c2,2− c1,2− c2;x).

To obtain the second equality, we use an orientation-reversing transforma-

tion

(s1, s2) 	→ (t1, t2) =
(
x1s1,

1

s2

)
,

which sends the domain D to Δ2. This transformation leads to

f2 =−x1−c1
1

∫
−D

s−c1
1 sc2−2

2

(
1− x1s1 −

1

s2

)c1+c2−a−2

×
(
1− 1

s1
− s2x2

)−b
ds1 ∧ ds2

= x1−c1
1

∫
D
sb−c1
1 sa−c1

2 (s2 − x1s1s2 − 1)c1+c2−a−2

× (s1 − 1− x2s1s2)
−b ds1 ∧ ds2

= e−π
√
−1(c1+c2−a−b)x1−c1

1
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× Γ (b+ 1− c1)Γ (a+ 1− c1)Γ (1− b)Γ (c1 + c2 − a− 1)

Γ (2− c1)Γ (c2)

× F4(b+ 1− c1, a+ 1− c1,2− c1, c2;x)

by (2.5). We can obtain the third equality in a similar way.

§3. Twisted homology group

Below, we will regard the parameters a, b, c1, and c2 as indeterminants,

and we will assume that

(3.1) a,a− c1, a− c2, a− c1 − c2, b, b− c1, b− c2, b− c1 − c2, c1, c2 /∈ Z

when we assign them to complex numbers. Set

λ1 = b− c1 + 1, λ2 = b− c2 + 1, λ3 = c1 + c2 − a− 1, λ4 =−b,

and let C(μ) be the rational function field of μ1 = e2π
√
−1λ1 , . . . , μ4 =

e2π
√
−1λ4 over C.

We define a subset X in (P1 × P1)× P2 by

X=
{
(t, x) ∈C

2 ×X
∣∣ t1t2L(t)Q(t, x) �= 0

}
,

L(t) = 1− t1 − t2, Q(t, x) = t1t2 − t2x1 − t1x2.

There is a natural projection

pr :X � (t, x) 	→ x ∈X;

note that C2
x = pr−1(x) for a fixed x ∈X . Let

u= u(t, x) = tλ1
1 tλ2

2 L(t)λ3Q(t, x)λ4 = tb+1−c1
1 tb+1−c2

2 L(t)c1+c2−a−1Q(t, x)−b

be a function of (t, x) in a simply connected neighborhood of (ṫ, ẋ) = (
√
2,√

2,1,1)/8 ∈ X. Along any path in X starting with (ṫ, ẋ), we can make the

analytic continuation of u. Though this continuation depends on the path,

it is single valued and holomorphic around the endpoint of the path.

Let σ be a k-chain in C
2
x for a fixed x ∈X . We define a twisted k-chain σu

by σ loading a branch of u on it. We denote the C(μ)-vector space of finite

sums of twisted k-chains by Ck(C2
x, u). We define the boundary operator

∂u : Ck(C2
x, u)→Ck−1(C

2
x, u) by

σu 	→ ∂(σ)u|∂(σ) ,
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where ∂ is the usual boundary operator and u|∂(σ) is the restriction of u to

∂(σ). We have a complex

C•(C2
x, u) : · · ·

∂u

−→Ck(C2
x, u)

∂u

−→Ck−1(C
2
x, u)

∂u

−→ · · ·

and its kth homology group Hk(C•(C2
x, u)). Similarly we have a complex

Clf
• (C2

x, u) of locally finite sums of twisted chains and its kth homology

group Hk(Clf
• (C2

x, u)). It is shown in [1] that

Hk

(
C•(C2

x, u)
)
Hk

(
Clf
• (C2

x, u)
)
,

dimC(μ)Hk

(
C•(C2

x, u)
)
=

{
4 if k = 2,

0 otherwise,

for any fixed x ∈X . Thus, we have a map

reg :H2

(
Clf
• (C2

x, u)
)
→H2

(
C•(C2

x, u)
)
,

which is the inverse of the natural map H2(C•(C2
x, u))→H2(Clf

• (C2
x, u)).

We regard the integral (2.6) as the pairing between the form

ϕ1 = d log
( t1
L(t)

)
∧ d log

( t2
L(t)

)
=

dt1 ∧ dt2
t1t2L(t)

andΔi loaded with a branch of u, which represents an element ofH2(Clf
• (C2

x,

u)) (i= 1, . . . ,5). The images of the element above under the map reg will

be denoted by Δu
i ∈H2(C•(C2

x, u)) for i= 1, . . . ,5.

By considering 1/u instead of u, we haveH2(C•(C2
x,1/u)) and its elements

Δ
1/u
1 , . . . ,Δ

1/u
5 . There is the intersection pairing Ih between H2(C•(C2

x, u))

and H2(C•(C2
x,1/u)). It is defined as follows. Let Δu and Δ́1/u be elements

of H2(C•(C2
x, u)) and H2(C•(C2

x,1/u)) given by

Δu =
∑
i∈I

diD
ui
i , Δ́1/u =

∑
j∈J

d́jD́
1/uj

j , di, d́j ∈C(μ),

where Dui
i denotes a singular 2-simplex Di loaded with a branch ui of u.

Then their intersection number is

Ih(Δu, Δ́1/u) =
∑

i∈I,j∈J

∑
p∈Di∩D́j

did́j(Di · D́j)p
ui(p)

uj(p)
,
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where (Di · D́j)p is the topological intersection number of 2-chains Di and

D́j at p. The intersection from Ih is bilinear. Since

Δ1/u =
∑
i∈I

d∨i D
1/ui

i , Δ́u =
∑
j∈J

d́∨j D́
uj

j ,

for the above Δu and Δ́1/u, we have

(3.2) Ih(Δ́u,Δ1/u) = Ih(Δu, Δ́1/u)∨,

where z(μ1, . . . , μ4)
∨ = z(1/μ1, . . . ,1/μ4) for z(μ1, . . . , μ4) ∈C(μ).

Lemma 3.1. The intersection numbers Ih(Δu
i ,Δ

1/u
i ) (i= 1, . . . ,4) are

Ih(Δu
1 ,Δ

1/u
1 ) =

1− (μ1μ4)(μ2μ4)(μ3)

(1− μ1μ4)(1− μ2μ4)(1− μ3)
=

−(1− α)γ1γ2
(α− γ1γ2)(1− γ1)(1− γ2)

,

Ih(Δu
2 ,Δ

1/u
2 ) =

(1− μ1μ4)(1− μ3(μ2μ3μ4)
−1)

(1− μ1)(1− μ4)(1− μ3)(1− (μ2μ3μ4)−1)

=
αβγ1(1− γ1)(1− γ2)

(α− γ1)(α− γ1γ2)(β − γ1)(1− β)
,

Ih(Δu
3 ,Δ

1/u
3 ) =

(1− μ2μ4)(1− μ3(μ1μ3μ4)
−1)

(1− μ2)(1− μ4)(1− μ3)(1− (μ1μ3μ4)−1)

=
αβγ2(1− γ1)(1− γ2)

(α− γ2)(α− γ1γ2)(1− β)(β − γ2)
,

Ih(Δu
4 ,Δ

1/u
4 ) =

1− (μ1μ4)
−1(μ2μ4)

−1(μ4)

(1− (μ1μ4)−1)(1− (μ2μ4)−1)(1− μ4)

=
−(β − γ1γ2)

(1− β)(1− γ1)(1− γ2)
.

Proof. To compute Ih(Δu
1 ,Δ

1/u
1 ), we have only to follow [20, Chapter

VIII, Section 3, Example 3.1], by considering the contribution of the divisor

Q(t, x) = 0. By using the involution ı, we can evaluate Ih(Δu
4 ,Δ

1/u
4 ). For

the rest, transform Δi (i= 2,3) to the domain D in expression (2.5) as in

the proof of Lemma 2.1; regard it as a quadrilateral, and apply [20, Chapter

VIII, Section 3, Example 3.2].

For a small simply connected neighborhood U of ẋ, we have a family⋃
x∈U

H2

(
C•(C2

x, u)
)
,
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which can be naturally identified with F4(a, b, c;U) by (2.6). Since a path

ρx in X connecting ẋ and x defines the isomorphism

(ρx)∗ :H2

(
C•(C2

ẋ, u)
)
→H2

(
C•(C2

x, u)
)
,

we have a local system

H2(X) =
⋃
x∈X

H2

(
C•(C2

x, u)
)

over X . Its stalk over x is denoted by H2(C•(C2
x, u)).

Similarly, we have a local system

H∨
2 (X) =

⋃
x∈X

H2

(
C•(C2

x,1/u)
)

over X with respect to 1/u. The local triviality of these local systems H2(X)

and H∨
2 (X) implies the following.

Proposition 3.1. The intersection number is invariant under the defor-

mation; that is,

Ih
(
(ρx)∗(Δ

u), (ρx)∗(Δ́
1/u)

)
= Ih(Δu, Δ́1/u)

for any Δu ∈H2(C•(C2
ẋ, u)), Δ́

1/u ∈H2(C•(C2
ẋ,1/u)), and any path ρx in X

connecting ẋ and x.

§4. Monodromy representation

A loop ρ in X with base point ẋ induces a linear transformation of the

stalk H2(C•(C2
ẋ, u)) of H2(X) over ẋ. By this correspondence, we have a

homomorphism

M : π1(X, ẋ)→GL
(
H2

(
C•(C2

ẋ, u)
))
,

which is called the monodromy representation of the local system H2(X).

Note that we can regard it as the monodromy representation of the system

F4(a, b, c) by the identification of F4(a, b, c;U) for a small neighborhood

U of ẋ with
⋃

x∈U H2(C•(C2
x, u)). It is shown in [10, Appendix] that the

fundamental group π1(X, ẋ) is generated by three loops ρi : [0,1]→X (i=

1,2,3):

ρ1 : θ 	→
(exp(2π√−1θ)

8
,
1

8

)
,
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ρ2 : θ 	→
(1
8
,
exp(2π

√
−1θ)

8

)
,

ρ3 : θ 	→
(2− exp(2π

√
−1θ)

8
,
2− exp(2π

√
−1θ)

8

)
.

Note that the loop ρi (i = 1,2) turns the divisor xi = 0 positively, and ρ3
turns the divisor R(x) = 0 positively. We put Mi =M(ρi) (i= 1,2,3).

Proposition 4.1. The elements Δu
1 , . . . ,Δ

u
4 span H2(C•(C2

ẋ, u)). With

respect to the basis t(Δu
1 , . . . ,Δ

u
4), M1 and M2 are represented by matrices

diag(1, γ−1
1 ,1, γ−1

1 ) and diag(1,1, γ−1
2 , γ−1

2 ),

respectively, where diag(z1, . . . , zn) denotes the diagonal matrix with diago-

nal entries z1, . . . , zn.

Proof. Recall that the solutions fi are defined by the integrals over Δi in

(2.6) and that they admit local expressions as in Lemma 2.1. We have

t
(
(ρ1)∗(Δ

u
1), . . . , (ρ1)∗(Δ

u
4)
)
= diag(1, γ−1

1 ,1, γ−1
1 )t(Δu

1 , . . . ,Δ
u
4),

t
(
(ρ2)∗(Δ

u
1), . . . , (ρ2)∗(Δ

u
4)
)
= diag(1,1, γ−1

2 , γ−1
2 )t(Δu

1 , . . . ,Δ
u
4),

since the local behavior of fi is the same as that of Δi.

Lemma 4.1. If i �= j (1≤ i, j ≤ 4), then

Ih(Δu
i ,Δ

1/u
j ) = 0.

The intersection matrix H = (Ih(Δu
i ,Δ

1/u
j ))1≤i,j≤4 is a diagonal matrix with

entries as given in Lemma 3.1.

Proof. By Propositions 3.1 and 4.1, we have

Ih(Δu
i ,Δ

1/u
j ) = Ih

(
(ρ1)∗(Δ

u
i ), (ρ1)∗(Δ

1/u
j )

)
= Ih(γ−1

1 Δu
i ,Δ

1/u
j )

= γ−1
1 Ih(Δu

i ,Δ
1/u
j )

for i = 2,4 and j = 1,3. Since γ1 �= 1, Ih(Δu
i ,Δ

1/u
j ) = 0 for i = 2,4 and

j = 1,3. By (3.2), we have Ih(Δu
i ,Δ

1/u
j ) = 0 for i = 1,3 and j = 2,4. To

show that Ih(Δu
i ,Δ

1/u
j ) = 0 for (i, j) = (1,3), (2,4), (3,1), (4,2), use the map

(ρ2)∗.
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Remark 4.1. The eigenspace V u
1 of M1 with eigenvalue 1 is spanned by

Δu
1 and Δu

3 . The eigenspace of M1 with eigenvalue 1/γ1 is characterized by

{
Δu ∈H2

(
C•(C2

ẋ, u)
) ∣∣ Ih(Δu,Δ

1/u
1 ) = Ih(Δu,Δ

1/u
3 ) = 0

}
.

The eigenspace V u
2 of M2 with eigenvalue 1 is spanned by Δu

1 and Δu
2 . The

eigenspace of M2 with eigenvalue 1/γ2 is characterized by

{
Δu ∈H2

(
C•(C2

ẋ, u)
) ∣∣ Ih(Δu,Δ

1/u
1 ) = Ih(Δu,Δ

1/u
2 ) = 0

}
.

Note that the linear transformation Mi (i= 1,2) is determined by the sub-

space V u
i , the eigenvalue 1/γi, and the intersection form Ih, under the con-

dition ci /∈ Z when we assign complex values to the parameters.

We characterize the linear transformation M3 by determining its eigen-

values and eigenspaces. The following is the key lemma of this section.

Lemma 4.2. We have

M3(Δ
u
5) =−μ3μ4Δ

u
5 =−γ1γ2

αβ
Δu

5 , M3(Δ
u) =Δu

for any Δu ∈ (Δ
1/u
5 )⊥ = {Δu ∈H2(C•(C2

ẋ, u)) | Ih(Δu,Δ
1/u
5 ) = 0}.

Proof. We express Δ5 in terms of the coordinates s = (s1, s2) = (t1/x1,

t2/x2). Since L(t) and Q(t, x) are expressed as

1− s1x1 − s2x2, x1x2(s1s2 − s1 − s2),

in terms of these coordinates, we set

L(s,x) = 1− s1x1 − s2x2, Q(s) = s1s2 − s1 − s2.

The intersection points P1 and P2 of the curves defined by L(s,x) = 0 and

Q(s) = 0 are

(1 + x1 − x2 +
√
R(x)

2x1
,
1− x1 + x2 −

√
R(x)

2x2

)
,

(1 + x1 − x2 −
√
R(x)

2x1
,
1− x1 + x2 +

√
R(x)

2x2

)
.
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Figure 3: Cycles Δ5, . . . ,Δ8.

Note that R(x) = 1− 4x1 for x= (x1, x1) ∈ ρ3. When x1 = x2 = 1/4, R(x)

vanishes and Q(s) = 0 is tangent to L(s,x) = 0. For ẋ= (1/8,1/8), we regard

Δ5 as ⋃
y∈l(ẋ1)

�(y),

where l(ẋ1) is the segment connecting 1/4 and ẋ1 = 1/8, and �(y) is the

segment connecting the intersection points of L(s,x) = 0 and Q(s) = 0 for

x= (y, y) with y ∈ l(ẋ1) (see Figure 3). For a fixed x= (x1, x1) in the loop

ρ3, the segment l(x1) is expressed as

1

4
+
(
x1 −

1

4

)
q1

by a parameter q1 ∈ [0,1]. For an element y = 1/4+(x1−1/4)q1 ∈ l(x1), the

segment �(y) is expressed as

P1(y) +
(
P2(y)− P1(y)

)
q2,

by a parameter q2 ∈ [0,1], where P1(y) and P2(y) are the intersection points

P1 and P2 for x= (y, y). Hence, Δ5 is expressed by (q1, q2) ∈ [0,1]× [0,1] as
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(s1, s2) =
(2(1 + (1− 2q2)

√
(1− 4x1)q1)

1− (1− 4x1)q1
,
2(1− (1− 2q2)

√
(1− 4x1)q1)

1− (1− 4x1)q1

)
(4.1)

for a fixed x= (x1, x1) in the loop ρ3.

By the continuation of
√
1− 4x1 along the loop ρ3, its sign changes. We

regard this sign change in the deformation of Δ5 along ρ3 as a bijection of

Δ5 with the reversing orientation given by

r : [0,1]× [0,1] � (q1, q2) 	→ (q1,1− q2) ∈ [0,1]× [0,1].

We deform the pullbacks of s1, s2, L(s,x), and Q(s) to [0,1]× [0,1] by

(4) along ρ3 and apply r to them. It is easy to see that those of s1 and s2
are invariant under the deformation and the action. Since those of L(s,x)

and Q(s) are expressed as

(1− q1)(1− 4x1)

1− (1− 4x1)q1
,

16q1q2(1− q2)(1− 4x1)

(1− q1(1− 4x1))2
,

their arguments increase by 2π under the deformation, and they are invari-

ant under r. Thus, the pullback of sλ1
1 sλ2

2 L(s,x)λ3Q(s)λ4 to [0,1]× [0,1] by

(4) is multiplied by μ3μ4 under the deformation along ρ3 and the action r.

By considering the orientation of Δ5, we have

M3(Δ
u
5) =−μ3μ4Δ

u
5 .

It is easy to see by Figure 3 that three chambers

Δ6 =
{
(s1, s2) ∈R

2
∣∣ s1, s2 < 0

}
,

Δ7 =
{
(s1, s2) ∈R

2
∣∣ s1,Q(s)> 0, s2 < 0

}
,

Δ8 =
{
(s1, s2) ∈R

2
∣∣ s2,Q(s)> 0, s1 < 0

}
are invariant under the deformation along ρ3. Thus, the elements Δu

i (i=

6,7,8) of H2(C•(C2
ẋ, u)) corresponding to Δi are eigenvectors of M3 with

eigenvalue 1. Since they do not intersect Δ5 topologically, they belong to

(Δ
1/u
5 )⊥. To show that they are linearly independent, we compute the inter-

section numbers Hij = Ih(Δu
i ,Δ

1/u
j ) (6≤ i, j ≤ 8).
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By using results of [13, Sections 3, 4], we have the following.

H66 = 1+
1

μ0 − 1
+

1

μ1 − 1
+

1

μ2 − 1
+

μ12 − 1

(μ124 − 1)(μ1 − 1)(μ2 − 1)

+
μ01 − 1

(μ014 − 1)(μ0 − 1)(μ1 − 1)
+

μ02 − 1

(μ024 − 1)(μ0 − 1)(μ2 − 1)
,

H67 =− 1

μ1 − 1

(
1 +

1

μ124 − 1
+

1

μ014 − 1

)
,

H68 =− 1

μ2 − 1

(
1 +

1

μ124 − 1
+

1

μ024 − 1

)
,

H77 = 1+
1

μ1 − 1
+

1

μ4 − 1
+

μ14 − 1

(μ124 − 1)(μ1 − 1)(μ4 − 1)

+
μ14 − 1

(μ014 − 1)(μ1 − 1)(μ4 − 1)
,

H78 =− μ1μ4

(μ4 − 1)(μ124 − 1)
,

H88 = 1+
1

μ2 − 1
+

1

μ4 − 1
+

μ24 − 1

(μ124 − 1)(μ2 − 1)(μ4 − 1)

+
μ24 − 1

(μ024 − 1)(μ2 − 1)(μ4 − 1)
,

and Hji =H∨
ij for 6≤ i < j ≤ 8, where

μ0 =
1

μ1μ2μ3μ2
4

= α, μij = μiμj , μijk = μiμjμk.

Since

det(Hij)6≤i,j≤8

=
β2(α− γ1γ2)

2(αβ + γ1γ2)

(α− 1)(α− γ1)(α− γ2)(β − 1)2(β − γ1)(β − γ2)(β − γ1γ2)
,

if αβ+γ1γ2 �= 0 when we assign complex values to the parameters, then they

span the eigenspace of M3 with eigenvalue 1 and the space (Δ
1/u
5 )⊥.

To represent M3 by a matrix, we express Δu
5 by a linear combination of

Δu
1 , . . . ,Δ

u
4 .
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Lemma 4.3. We have

Ih(Δu
5 ,Δ

1/u
1 ) =

1− (μ1μ4)(μ2μ4)(μ3)

(1− μ1μ4)(1− μ2μ4)(1− μ3)
=

−(1− α)γ1γ2
(α− γ1γ2)(1− γ1)(1− γ2)

,

Ih(Δu
5 ,Δ

1/u
2 ) = Ih(Δu

5 ,Δ
1/u
3 ) =

μ3μ4

(1− μ3)(1− μ4)
=

−γ1γ2
(α− γ1γ2)(1− β)

,

Ih(Δu
5 ,Δ

1/u
4 ) =

1− (μ1μ4)
−1(μ2μ4)

−1(μ4)

(1− (μ1μ4)−1)(1− (μ2μ4)−1)(1− μ4)

=
−(β − γ1γ2)

(1− β)(1− γ1)(1− γ2)
.

The twisted cycle Δu
5 is expressed as

Δu
1 −

γ2(α− γ1)(β − γ1)

αβ(1− γ1)(1− γ2)
Δu

2 −
γ1(α− γ2)(β − γ2)

αβ(1− γ1)(1− γ2)
Δu

3 +Δu
4 ,

which leads to

Ih(Δu
5 ,Δ

1/u
5 ) =

1+ μ3μ4

(1− μ3)(1− μ4)
=

−(αβ + γ1γ2)

(α− γ1γ2)(1− β)
.

Proof. By the results in [20, Chapter VIII, Section 3.4], we can compute

the intersection numbers Ih(Δu
5 ,Δ

1/u
i ) for i= 2,3. Among the components

of Δ1, only � intersects with
√
−1R2

x at (
√
x1,

√
x2). Since their topological

intersection number at this point is −1, we have

(
√
−1R2

x)
1/u =

(1− γ1)(1− γ2)(α− γ1γ2)

(1− α)γ1γ2
Δ

1/u
1

by (2.4). This implies that

Ih(Δu
5 ,Δ

1/u
1 ) =

−(1− α)γ1γ2
(α− γ1γ2)(1− γ1)(1− γ2)

.

We can evaluate the intersection number Ih(Δu
5 ,Δ

1/u
4 ) in a similar way.

Lemma 4.1 together with Lemma 3.1 implies the expression of Δu
5 as a

linear combination of Δu
i (i= 1, . . . ,4).

Remark 4.2.

(i) The eigenspace of M3 with eigenvalue 1 is characterized by Δu
5 and the

intersection form Ih.
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(ii) If αβ+γ1γ2 = 0, then Ih(Δu
5 ,Δ

1/u
5 ) = 0. In this case, the 3-dimensional

space (Δ
1/u
5 )⊥ contains the cycle Δu

5 and coincides with the eigenspace

of M3 with eigenvalue 1. Since H2(C•(C2
ẋ, u)) is not spanned by eigen-

vectors of M3, its representation is not diagonalizable.

Proposition 4.2. With respect to the basis t(Δu
1 ,Δ

u
2 ,Δ

u
3 ,Δ

u
4), M3 is

represented by the matrix

id4−(1 + γ1γ2α
−1β−1)

Hte∨5 e5
e5Hte∨5

= id4−
(β − 1)(α− γ1γ2)

αβ
Hte∨5 e5,

where id4 is the unit matrix of size 4, and

e5 =
(
1,−γ2(α− γ1)(β − γ1)

αβ(γ2 − 1)(γ1 − 1)
,−γ1(α− γ2)(β − γ2)

αβ(γ2 − 1)(γ1 − 1)
,1
)
,

e∨5 =
(
1,− (α− γ1)(β − γ1)

γ1(γ1 − 1)(γ2 − 1)
,− (α− γ2)(β − γ2)

γ2(γ1 − 1)(γ2 − 1)
,1
)
,

corresponding to Δu
5 and Δ

1/u
5 by the expression in Lemma 4.3.

Proof. We set M = id4−(1 + γ1γ2α
−1β−1)Hte∨5 (e5H

te∨5 )
−1e5. Since

Ih(Δu,Δ
1/u
5 ) = (d1, . . . , d4)H

te∨5 ,

for Δu = (d1, . . . , d4)
t(Δu

1 ,Δ
u
2 ,Δ

u
3 ,Δ

u
4), we have

e5M = e5 − (1 + γ1γ2α
−1β−1)e5H

te∨5 (e5H
te∨5 )

−1e5 =−γ1γ2
αβ

e5,

(d1, . . . , d4)M = (d1, . . . , d4),

for (d1, . . . , d4) satisfying (d1, . . . , d4)H
te∨5 = 0. Thus, the eigenvalues of

M are −γ1γ2/(αβ) and 1, e5 is an eigenvector with eigenvalue −γ1γ2/(αβ),

and the eigenspace with eigenvalue 1 is characterized by the equality

(d1, . . . , d4)H
te∨5 = 0. Since e5 corresponds to Δ5 and (d1, . . . , d4)H

te∨5 =

Ih(Δu,Δ
1/u
5 ) for Δu = d1Δ

u
1 + · · ·+ d4Δ

u
4 , the linear transformation repre-

sented by M coincides with M3 by Lemma 4.2. Note that

1 + γ1γ2α
−1β−1

e5Hte∨5
=

(β − 1)(α− γ1γ2)

αβ

by Lemma 4.3. The representation matrix of M3 on the right-hand side is

valid even in the case αβ + γ1γ2 = 0.
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Note that M1,M2, and M3 are represented by the matrices in Proposi-

tions 4.1 and 4.2 with respect to the basis t(Δu
1 ,Δ

u
2 ,Δ

u
3 ,Δ

u
4). However, this

basis degenerates when we assign an integer to ci (i= 1,2). For example, if

c1 = 1, then γ1 = 1 and M1 is represented by the unit matrix; we see that

this expression is not valid in this case. Hence, we give expressions of M1,

M2, and M3 in terms of the intersection form Ih, which are independent of

the choice of a basis of H2(C•(C2
ẋ, u)) and are valid even for integer values of

c1, c2. As we have mentioned in Remarks 4.1 and 4.2, Mi are determined by

the eigenspaces V u
1 , V u

2 , the eigenvector Δu
5 , and the intersection form Ih.

We take a basis of H2(C•(C2
ẋ, u)) consisting of bases of these subspaces. We

set

Δ̂u
1234 =

t(Δ̂u
1 , Δ̂

u
2 , Δ̂

u
3 , Δ̂

u
4) = P t(Δu

1 ,Δ
u
2 ,Δ

u
3 ,Δ

u
5),

where

P =

⎛
⎜⎜⎜⎜⎝

αβ(1−γ1)(1−γ2)
(1−α)(1−β)γ1γ2

0 0 0

−αβ(1−γ2)
(1−α)(1−β)γ2

γ1
1−γ1

0 0

−αβ(1−γ1)
(1−α)(1−β)γ1

0 γ2
1−γ2

0

0 0 0 1

⎞
⎟⎟⎟⎟⎠ .

Lemma 4.4. The integrals

f̂(x) =

∫
Δ̂i

u(t, x)ϕ1 (i= 1,2,3)

are well defined even in the case c1, c2 ∈ Z when we assign complex values

to the parameters.

Proof. By Lemma 2.1, we have

f̂1(x) =G4

∑
n∈N2

Γ (a+ n1 + n2)Γ (b+ n1 + n2)

Γ (c1 + n1)Γ (c2 + n2)Γ (1 + n1)Γ (1 + n2)
xn1
1 xn2

2 ,

f2(x) =G4

∑
n∈N2

Γ (a+ 1− c1 + n1 + n2)Γ (b+ 1− c1 + n1 + n2)

Γ (2− c1 + n1)Γ (c2 + n2)Γ (1 + n1)Γ (1 + n2)
xn1+1−c1
1 xn2

2 ,

f3(x) =G4

∑
n∈N2

Γ (a+ 1− c2 + n1 + n2)Γ (b+ 1− c2 + n1 + n2)

Γ (c1 + n1)Γ (2− c2 + n2)Γ (1 + n1)Γ (1 + n2)
xn1
1 xn2+1−c2

2 ,

f̂2(x) =G4
γ1

1− γ1

(
f2(x)− f̂1(x)

)
,
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f̂3(x) =G4
γ2

1− γ2

(
f3(x)− f̂1(x)

)
,

where G4 = Γ (1− b)Γ (c1+ c2−a−1)eπ
√
−1(a+b−c1−c2). It is clear that f̂1(x)

is well defined for c1, c2 ∈ Z. We claim that

lim
c1→m

f2(x)− f̂1(x)

c1 −m

converges to a nonzero function for any m ∈ Z. Let m be a fixed integer,

and put c1 =m− ε. Then f2(x)/G4 is

∑
n′
1≥1−m
n2≥0

Γ (a+ n′
1 + n2 + ε)Γ (b+ n′

1 + n2 + ε)

Γ (1 + n′
1 + ε)Γ (c2 + n2)Γ (n′

1 +m)Γ (1 + n2)
x
n′
1+ε

1 xn2
2 ,

where n′
1 = n1 + 1−m. If m≥ 2, then we have

lim
ε→0

1

Γ (1 + n′
1 + ε)

= 0

for 1−m≤ n′
1 < 0. If m≤ 0, then the terms 1/Γ (c1+n1) (0≤ n1 ≤−m) in

the series expressing f̂1(x) converge to 0 as c1 →m. Thus, f2(x) converges

to f̂1(x) with c1 =m as ε→ 0. Since the poles of the Γ -function are simple,

we have this claim. Similarly, we can show that f̂3(x) is well defined for

c1, c2 ∈ Z.

The intersection matrix Ĥ = (Ih(Δ̂u
i , Δ̂

1/u
j ))1≤i,j≤4 is given by

⎛
⎜⎜⎜⎜⎜⎝

−αβ(1−γ1)(1−γ2)
(1−α)(α−γ1γ2)(1−β)2

−αβ(1−γ2)
(1−α)(α−γ1γ2)(1−β)2

αβγ1(1−γ2)
(1−α)(α−γ1γ2)(1−β)2

αβ(αβ−γ1)γ1(1−γ2)
(1−α)(α−γ1)(α−γ1γ2)(1−β)2(β−γ1)

αβ(1−γ1)γ2
(1−α)(α−γ1γ2)(1−β)2

αβγ2
(1−α)(α−γ1γ2)(β−1)2

−γ1γ2
(α−γ1γ2)(1−β) 0

−αβ(1−γ1)
(1−α)(α−γ1γ2)(1−β)2

−αβ
(α−γ1γ2)(1−β)

αβγ1
(1−α)(α−γ1γ2)(1−β)2

0

αβ(αβ−γ2)(1−γ1)γ2
(1−α)(α−γ2)(α−γ1γ2)(β−1)2(β−γ2)

0

0 −(αβ+γ1γ2)
(α−γ1γ2)(1−β)

⎞
⎟⎟⎟⎟⎟⎠ ,

https://doi.org/10.1215/00277630-2873714 Published online by Cambridge University Press

https://doi.org/10.1215/00277630-2873714


PERIOD RELATIONS FOR F4 81

and its determinant is

α3β3(β − γ1γ2)γ
2
1γ

2
2

(1− α)(α− γ1)(α− γ2)(α− γ1γ2)3(1− β)5(β − γ1)(β − γ2)
.

Let Ĥ12 (resp., Ĥ13) be the submatrix of Ĥ made by entries (1,1), (1,2),

(2,1), and (2,2) (resp., (1,1), (1,3), (3,1), and (3,3)).

Theorem 4.1. The linear transformations Mi = M(ρi) (i = 1,2,3) of

H2(C•(C2
ẋ, u)) are expressed as

M1(Δ
u) =

1

γ1
Δu +

(
1− 1

γ1

)(
Ih(Δu, Δ̂

1/u
1 ),Ih(Δu, Δ̂

1/u
3 )

)
(Ĥ13)

−1

(
Δ̂u

1

Δ̂u
3

)
,

M2(Δ
u) =

1

γ2
Δu +

(
1− 1

γ2

)(
Ih(Δu, Δ̂

1/u
1 ),Ih(Δu, Δ̂

1/u
2 )

)
(Ĥ12)

−1

(
Δ̂u

1

Δ̂u
2

)
,

M3(Δ
u) =Δu −

(
1 +

γ1γ2
αβ

)Ih(Δu,Δ
1/u
5 )

Ih(Δu
5 ,Δ

1/u
5 )

Δu
5

=Δu − (β − 1)(α− γ1γ2)

αβ
Ih(Δu,Δ

1/u
5 )Δu

5 .

Proof. By Proposition 4.1 and Lemma 4.1, the eigenspace of M1 with

eigenvalue 1 is spanned by Δu
1 and Δu

3 , and that with eigenvalue γ−1
1 is its

orthogonal complement

{
Δu ∈H2

(
C•(C2

ẋ, u)
) ∣∣ Ih(Δu,Δ

1/u
1 ) = Ih(Δu,Δ

1/u
3 ) = 0

}
.

The elements Δ̂u
1 and Δ̂u

3 belong to the eigenspace of M1 with eigenvalue 1,

and they are linearly independent. Set

M′
1(Δ

u) =
1

γ1
Δu +

(
1− 1

γ1

)(
Ih(Δu, Δ̂

1/u
1 ),Ih(Δu, Δ̂

1/u
3 )

)
(Ĥ13)

−1

(
Δ̂u

1

Δ̂u
3

)
.

We can easily check that

M′
1(Δ

u) =

{
Δ̂u

i if Δu = Δ̂u
i (i= 1,3),

1
γ1
Δu if Ih(Δu, Δ̂

1/u
1 ) = Ih(Δu, Δ̂

1/u
3 ) = 0,
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by the property(
Ih(Δu, Δ̂

1/u
1 ),Ih(Δu, Δ̂

1/u
3 )

)
(Ĥ13)

−1

=

⎧⎪⎨
⎪⎩
(1,0) if Δu = Δ̂u

1 ,

(0,1) if Δu = Δ̂u
3 ,

(0,0) if Ih(Δu, Δ̂
1/u
1 ) = Ih(Δu, Δ̂

1/u
3 ) = 0.

Since the eigenvalues and eigenspaces of M1 coincide with those of M′
1, we

have M1 =M′
1. We obtain the expression of M2 in a similar way. Set

M′
3(Δ

u) =Δu −
(
1 +

γ1γ2
αβ

)Ih(Δu,Δ
1/u
5 )

Ih(Δu
5 ,Δ

1/u
5 )

Δu
5 .

By the property

Ih(Δu,Δ
1/u
5 )

Ih(Δu
5 ,Δ

1/u
5 )

=

{
1 if Δu =Δu

5 ,

0 if Δu ∈ (Δ
1/u
5 )⊥,

we see that

M′
3(Δ

u) =

{
−γ1γ2

αβ Δu
5 if Δu =Δu

5 ,

Δu if Δu ∈ (Δ
1/u
5 )⊥,

which shows that M3 =M′
3 by Lemma 4.2. The second expression of M3

is obtained by the equality

Ih(Δu
5 ,Δ

1/u
5 ) =

−(αβ + γ1γ2)

(α− γ1γ2)(1− β)

in Lemma 4.3.

Remark 4.3.

(i) We note that when we assign integers to c1 and c2, although Δu
1 , Δ

u
2 ,

and Δu
3 are linearly dependent, Δ̂u

1 , Δ̂
u
2 , and Δ̂u

3 remain linearly inde-

pendent.

(ii) Since we have

(Ĥ12)
−1 =

(α− γ1γ2)(1− β)

αβγ21(1− γ2)

×
(

(αβ − γ1)γ1 (α− γ1)(β − γ1)

−(α− γ1)(β − γ1)γ1 −(α− γ1)(β − γ1)(1− γ1)

)
,
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(Ĥ13)
−1 =

(α− γ1γ2)(1− β)

αβ(1− γ1)γ22

×
(

(αβ − γ2)γ2 (α− γ2)(β − γ2)

−(α− γ2)(β − γ2)γ2 −(α− γ2)(β − γ2)(1− γ2)

)
,

the factors 1− γ1 and 1− γ2 are canceled in the expression of M1 and

M2. Theorem 4.1 is valid even in the case c1, c2, a+b−c1−c2−(1/2) ∈ Z

when we assign complex values to the parameters.

Corollary 4.1. The linear transformations Mi (i = 1,2,3) are repre-

sented by matrices Mi with respect to the basis Δ̂u
1234 =

t(Δ̂u
1 , . . . , Δ̂

u
4) as

Mi(Δ̂
u
1234) =MiΔ̂

u
1234, where

M1 =
1

γ1
id4+

(
1− 1

γ1

)
Ĥ(te1,

te3)(Ĥ13)
−1

(
e1
e3

)

=

⎛
⎜⎜⎜⎝

1 0 0 0

1 1
γ1

0 0

0 0 1 0
αβ−γ2
αβ 0 (α−γ2)(β−γ2)

αβγ2
1
γ1

⎞
⎟⎟⎟⎠ ,

M2 =
1

γ2
id4+

(
1− 1

γ2

)
Ĥ(te1,

te2)(Ĥ12)
−1

(
e1
e2

)

=

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

1 0 1
γ2

0
αβ−γ1
αβ

(α−γ1)(β−γ1)
αβγ1

0 1
γ2

⎞
⎟⎟⎟⎠ ,

M3 = id4−
(
1 +

γ1γ2
αβ

)Ĥte4e4

e4Ĥte4
=

⎛
⎜⎜⎝
1 0 0 −1

0 1 0 0

0 0 1 0

0 0 0 −γ1γ2
αβ

⎞
⎟⎟⎠ ,

and ei is the ith unit row vector of Z4.

Proof. The matrix M3 is obtained in the same way as in the proof of

Proposition 4.2. By the expression of M1 in Theorem 4.1, we give its repre-

sentation matrix with respect to the basis Δ̂u
1234. Set Δ

u = (d1, . . . , d4)Δ̂
u
1234.

Since

Ih(Δu, Δ̂
1/u
i ) = (d1, . . . , d4)Ĥ

tei (i= 1, . . . ,4),
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we have (
Ih(Δu, Δ̂

1/u
1 ),Ih(Δu, Δ̂

1/u
3 )

)
= (d1, . . . , d4)Ĥ(te1,

te3).

Note that (
Δ̂u

1

Δ̂u
3

)
=

(
e1
e3

)
Δ̂u

1234.

Thus, we have

(
Ih(Δu, Δ̂

1/u
1 ),Ih(Δu, Δ̂

1/u
3 )

)
(Ĥ13)

−1

(
Δ̂u

1

Δ̂u
3

)

= (d1, . . . , d4)Ĥ(te1,
te3)(Ĥ13)

−1

(
e1
e3

)
Δ̂u

1234,

which implies that M1 is the representation matrix of M1. We obtain the

matrix M2 in a similar way.

Remark 4.4. With respect to the basis P ′t(Δu
1 ,Δ

u
2 ,Δ

u
3 ,Δ

u
4) ofH2(C•(C2

ẋ,

u)) for

P ′ =

⎛
⎜⎜⎜⎜⎜⎝

αβ(1−γ1)(1−γ2)
(1−α)(1−β)γ1γ2

0 0 0

−αβ(1−γ2)
(1−α)(1−β)γ2

γ1
1−γ1

0 0

−αβ(1−γ1)
(1−α)(1−β)γ1

0 γ2
1−γ2

0
αβ

(1−α)(1−β)
−γ1γ2

(1−γ1)(1−γ2)
−γ1γ2

(1−γ1)(1−γ2)
αβγ1γ2

(α−γ1γ2)(β−γ1γ2)

⎞
⎟⎟⎟⎟⎟⎠ ,

M1, M2, and M3 are represented by matrices⎛
⎜⎜⎝
1 0 0 0

1 γ−1
1 0 0

0 0 1 0

0 0 1 γ−1
1

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝
1 0 0 0

0 1 0 0

1 0 γ−1
2 0

0 1 0 γ−1
2

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎜⎝
−γ1γ2

αβ
γ1γ2
αβ − 1

γ1
γ1γ2
αβ − 1

γ2
− (α−γ1γ2)(β−γ1γ2)

αβγ1γ2

0 1 0 0

0 0 1 0

0 0 0 1

⎞
⎟⎟⎟⎠ ,

respectively. These representations of Mi are also valid even in the case

c1, c2, a + b − c1 − c2 − (1/2) ∈ Z when we assign complex values to the

parameters.
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§5. Twisted cohomology group

Recall that

λ1 = b+ 1− c1, λ2 = b+ 1− c2,

λ3 =−a+ c1 + c2 − 1, λ4 =−b,

X=
{
(t, x) ∈C

2 ×X
∣∣ t1t2L(t)Q(t, x) �= 0

}
⊂ (P1 × P

1)× P
2,

C
2
x = pr−1(x), pr :X � (t, x) 	→ x ∈X.

In this section, we regard vector spaces as defined over the rational func-

tion field C(λ) = C(λ1, . . . , λ4) = C(a, b, c1, c2). We denote the vector space

of rational functions on P
2 with poles only along S by OX(∗S). Note that

OX(∗S) admits the structure of an algebra over C(λ). We set

S= (P1 × P
1)× P

2 −X.

Let Ωk
X(∗S) be the vector space of rational k-forms on X with poles only

along S, and let Ωp,q
X

(∗S) be the subspace of Ωp+q
X

(∗S) consisting of ele-

ments that are p-forms with respect to the variables t1, t2. We set

ω = dt log
(
u(t, x)

)
= λ1

dt1
t1

+ λ2
dt2
t2

+ λ3
dtL(t)

L(t)
+ λ4

dtQ(t, x)

Q(t, x)
∈Ω1,0

X
(∗S),

where dt is the exterior derivative with respect to the variables t1, t2. Note

that

dtL(t) =−dt1 − dt2, dtQ(t, x) = (t2 − x2)dt1 + (t1 − x1)dt2.

By a twisted exterior derivative ∇= dt+ω∧ on X, we define quotient spaces

Hk(∇) = ker
(
∇ :Ωk,0

X
(∗S)→Ωk+1,0

X
(∗S)

)
/∇

(
Ωk−1,0

X
(∗S)

)
(k = 0,1,2),

where we regard Ω−1,0
X

(∗S) as the zero vector space. Each of them admits

the structure of a vector bundle over X .

We consider the structure of the fiber of Hk(∇) at x. Let Ωp
C2
x
(∗x) be the

vector space of rational p-forms on C
2
x with poles only along the pole divisor

of the pullback ωx = ı∗x(ω) of ω by the map ıx :C
2
x →X. There is a natural

map from each fiber of Hk(∇) at x to the rational twisted cohomology group

Hk
(
Ω•

C2
x
(∗x),∇x

)
= ker

(
∇x :Ω

k
C2
x
(∗x)→Ωk+1

C2
x
(∗x)

)
/∇x

(
Ωk−1

C2
x
(∗x)

)
on C

2
x with respect to the twisted exterior derivative ∇x = dt + ωx∧.
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Facts 5.1 ([1], [4]).

(i) We have

dimHk
(
Ω•

C2
x
(∗x),∇x

)
=

{
4 if k = 2,

0 if k = 0,1.

(ii) There is a canonical isomorphism

jx :H
2
(
Ω•

C2
x
(∗x),∇x

)
→H2

(
E•
c (x),∇x

)
= ker

(
∇x : E2

c (x)→E3
c (x)

)
/∇x

(
E1
c (x)

)
,

where Ek
c (x) is the vector space of smooth k-forms with compact support

in C
2
x.

We have a twisted exterior derivative ∇∨ = dt − ω∧ for −ω and

H2(∇∨) =Ω2,0
X

(∗S)/∇∨(Ω1,0
X

(∗S)
)
,

H2
(
Ω•

C2
x
(∗x),∇∨

x

)
=Ω2

C2
x
(∗x)/∇∨

x

(
Ω1

C2
x
(∗x)

)
.

The OX(∗S)-module H2(∇∨) can be regarded as a vector bundle over X .

For any fixed x ∈X , we define the intersection form betweenH2(Ω•
C2
x
(∗x),

∇) and H2(Ω•
C2
x
(∗x),∇∨) by

Ic(ϕx,ϕ
′
x) =

∫
C2
x

jx(ϕx)∧ϕ′
x ∈C(α),

where ϕx,ϕ
′
x ∈Ω2

C2
x
(∗x), jx is given in Fact 5.1. This integral converges since

jx(ϕx) is a smooth 2-form on C
2
x with compact support. It is bilinear over

C(α).

We take four elements

ϕ1 = dt log

(
t1

L(t)

)
∧ dt log

(
t2

L(t)

)
=

dt1 ∧ dt2
t1t2L(t)

,

ϕ2 = dt log(t2)∧ dt log
(
L(t)

)
=

dt1 ∧ dt2
t2L(t)

,

ϕ3 =−dt log(t1)∧ dt log
(
L(t)

)
=

dt1 ∧ dt2
t1L(t)

,

ϕ4 =
t1 ∧ t2

L(t)Q(t, x)

of H2(∇), and we denote ı∗x(ϕi) ∈H2(Ω•
C2
x
(∗x),∇x) by ϕx,i. Since ∇∨(ϕi) =

0, ∇∨
x (ϕx,i) = 0, we can regard ϕi and ϕx,i as elements of H2(∇∨) and

H2(Ω•
C2
x
(∗x),∇∨

x ), respectively. The intersection numbers Ic(ϕx,i,ϕx,j)
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(ϕx,i ∈ H2(Ω•
C2
x
(∗x),∇x), ϕx,j ∈ H2(Ω•

C2
x
(∗x),∇∨

x ) 1 ≤ i, j ≤ 4) are evalu-

ated as follows.

Theorem 5.1. The intersection matrix (Ic(ϕx,i,ϕx,j))1≤i,j≤4 is

(2π
√
−1)2C, where C is a symmetric matrix with entries

C11 =
( 1

λ1
+

1

λ2

)( 1

λ3
+

1

λ124

)

=
(−a+ 1+ b)(2b− c1 − c2 + 2)

(−a+ c1 + c2 − 1)(b− c1 + 1)(b− c2 + 1)(b− c1 − c2 + 2)
,

C12 =
1

λ2λ3
=

1

(b− c2 + 1)(−a+ c1 + c2 − 1)
,

C13 =
1

λ1λ3
=

1

(b− c1 + 1)(−a+ c1 + c2 − 1)
,

C14 = 0,

C22 =
( 1

λ0
+

1

λ2

)( 1

λ3
+

1

λ−
134

)

=
(c1 − 1)(a+ b− c2)

(a− 1)(a− c2)(b− c2 + 1)(−a+ c1 + c2 − 1)
,

C23 =
−1

λ0λ3
=

−1

(a− 1)(−a+ c1 + c2 − 1)
,

C24 = 0,

C33 =
( 1

λ0
+

1

λ1

)( 1

λ3
+

1

λ−
234

)

=
(c2 − 1)(a+ b− c1)

(a− 1)(a− c1)(b− c1 + 1)(−a+ c1 + c2 − 1)
,

C34 = 0,

C44 =
2

λ3λ4R(x)
=

2

(−a+ c1 + c2 − 1)(−b)R(x)
,

where

λ0 =−λ1 − λ2 − λ3 − 2λ4 = a− 1,

λ124 = λ1 + λ2 + λ4 = b− c1 − c2 + 2,

λ−
134 =−λ1 − λ3 − λ4 = a− c2,

λ−
234 =−λ2 − λ3 − λ4 = a− c1.
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Table 2: Residues of ωx.

Component Residue

E∞ λ0 = a− 1

t1 = 0 λ1 = b− c1 + 1

t2 = 0 λ2 = b− c2 + 1

L(t) = 0 λ3 =−a+ c1 + c2 − 1

Q(t, x) = 0 λ4 =−b

E0 λ124 = b− c1 − c2 + 2

t1 =∞ λ−
134 = a− c2

t2 =∞ λ−
234 = a− c1

The determinant of C is

−4b/
(
(a− 1)(a− c1)(a− c2)(−a+ c1 + c2 − 1)3

× (b− c1 + 1)(b− c2 + 1)(b− c1 − c2 + 2)R(x)
)
.

Proof. We blow up P
1 × P

1(⊃ C
2
x) at the two points (0,0) and (∞,∞)

so that the pole divisor of ωx is normally crossing. We tabulate the residue

of ωx at each component of the pole divisor in Table 2, where E0 and E∞
are the exceptional divisors corresponding to the points (0,0) and (∞,∞),

respectively. To evaluate C11, we find the intersection points of components

of the pole divisor of ϕx,1. There are four points

{t1 = 0} ∩E0, {t2 = 0} ∩E0,

{t1 = 0} ∩
{
L(t) = 0

}
, {t2 = 0} ∩

{
L(t) = 0

}
(see Figure 4). For every intersection point, we compute the reciprocal of the

product of the residues of ωx along the components passing it. The results

in [14, Section 5] imply that C11 is given by their sum:

1

λ1λ124
+

1

λ2λ124
+

1

λ1λ3
+

1

λ2λ3
.

Similarly, we can evaluate C22 and C33.

Let us evaluate C12. The intersection points of the components of the

pole divisor of ϕx,2 are

{t2 = 0} ∩
{
L(t) = 0

}
, {t2 = 0} ∩ {t1 =∞},
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Figure 4: Pole divisor of ωx.

{
L(t) = 0

}
∩E∞, {t1 =∞}∩E∞;

{t2 = 0} ∩ {L(t) = 0} is the common intersection point of the pole divisors

of ϕx,1 and ϕx,2. By regarding L(t) and t2 as local coordinates around this

point, we express ϕx,1 and ϕx,2 in terms of them:

ϕx,1 =− dL(t)∧ dt2
(1−L(t)− t2)t2L(t)

, ϕx,2 =−dL(t)∧ dt2
t2L(t)

.

Since 1/(1 − L(t) − t2) = 1 for (L(t), t2) = (0,0), the intersection number

C12 is given by the reciprocal of the product of the residues of ωx along the

components passing the point (L(t), t2) = (0,0), that, is 1/(λ2λ3). Similarly,
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we can evaluate C13. To evaluate C23, we express ϕx,2 and ϕx,3 in terms

of coordinates s1 = 1/t1, s2 = t2/t1 around {L(t) = 0} ∩E∞ represented by

(s1, s2) = (0,−1). Since

ϕx,2 =
−ds1 ∧ ds2

s1(s1 − 1− s2)
, ϕx,3 =

−ds1 ∧ ds2
s1s2(s1 − 1− s2)

,

[s2](s1,s2)=(0,−1) =−1,

and the residue of ωx along {L(t) = 0} and that along E∞ are λ3 and λ0,

respectively, we have C23 =−1/(λ0λ3).

The pole divisor of ϕ4 consists of L(t) = 0 and Q(t, x) = 0. They intersect

at the two points P1 and P2. Since the pole divisor of ϕx,i (i= 1,2,3) does

not contain Q(t, x) = 0, we have Ci4 = 0 for i= 1,2,3. To compute C44, we

express ϕ4 around the intersection points P1 and P2 in terms of the local

coordinates L(t) and Q(t, x). A straightforward calculation implies that

ϕ4 =
(−1)i dL(t)∧ dQ(t, x)

L(t)Q(t, x)
√
R(x) +L(t)2 − 2(1− x1 − x2)L(t)− 4Q(t, x)

around Pi (i = 1,2), where the function (−1)i/(R(x) + L(t)2 − 2(1− x1 −
x2)L(t) − 4Q(t, x))1/2 is a single-valued holomorphic function around Pi

with value (−1)i/
√
R(x) at this point. We have

C44 =
1

λ3λ4

−1√
R(x)

−1√
R(x)

+
1

λ3λ4

1√
R(x)

1√
R(x)

=
2

λ3λ4R(x)
.

The determinant of C is obtained by a straightforward calculation.

Note that the matrix C is well defined and that det(C) �= 0 for any x ∈X

under our assumption. The natural map from each fiber of H2(∇) at x to

H2(Ω•
C2
x
(∗x),∇x) is surjective. The C(λ)-span of the classes of ϕ1, . . . ,ϕ4 ∈

H2(∇) (resp., ∈H2(∇∨)) is denoted by H2
C(λ)(∇) (resp., H2

C(λ)(∇∨)). The

intersection form Ic is regarded as a map from H2
C(λ)(∇)×H2

C(λ)(∇∨) to

O(∗S).

§6. Twisted period relations

Note that in this case, among H2(C•(C2
x, u)), H2(C•(C2

x,1/u)),

H2(Ω•
C2
x
(∗x),∇x), and H2(Ω•

C2
x
(∗x),∇∨

x ), there are the intersection pairings

Ih and Ic, and the pairings which yield solutions of F4 with various param-
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eters. We have two isomorphisms from H2(C•(C2
x, u)) to H2(Ω•

C2
x
(∗x),∇∨

x )

by regarding them as the dual spaces of H2(C•(C2
x,1/u)) and those of

H2(Ω•
C2
x
(∗x),∇x). As shown in [12, Section 1.5], these isomorphisms coin-

cide. This compatibility implies the following.

Theorem 6.1. The intersection matrices H and (2π
√
−1)2C and the

period matrices

Π+(x) =
(∫

Δj

uϕx,i

)
0≤i,j≤4

, Π−(x) =
(∫

Δj

(1/u)ϕx,i

)
0≤i,j≤4

satisfy

(6.1) Π+(x)
tH−1tΠ−(x) = (2π

√
−1)2C.

Corollary 6.1. The identity (6.1) implies twisted period relations

1− a

1− a12
F4(a, b, c1, c2;x)F4(2− a,−b,2− c1,2− c2;x)

− b(1− a1)

b1(1− a12)
F4(a1, b1,2− c1, c2;x)F4(2− a1,−b1, c1,2− c2;x)

− b(1− a2)

b2(1− a12)
F4(a2, b2, c1,2− c2;x)F4(2− a2,−b2,2− c1, c2;x)

+
b

b12
F4(a12, b12,2− c1,2− c2;x)F4(2− a12,−b12, c1, c2;x)

=
(1− a+ b)(b1 + b2)(1− c1)(1− c2)

(1− a12)b1b2b12
,

1− a

1− a12
F4(a, b+ 1, c1, c2;x)F4(2− a,1− b,2− c1,2− c2;x)

− b1(1− a1)

b(1− a12)
F4(a1, b1 + 1,2− c1, c2;x)F4(2− a1,1− b1, c1,2− c2;x)

− b2(1− a2)

b(1− a12)
F4(a2, b2 + 1, c1,2− c2;x)F4(2− a2,1− b2,2− c1, c2;x)

+
b12
b
F4(a12, b12 + 1,2− c1,2− c2;x)F4(2− a12,1− b12, c1, c2;x)

=
2(1− c1)(1− c2)

(1− a12)(−b)R(x)
,
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1− a

1− a12
F4(a, b, c1, c2;x)F4(2− a,1− b,2− c1,2− c2;x)

− 1− a1
1− a12

F4(a1, b1,2− c1, c2;x)F4(2− a1,1− b1, c1,2− c2;x)

− 1− a2
1− a12

F4(a2, b2, c1,2− c2;x)F4(2− a2,1− b2,2− c1, c2;x)

+ F4(a12, b12,2− c1,2− c2;x)F4(2− a12,1− b12, c1, c2;x)

= 0,

where

a1 = a− c1 + 1, a2 = a− c2 + 1, a12 = a− c1 − c2 + 2,

b1 = b− c1 + 1, b2 = b− c2 + 1, b12 = b− c1 − c2 + 2.

Proof. Compare the (1,1)-entries of the both sides of (6.1). Then we have

(6.2)
(
f1(x), . . . , f4(x)

)
tH−1t

(
f∨
1 (x), . . . , f

∨
4 (x)

)
= Ic(ϕx,1,ϕx,1),

where

f∨
1 (x) =

Γ (c1 − 1)Γ (c2 − 1)Γ (1− c1 − c2 + a)

Γ (−1 + a)
F4(2− a,−b,2− c1,2− c2;x),

f∨
2 (x) =

Γ (c1 − b− 1)Γ (c1 − a+ 1)Γ (1 + b)Γ (1− c1 − c2 + a)

Γ (c1)Γ (2− c2)

× e−π
√
−1(a+b−c1−c2)xc1−1

1 F4(c1 − a+ 1, c1 − b− 1, c1,2− c2;x),

f∨
3 (x) =

Γ (c2 − a+ 1)Γ (c2 − b− 1)Γ (1 + b)Γ (1− c1 − c2 + a)

Γ (2− c1)Γ (c2)

× e−π
√
−1(a+b−c1−c2)xc2−1

2 F4(c2 − a+ 1, c2 − b− 1,2− c1, c2;x),

f∨
4 (x) =

xc1−1
1 xc2−1

2 Γ (1− c1)Γ (1− c2)Γ (1 + b)

Γ (3− c1 − c2 + b)

× F4(c1 + c2 − a, c1 + c2 − b− 2, c1, c2;x).

Since H is diagonal, we can easily evaluate H−1 = tH−1. By multiplying

both sides of (6.2) by (1 − c1)(1 − c2)/(2π
√
−1)2 and using the formula

Γ (a)Γ (1− a) = π/ sin(πa), we reduce this relation to the first identity. By

multiplying the identities arising from the (4,4) and (1,4)-entries of (6.1)

by (1− c1)(1− c2)/(2π
√
−1)2, we have the second and third equalities in

this corollary.
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